Al PROGRAMMING 11
Intelligent Systems MSc

Benedict du Boulay

These notes are copied from those
for 1998 written by Rudi Lutz and adapted
by Chris Taylor.

The course for 2001-02 will vary
i some details.

December 24, 2001

IS MSc
Al Programming 11

Topic 0

Introduction to Course

Topic: 0 Introduction to Course Page: 0

Overview of Lecture

e Course outline

— this term in detail

e General information

— teaching times

— getting help

— on-line documentation
e Getting started

— Documentation

— Where to go from there

Topic: 0 Introduction to Course Page: 1

Course Outline

e See Handout

e Purpose of course

— Familiarise with Al languages and
programming

— Familiarise with procedural languages
and programming

— Familiarise with process of program

development and documentation

Tutor Ben du Boulay
Office 3R346

email bend

Topic: 0 Introduction to Course

Page: 2

Content

e This term:

— Pop-11 in POPLOG programming

environment
— also some Lisp

— Working knowledge of Unix operating

system

— Working knowledge of VED (a
visual /screen editor) - like a simple
word processor with extra features to
support programming.

— See handout for details of lectures

e Last term:

— Prolog (logic-based Al language)

Topic: 0 Introduction to Course Page: 3

Assessment

e Project handed in after Easter

e mark combined with similar project in

Prolog handed in after Christmas

Topic: 0 Introduction to Course Page: 4

General Information

e [.ectures

— Two per week. See handout for full
details.

— Week 9 — Lisp

e Assignments

— Set exercises to be handed in the
following week at exercise classes.

Topic: 0 Introduction to Course

Page: 5

Teaching Times

e Lectures will be the following times
(starting Week 1):

Wednesdays 12.30-13.20 Arundel 404A
Thursdays 17.00-17.50 Pevensey 1 2A3

e Exercise Class once per week (Pevensey 1
2D12), Thursdays 11.30-12.20

Topic: 0 Introduction to Course Page: 6

Other Sources of Help

e Demonstrator in labs (times to be

announced)
e Each other!!

e On-line documentation
— Teach files
— Help files
— Ref files (advanced)
— Web

e Books (see handout)
— The Pop-11 Primer (TEACH PRIMER)
— VED User Guide

— Photocopies of these lecture slides

— Buy these in 4C18.

Topic: 0 Introduction to Course Page: 7

e Once you get going online
— Teach files take over

— Try

TEACH TEACH
TEACH VED

TEACH RESPOND

Topic: 0 Introduction to Course Page: 8

Getting Into POPLOG - three ways

e From the Unix prompt % .
tsunx-% teach teach <RETURN>

or
tsunx-% teach ved <RETURN> takes
you into POPLOG via VED

e From the CDE Desktop.
Left click on tab above XE button
Left click on XVED
Press the <ENTER> key
Type: teach teach or teach ved

e From the CDE Desktop via Applications.
Left click on tab above Apps. button
Left click on Applications
Double left click on Poplog_Apps
Double left click on XVED
Press the <ENTER> key

Type: teach teach or teach ved

Topic: 0 Introduction to Course Page: 9

Once inside POPLOG

% teach teach(examining TEACH TEACH) } Command Line
Cursor —= CH TEACH A. Sloman
currently | How to read POPLOG TEACH files....
here
<fileisin here>

Topic: 0 Introduction to Course Page: 10

Getting out of Ved, and logging out

Press <ENTER> key, moves cursor to command line

cursor
[

I

Can now type commands e.g. xx

| bl

If press <RETURN> command will be executed.
xX quits POPLOG, and takes you back to UNIX(shell).

or close window by left clicking on close

window icon

Topic: 0 Introduction to Course Page: 11

define doctor();
lvars answer;
[are you feeling well] =>
readline() -> answer;
if answer = [yes] then [you do not need me] =>
else feelbad()
endif;
[that will be $50 please] =>
enddefine;
define feelbad();
lvars answer;
[do you hurt somewhere] =>
readline() -> answer;
if answer = [yes] then [take two aspirins] =>
else [you need to see a specialist] =>
endif

enddefine;

Topic: 0 Introduction to Course Page: 12

;33 DECLARING VARIABLE feelbad

doctor () ;

** [are you feeling well]

7 no

**x [do you hurt somewhere]

? yes

**x [take two aspirins]

**x [that will be $ 50 please]

doctor () ;

% [are you feeling well]

? yes

** [you do not need me]

** [that will be $ 50 please]

Topic: 0 Introduction to Course

Page: 13

Running Pop-11 Code

e Calling Pop-11 from VED (See TEACH
VEDPOP)

— usual mode of access
— enables one to keep copies of programs

— enables making of quick changes

e To edit an existing file, or to create a new

one

tsunx% ved myprogram.p (to Unix)

OR

<ENTER>ved myprogram.p (to VED)

Note “.p” suffix to file name indicates
that the file contains Pop-11 code.

Topic: 0 Introduction to Course Page: 14

—{ }7 ved myprogram.p(examining myprogram.p)

Mark | | - _______
the 5] - ___
range | | ------------—-—-—---—--

e Fither <ENTER>Imr (i.e. load marked

range),

OR
simply <CTRL>d

will cause Pop-11 to “execute” the marked

code.

Topic: 0 Introduction to Course

Page: 15

Compiling/Running Lines of Code

e from XVED

— Mark a range using f1, 2 keys, type
<ENTER> Imr or <CTRL>d

— Use compile menu button and select

line, range, procedure, file

— <ENTER> 11

e From POP-11 prompt
— load <filename.p>; e.g. load surgery.p;
— compile(’surgery.p’);

e Within a program
— compile(’ bend /mypoject /surgery.p’);

Topic: 0 Introduction to Course Page: 16

Contents of file dissertation.p

e Makes use of three libraries of pre-defined
procedures e.g. for a production system or
a semantic network and four files of your
own procedures. Each file contains one or

more related procedures.

e uses libraryl, library2, library3;
load myfilel.p;
load myfile2.p;
load myfile3.p;
load myfiled.p;

Topic: 0 Introduction to Course Page: 17

IS MSc
Al Programming 11

Topic 1

Introduction to Computing

Topic: 1 Introduction to Computing Page: 0

Introduction to Computing

e VED
— What it looks like
— VED facilities

— access from VED

e Unix
— Calling Unix from VED
— Unix facilities

e Pop-11
— Calling Pop-11 from VED
— Loading programs

— Running programs

— Output file

Topic: 1 Introduction to Computing Page: 1

VED (See VED User Guide)

e Visual display(screen) EDitor
— Interfaces to Unix(shell)

— Interfaces to programming

environments: Pop-11, Lisp, Prolog,
ML.

See TEACH VEDPOP
e What happens when you call VED?
— Puts a “file” on the screen
— Copied from disk to VED “buffer”
— Writing to disk
x Backup copies
* Quotas/filespace

Topic: 1 Introduction to Computing

Page: 2

What VED looks like

e Split screen (on some terminals multiple

“windows” instead
e Command Line (+ <ENTER>)

e Copy of file containing text and/or

programs(code)

e Two files can be displayed at any one time

(usual mode)

e Can enlarge one file to full screen/window
by <ESC>w

e To reduce again, repeat <ESC>w

e Other files “hidden”

— Names kept in ved bufferlist
— To see it, type <ESC>e then select

filename

Topic: 1 Introduction to Computing Page: 3

VED Facilities

e Facilities for moving around files

e For moving between files — <ESC>x
e For modifying contents

e Static mode — <ENTER>static

e Writing contents
— <ENTER>w
— <ENTER>wq
— <ENTER>qq
— <ENTER>xx
— <ESC>q

e Marking ranges

e Deleting ranges — <ENTER>d

Topic: 1 Introduction to Computing Page: 4

e Moving/copying marked ranges

— Within file — <ENTER>m and
<ENTER>t

— Between files — <ENTER>mi
<ENTER>mo <ENTER>ti
<ENTER>to

e “Loading” marked ranges —
<ENTER>Imr

— See TEACH VEDPOP
e Searching a file — <ENTER>/wanted text

e Global edits —
<ENTER>s/string/replacement

e Redo

e The command line is a ved buffer — can

move up and down it using normal keys

Topic: 1 Introduction to Computing Page: 5

Access from VED

e To other files in VED bufferlist
— <ESC>x
— <ESC>e

e To other files
— <ENTER>ved filename will

x will copy file from disk into new ved
buffer (if file not in ved bufferlist)

x display existing buffer if file in ved
bufferlist

* create a new buffer(with no
counterpart on disk yet) if file does

not exist

Topic: 1 Introduction to Computing Page: 6

e To Unix

— <ENTER>stop
will return you to shell, without
terminating VED. Type % at the Unix
prompt (i.e. you actually type a percent

sign as a Unix command!) to return to
VED.

— <ENTER>% is similar, but you are in
a new shell. Type <CTRL>d to get
back
BEWARE!!!

— <ENTER>%command
e.g. <ENTER>%]ls
e To Pop-11
— <ENTER>Imr — load marked range
— <ENTER>I1 load current file only

Topic: 1 Introduction to Computing Page: 7

Warning

In case of either <KENTER>stop or
<ENTER>%

DO NOT INVOKE VED AGAIN INSIDE
THE SHELL.

It will get a new copy of the file from disk.
Beware of losing work

For most purposes use
<ENTER>%command

Topic: 1 Introduction to Computing Page: 8

IS MSc
Al Programming 11

Topic 2

Objects and Expressions

Topic: 2 Objects and Expressions Page: 0

Pop-11 Programming

e This course will introduce
— An AI programming language

— Programming techniques and
methodology

— “Behind the scenes” explanations

e Will begin with Objects
— Different types (data types)

— primitive actions on these

Topic: 2 Objects and Expressions

Page: 1

The programming process

e Programming consists of

1) Choosing a representation for the
relevant features of the problem in
terms of data objects provided by the
programming language

2) Finding a suitable sequence of
operations acting on these data objects
which compute a data object (or
objects) which when interpreted in
terms of the problem (as defined by step
1) gives one a solution to the original

problem.

Topic: 2 Objects and Expressions Page: 2

Programming Process

World

Objects &

y
Operations

Problems

Different programming languages
nrovide different objects and
operations

ic: 2 Objects and Expressions Page:

Data Types

e numbers
— integers e.g. ...-3,-2,-1,0,1,2,3...
— decimals e.g. 1.359, 2.6, 1.0, -3.56, etc.

YOV

e words e.g. "rudi” ”cat” "computer” ”foo”

"baz39”
e strings e.g. 'My name is Rudi’ ’cat’

o lists e.g.
—labcb6d e
— [the black cat]
— [12 3 4]
— [] (the empty list)

e booleans — only two values are <true>
and <false>

e Lots of others!

Topic: 2 Objects and Expressions Page: 4

The Virtual Machine(Introduction)

e Provides
— Variables
— User stack
— The heap

— other things as well

e Variables

— Think of as named boxes that can

name

X

V2

fred

hold(contain /store) data objects

name 3| xjundef| v2 97| fredlb

e Created by variable declarations

e.g. vars name;
vars x, v2;
vars fred;

Topic: 2 Objects and Expressions Page: 5

Some Simple Actions

e The “print arrow” =>

e.g. "fred”=>
xx fred (this is what is printed)

3=>
** 3
[a b c]=>
xx [a b]

e The “assignment arrow” —>

e.g. "cat” —>fred;

stores the word ”cat” in variable fred

fred | cat’

fred| ” cat”
fred=>

*% cat

Topic: 2 Objects and Expressions Page: 6

Arithmetic Operations

e Most are “infix” operations

e.g. 243=>

*% D

0-12=>

*% -0

e How does Pop-11 “know” that
3+6*4
evaluates to 27 (not 36)

e Fach arithmetic operator (4 - * / etc) has
a precedence associated with it.

e Operations with the lowest precedence are
done first

e So *x and / are done before + and -

Topic: 2 Objects and Expressions Page: 7

e Operators with same precedence are done

from left to right

e If we want to override the normal
precedence we use parentheses.
Expression in parentheses(brackets) are
evaluated first.

e.g. (34+6)xd=>
xx 30

Topic: 2 Objects and Expressions

Page: 8

Running Pop-11 Code

e Calling Pop-11 from VED (See TEACH
VEDPOP)

— usual mode of access
— enables one to keep copies of programs

— enables making of quick changes

e To edit an existing file, or to create a new

one

tsunb% ved myprogram.p (to Unix)

OR

<ENTER>ved myprogram.p (to VED)

Note “.p” suffix to file name indicates
that the file contains Pop-11 code.

Topic: 2 Objects and Expressions Page: 9

—{ }7 ved myprogram.p(examining myprogram.p)

Mark | | - _______
the 5] - ___
range | | ------------—-—-—---—--

e Fither <ENTER>Imr (i.e. load marked

range),

OR
simply <CTRL>d

will cause Pop-11 to “execute” the marked

code.

Topic: 2 Objects and Expressions

Page: 10

Output from running programs

— — outputp

** 5 <

output by
Pop-11

—{ }7 ved myprogram.p(examining myprogram.p)

| <CTRL>d
243=>

If executing the code involves any output (e.g.
printing) this will be put in a file (actually the
corresponding VED buffer) called output.p

Topic: 2 Objects and Expressions Page: 11

List Operations

e The “head” operation hd obtains the first
element of a list

e.g. hd([a b c])=>

*%k a

e The “tail” operation tl obtains the list

“minus” its first element

e.g. tl([a b c])=>
xx [b c]

vars mylist;
[the black cat]—>mylist;
hd (mylist)=>

% the

t1(mylist)=>
+x [black cat]

Topic: 2 Objects and Expressions Page: 12

e Exercises (do these mentally, or on paper,

first, then try them out on the machine to

check your answer
hd([1 2 3])=>
t1([1 2 3])=>
hd(tl([1 2 3]))=>
hd(hd([1 2 3]))=>
d([])=>
I([a])=>
tI([])=>

s =

Topic: 2 Objects and Expressions

Page: 13

Stacks

e A stack is like pile of plates

e Plates can be added to the top of the
stack.

e Plates can be removed from the top of the

stack.
e Last In First Out (LIFO)

e Jargon

push an object onto the top of the
stack

pop an object off the stack.

Topic: 2 Objects and Expressions Page: 14

The User Stack

e Pop-11 has a stack called the user stack,
onto which data objects are pushed, and off
which they are popped

e The user stack (usually referred to as
simply the stack) takes part in almost
everything that happens in Pop-11

e It is probably one of Pop-11’s most

controversial features

e The use of a data object or variable name
anywhere in Pop-11 except to the right of
an assignment means “put the object
OR value of the variable on the
stack”

Topic: 2 Objects and Expressions Page: 15

Examples

3;

results in
3
while

vars fred;
5—>fred;
fred;

results in

5]

Topic: 2 Objects and Expressions Page: 16

Assignment and the stack

e The assignment arrow means “take the
top object off the stack and put it in
the “box” named on the right of the

assignment arrow”

e So, 3—>fred really means

3 —>fred
put 3 take top
on the object off
stack the stack

and store in fred

\il u 3| fred

BEFORE AFTER

Topic: 2 Objects and Expressions Page: 17

The stack and arithmetic operations

e 243 really means 2;3;ADD

Put 2 on the stack 2
Put 3 on the stack g

Take the top two items
oftf the stack, add together 5

and put result on stack

Topic: 2 Objects and Expressions Page: 18

e Suppose we have done

vars X, V, Z;
3—>X;
4=>y;

giving us x 3| y/4

If we then do x+y—>z;

put value of x on stack 3

put value of y on stack g

Add 7

take top item off stack

and store in z u v/

e Note x and y have not changed

they are still x 3| y/ 4

Topic: 2 Objects and Expressions Page: 19

Swapping the values of variables

Suppose we have x 3| y/ 4

Then x5y —>x—>Yy;

results inx4| y3

X 7y —> X —> Yy
BN T
x| 4 yl 3

Topic: 2 Objects and Expressions Page: 20

More than one result

e Some operations can leave more than one

thing on the stack

e For example dest splits a list, putting the
head on the stack, followed by the tail

dest([a b c])—>list—>x;

gives

list=>
xx [b c]

X=>

** a

Topic: 2 Objects and Expressions Page: 21

List Building Operations

e The <> operator can be used to join lists
e.g. [a]<>[b c|<>[d e]=>
xx [a b cd e
e.g. vars list1 list2 list3;
la b c]—>listl;
d e f]—>list2;
list1<>list2—>list3;

list1=>
xx [a b c]

list2=>
xx [d e f]

list3=>
xx [abcdef]

Topic: 2 Objects and Expressions Page: 22

e The :: operator can be used to add a new

element to the front of a list
e.g. [a b c]—>list;
93::list—>list1;
list=>

xx [a b]

list1=>
xx [93 a b ¢]

Topic: 2 Objects and Expressions Page: 23

Computing Elements of Lists

e Elements in a list are not normally

evaluated
e.g. [2+3]|=
*x (2 + 3]

[name address|=>

** [name address|

e if we want to evaluate elements in a list we
can use ~ and
e.g. "rudi” —>name;

[15 Hendon Street]|—>address;

["name "address|=>
+* [rudi [15 Hendon Street]]

["name ""address|=>
x% [rudi 15 Hendon Street]

e ““can only be used on lists

Topic: 2 Objects and Expressions Page: 24

More List Accessing Operations

vars names;

[rudi sue ruth linda john]—>names;

names(1)=>

% rudi

names(4)=>

% linda,

[jane sue| [tim mark]|]—>names;

names(2)(1)=>

*% t1m

Topic: 2 Objects and Expressions Page: 25

Modifying (Updating) Lists

e Lists can be modified(updated) in various

Way's
e.g. [a b c|—>list;

list=>
xx [a b c]

4—>hd(list);

list=>
xx [4 b c]

7—>list(3);

list=>
xx [4 b 7]

(10 11 12]—>tl(list);

list=>
xx [4 10 11 12]

e Use updating operations WITH
CARE!!!

Topic: 2 Objects and Expressions Page: 26

Vectors

e Vectors are fixed length structures similar

in some ways to lists

e.g. {a b c} is a 3 element vector

e Cannot use hd and tl. Access by indexing
e.g. {a b c}—>vec;

vec(2)=>
x* b

7T—>vec(2);

vec=—>

xx {a 7 c}
e Can use " and ™ in vectors
e <> will join vectors

e In fact <> can be used to join words, lists,

strings, vectors

e Strings are a restricted form of vector

Topic: 2 Objects and Expressions Page: 27

Testing Objects for Equality

e There are two equality tests (both infix)
available in Pop-11

= tests for “similarity”

== tests for “identity”
e.g. [a b c]—>listl;

la b c]—>list2;

list2—>list3;

list1=list2=>
xx <true>

list1==list2=>
x*x <false>

list2=list3=>
xx <true>

list2==list3=>
xx <true>

since listl and list2 are different lists
with the same components while
list2 and list3 are the same list

Topic: 2 Objects and Expressions Page: 28

e Any two objects which are == are also =

e Any two objects which are = are not

usually ==

e Exceptions

1. Two words which are = are also
always ==
e.g. ‘cat’=="cat” =>
x*% <true>
2. Similarly for (small) integers
e.g. I==3=>
x*% <true>
e Lists and other compound data types do
not have this property
e.g. [abc]==[abc] =
xx <false>
e A deeper explanation will be given later,
but if you are curious ask in

tutorials/exercise classes

Topic: 2 Objects and Expressions Page: 29

IS MSc
Al Programming 11

Topic 3

Procedures

Topic: 3 Procedures Page: O

Procedures

e A procedure is a “packaged” sequence of
Pop-11 statements
e Several uses

— When you want to perform a set of

statements more than once in a program

— When you want to apply the same
operations to different sets of data

— To improve program readability

Topic: 3 Procedures Page: 1

Defining A Procedure

e Procedures usually begin with the word

define and end with a corresponding
enddefine

e.g. define greet();

Hello how are you today]=>

Enjoy your programming session|=>
[Just type bye to finish|=>
enddefine;

e The line beginning define is known as the
procedure header

e The code between the define and the
enddefine is known as the procedure

body

e A piece of code of the form

greet()
is known as a call of the procedure

Topic: 3 Procedures Page: 2

define simple(num1,num?2);
numl+num2=>

enddefine;

e numl and num?2 are known as simple’s
input local variables, or more simply, its
input locals.

e They are also known as its formal
parameters

e simple can be called with different data

e.g. simple(4,6);
xx 10

e.g. simple(7,9);
xx 16

e The values given to simple in a call are
known as its actual parameters

Topic: 3 Procedures Page: 3

e When a procedure is called the values of its
actual parameters are “passed into” its
formal parameters before the body of the
procedure is executed

e When a procedure finishes its execution the
program continues executing any code that
occurs(textually) after the call. The
procedure is said to return to where it was
called from

e hd, tl, +, -, %, /, <>, ::, are all examples of
built in procedures

Topic: 3 Procedures Page: 4

Local Variables of a Procedure

e Variables declared by a lvars statement
inside a procedure, always have a new
“box” created for them every time the
procedure is called

e Once created this “box” will then exist
until the procedure is exited. Aside: a
slight white lie - very occasionally they can

last longer than this

e Such a variable(named box) can only be
accessed from inside the procedure

e This named “box” is independent of any
other “boxes” with the same name that

may exist elsewhere in the program

e Such variables are called (lexical) local
variables of the procedure.

Topic: 3 Procedures Page: 5

An Example

vars X;

define simple();
lvars x;

27—>x;

X=>
enddefine;

100—>x;
simple();
xx 27

X=>
xx 100

e So, if you need extra variables to hold
intermediate results inside a procedure,
declare them local to the procedure, but do

not worry about “name clashes”

Topic: 3 Procedures Page: 6

Procedure Results and Outputs

e Usually don’t just want the results of a

procedure printed out on the screen

e Usually a procedure is called as part of a

more complex set of instructions

e Therefore, usually want to “pass” the
results of a procedure call on to other
operations, or to store them in variables for
later use

e.g. define simple(numl,num?2)—>result;

numl+num?2—>result;
enddefine;

define simple2(numl,num2)—>rl—>r2;
numl-+num2—>rl;
numl—num2—>r2

enddefine;

e In the above, result, r1, and r2 are known
as output locals or result variables

Topic: 3 Procedures Page: 7

e When Pop-11 exits(returns) from a
procedure the values of the output locals
are left on the stack in reverse order

e.g. simple(5,6)—>x;

X=>
x% 11

simple(5,6)=>
xk 11
simple2(8,7) —>x—>vy;

X=>
xx 15

y=>
xk]
simple2(8,7)=>
xx 1 15 Note order of results
e N.B. => prints top item on stack if used
inside a procedure, but prints complete
stack contents (from bottom up) if used

outside a procedure

Topic: 3 Procedures Page: 8

define simple2(numl,num?2)—>rl—>r2;

numl+num2—>rl;
numl—num2—>r2
enddefine;

is equivalent to

define simple2();
lvars numl, num?2, rl, r2;

—>num?2;

—>numl;

numl+4+num2—>rl;
numl—num2—>r2
r2:
rl;

enddefine;

:;; all lvars variables

;;;get values for input
::;locals off stack

:;;same body

;;;put values of output
:;;locals on stack

e Note that this makes explicit the fact
that numl, num2, rl, and r2 are all local

Ivars

Topic: 3 Procedures

Page: 9

Why?

e A procedure call like simple2(8,7) means

1) First(i.e. before calling the procedure)
evaluate the arguments from left to
right (leaving values on the stack)

H

Note order reversal here, second

argument 1s on top

2) Call simple2. It clearly can only get the
second argument first, then the first!!
So simple2’s internals make sure this
happens correctly.

Topic: 3 Procedures Page: 10

e To understand the order reversal with the
output values we have to consider what a
typical call to simple2 might look like:

simple2(8,7) —>x—>y;

e This is made up of
— the call itself

— two assignments —>x and —>y (done
after the call)

e Note that the assignment to x is done first,
followed by the assignment to y

e Therefore the value for x must be on top of
the stack, with the value for y below it

e i.e. inside simple2, r2 must be pushed on
the stack first, and r1 second — the order is
reversed from that in the definition, but a
typical call will “match” the header so we
don’t have to worry about it

Topic: 3 Procedures Page: 11

More Modern Notation

define simple2(numl,num?2)—>r1—>r2;
numl-+num2—>rl;
numl —num2—>r2

enddefine;

can (should?) be written as follows:

define simple2(numl,num?2)—>(rl,r2);
numl+num2—>rl;
numl—num2—>r2

enddefine;
It can then be called as follows:
simple2(5,6)—>(a,b);

and a will get the value of r1, and b the value
of r2.

Topic: 3 Procedures Page: 12

Shortcuts

e This mechanism of leaving results on the
stack means we can take “shortcuts”
e.g. define simple(nl,n2)—>res;

nl+n2—>res
enddefine

which leaves the value of res (= nl+n2)
on the stack, behaves identically to

define simple(nl,n2); ;;;no output local
nl+n2
enddefine;

which will just leave the value of n1+n2

on the stack directly

e Only use the second technique for simple
procedures where it is obvious what is
being left on the stack, and where. For
more complicated procedures be explicit
i.e. use the first method

e Do not mix methods in a procedure

Topic: 3 Procedures Page: 13

The Return Statement

e Results can also be returned from
procedures using the return statement
e.g. define simple(numl,num?2);

return(numl+num?2)
enddefine;

define simple2(numl,num?2);

lvars rl, r2;
numl-+num2—>rl;
numl-num2—>r2;
return(r2,rl)

enddefine;

e A return statement causes an exit from
the procedure immediately (after any
values in the brackets have been computed
and left on the stack)

e Again Do not mix return methods!

Topic: 3 Procedures Page: 14

Declaring Variables Using vars

e Variables declared by a vars statement,
whether inside a procedure or not, always
have a “box” created for them, unless a
“box”with this name already exists

e Once created this “box” will then
exist for the whole of the rest of the
Pop-11 session

e Such a variable(named box) can then be

accessed from anywhere

e If the vars statement occurs in a
procedure, then this “box” is created at
the time the procedure is defined

e All this occurs whether the vars statement

is inside a procedure or not

Topic: 3 Procedures Page: 15

Local vars Variables

e If a variable is declared (using vars) inside
a procedure it is called a (dynamic) local
variable of the procedure

e vars local variables have their current
value saved (somewhere!) on entry to the
procedure i.e. every time the procedure

executes

e vars local variables have their
previous(saved) value restored on exit
from the procedure i.e. every time the
procedure returns to where it was called

from

e Therefore, you can safely assign values to
vars local variables inside a procedure
without affecting their value outside the

procedure

e They behave (almost!) like new temporary
variables

Topic: 3 Procedures Page: 16

Guidelines

e Use vars to declare global variables i.e.
variables that represent truly global
information in your program, that you

want anything to be able to access.

e Use lvars to declare variables inside a
procedure to make them really local,
rather than the sort of “pretend” locality
that vars gives.

e BY DEFAULT: Input and output locals
are all lvars

e The general rule is that local variables
should always be lvars , unless the variable
is going to be used as a “matcher variable”
(see later in course), or unless there is some

other very good reason to make it vars

Topic: 3 Procedures Page: 17

IS MSc
Al Programming 11

Topic 4

Conditionals

Topic: 4 Conditionals Page: 0

Control Flow

e Normal execution of the statements in a
program is sequential i.e. the statements
are executed in the order they appear in

the program.

e Three main ways of altering the flow of
control
— Procedure calls (already met)
— Conditional statements
— Loops

e Conditional statements are used whenever
we want to carry out some actions

depending on whether or not some

condition is true or not

Topic: 4 Conditionals Page: 1

Conditional Statements in Pop-11

e There are 3 main forms of conditional

statement

(1) if <condition> then
<actions>

endif;

(2) if <condition> then
<actions>
else
<actions>

endif

(3) Multiconditionals

if <condition> then
<actions>

elseif <condition> then
<actions>

elseif <condition> then
<actions>

else <actions> ;;; this is optional
endif

e Also variants using unless ...endunless

Topic: 4 Conditionals Page: 2

Examples

o if <condition> then <actions> endif

e.g. define positive_difference(numl,num?2);
if num1>num?2 then
numl-num?2

endif
enddefine;

positive_difference(4,2)=>
k% 2

Topic: 4 Conditionals Page: 3

e if <condition> then <actions>

else <actions> endif

e.g. define abs_val(num)—>result;
if num<0 then
—num—>result
else
num—>result
endif

enddefine;

abs_val(3)=>
*k 3
abs_val(-5)=>

*% D

e.g. define largest(numl,num?2)—>res;
if numl>num?2 then
numl—>res
else num2—>res
endif

enddefine;

largest(7,9)=>
x*x 9

Topic: 4 Conditionals

Page: 4

Two Useful Procedures

e readline converts what is typed in by the
user to a list. It prompts the user with a
“?” and then anything the user types
before hitting <RETURN> is made into a
list.

e.g. vars answer;
readline()—>answer

? hello there <RETURN>

answer=—>
xx [hello there]

e member can be used to test whether or
not some item is in a list or not. It returns
<true> or <false>.

e.g. member(3,[1 5 6 cat 3 a])=>
xx <true>

member(”dog”,[1 5 6 cat 3 a])=>
*+x <false>

Topic: 4 Conditionals Page: 5

Multiconditionals

o if <condition> then

Topic: 4

<actions>

elseif <condition> then
<actions>

elseif <condition> then
<actions>

else <actions> ;;; this is optional
endif

e.g. define reply(ans)—>rep;
if ans=[nobody loves me| then
[why do you feel unloved]|—>rep;
elseif ans=|[I hate computers| then
|do you like people]—>rep
else [please tell me more]—>rep

endif
enddefine;

readline()—>sentence;

? I hate computers <RETURN>

reply(sentence)=>
xx [do you like people]

Conditionals

Page: 6

Conditionals and the Stack

e Like everything else in Pop-11 conditionals
involve the stack
e.g. if <condition> then
<actions>

else

<actions>
endif

The <condition> can be any Pop-11
expression which leaves a result on the
stack. The if statement pops this
result off the stack, and if it is not
<false> then the <actions> after the
then are executed, otherwise the else

<actions> are executed.

e Note Any Pop-11 value (data object)
apart from <false> is treated as if it were
<true> by conditional statements

Topic: 4 Conditionals Page: 7

More Complex Conditions

e Complex conditions can be built out of

simpler ones using and, or, and not.

e.g. if x<3 and y>5 then ...
if not(x=y) then ...

if x=3 or (x>75 and y<z) then ...

e (Conditional statements of the form

if not(<condition>) then

<actions>
endif

can be replaced by

unless <condition> then
<actions>
endunless

Topic: 4 Conditionals

Page: 8

e Similarly

unless <condition> then
<actions>

else
<actions>

endunless

e In multiconditionals elseif and elseunless

can be mixed

e If a multiconditional starts with if it ends
with endif

e If a multiconditional starts with unless it

ends with endunless

Topic: 4 Conditionals Page: 9

The Pop-11 Pattern Matcher

e A built-in (infix) procedure for matching
lists

e Returns a boolean result (<true> or

<false>)
e.g. [1 2 3] matches [a b ¢|=>
xx <false>
e.g. [1 2 3] matches [1 2 3|=>
xk <true>

e For examples like these (i.e. where the lists
involve no pattern variables) it is much
better to use =

e The patterm matcher should be used when
you want to compare a list against a
pettern, and to bind variables to values

e Two kinds of pattern variable ? and 77

Topic: 4 Conditionals Page: 10

? Pattern Variables

e 7 variables can match a single item in a
list

e After matching the variable following the 7
gets the matching object as its value

e.g. |[the cat sat on the mat] matches
[the 7x sat on the 7y|=>

xx <true>

X=>
*% cat

y=>
%% mat

e Pattern variables must be declared as

vars type variables

Topic: 4 Conditionals Page: 11

?? Pattern Variables

e 77 variables are used to match against zero
or more items. The relevant variable gets
as its value a list of the matching items

e.g. [the pretty tabby cat sat on the mat
drinking milk]
matches

the ?7description sat on the Tobject

[D]
drinking ?7thing]=>

xx <true>

description=>
xx [pretty tabby cat]

object=>
*x% mat

thing=>
xx [milk]

e Pattern variables must be declared as

vars type variables

Topic: 4 Conditionals Page: 12

e 77 variables always start by matching zero
items, then if the whole pattern fails to
match the matcher will try again, but this
time with the 77 variable matching 1 item,
then if this fails, 2 items, and so on

e.g. [a b c] matches [?7x 77y]=>
x*k <true>

X=>
o |]

y=>
la b c]
e We can use pattern variables more than
once in a pattern
e.g. [a b a] matches [?7x b 7x]=>
**x <true>

X=>
k% Q

Topic: 4 Conditionals Page: 13

e Patterns are just lists and so can be
computed
e.g. [the mat]—>list;
[the cat sat on the mat] matches

[77x sat on "list]=>
*xx <true>

X=>
xx [the cat]

e If we want to match against a pattern but
don’t care what values actually occur in
part(s) of the list we can use = instead of a
? variable, and == instead of a 7?7 variable

e.g. [the castle on the hill] matches

the = on ==] =>
xkx <true>

Topic: 4 Conditionals Page: 14

The Forced Match Arrow ——>

e matches is typically used as follows:

if list matches [the 7?7y on 7z] then ...

e In this kind of use the match may either
succeed or fail, and the boolean result of
the match is tested by the if statement

e In some cases we know for sure that a
match will succeed, and hence do not need
to test the result. In this case we can use
the forced match arrow ——>

e In this case we are really using the matcher
to do a complicated form of assignment!

e.g. [abcdel——>[7xbcd ?y];;;mno result

X=>
3k Q

y=>
Xk €

e If a forced match fails we will get a mishap

Topic: 4 Conditionals Page: 15

Restriction Procedures

e We can restrict the kinds of values allowed
to match pattern variables by using
restriction procedures

e The simplest case is when the restriction
procedure returns a Boolean result - See

TEACH MATCHES for full information

e Example

define iscol(item);
member (item,[red blue green black])

enddefine;
the red cat] matches [the ?x:iscol cat]=>
xx <true>
the fat cat] matches [the ?x:iscol cat]=>
*+ <false>

e For a match to succeed the restriction
procedures must return true when passed
the value of the corresponding pattern

variable as a parameter

Topic: 4 Conditionals Page: 16

IS MSc
Al Programming 11

Topic 5

Loops

Loops

e Used when we want to repeat some actions

over and over again

e The most basic form is the repeat loop

repeat
<actions>
endrepeat;

e This will execute the <actions> over and
over again until we interrupt it (using
<CTRL>c) or one of the <actions> causes
an exit from the loop.

e.g. repeat

3=>
endrepeat;

*k 3
*% 3
*% 3

Topic: 5 Loops Page: 1

e Another form of the repeat loop specifies
how many times the loop <actions> are
to be repeated

repeat <expr> times

<actions>
endrepeat;

e <expr> is an expressionwhich should
evaluate to an integer
e.g. define double(list);
repeat 2 times
list=>
endrepeat
enddefine;

double([three blind mice]);

% [three blind mice]
% [three blind mice]

Topic: 5 Loops Page: 2

While Loops

e Sometimes we require an action to be
carried out repetitively(iteratively) while
(i.e. for as long as) some condition holds.

while <condition> do
<actions>
endwhile;

e.g. define doubles(num1,total);
while numl<total do
2xnuml—>numl;
numl=>
endwhile
enddefine;

doubles(1,18);

x% 2
x% 4
*k &
x% 16
*%k 32

Topic: 5 Loops

Page: 3

Flowchart For While Loop

Does
<condition> No
hold
?
Yes
<Actions>
Exit
from
loop

Topic: 5 Loops Page: 4

Until Loops

until <condition> do
<actions>
enduntil ;

e Equivalent to

while not(<condition>) do
<actions>
endwhile;

e.g. define addone(numl,num?2);
until numl=num?2 do
numl=>
numl+1—>numl;
enduntil
enddefine;

addone(1,3);

*% 1
*% 2

Topic: 5 Loops Page: 5

For Loops

e There are many forms of “for” loop in
Pop-11

e One of most useful takes the form:

for <element> in <list> do
<actions>
endfor ;

e Used for doing something with/to each
element of a list (iterating down a list)

e.g. define addnum(num,list);
lvars x;
for x in list do
X+num=—>
endfor ;
enddefine;

addnum(2,[1 2 3]);

*k 3
*x 4
*% D

Topic: 5 Loops

Page: 6

e Another form operating on lists is

for <element> on <list> do
<actions>
endfor ;

Sets <element> to successive tails of
the <list> .

e.g. define snip_list(list);
lvars x;
for x on list do
X=>
endfor ;
enddefine;

snip_list([a b ¢]);

xx [a b c]
xx [b c]
xx [C]

Topic: 5 Loops Page: 7

e Another useful form is

for <element> from <expr> to <expr> do
<actions>
endfor ;

e The <exrpr>s must evaluate to numbers

e.g. for x from 1 to 10 do
X=>
endfor ;

*x 1
*% 2
*% 3

xx 10

Topic: 5 Loops Page: 8

e A variant of this is

for <element> from <expr> by <expr> to

<erpr> do
<actions>
endfor ;

° c.g.

for i from 1 by 2 to 10 do
1=>

endfor ;

xk 1

*% 3

*% D

x% 7

x% 9

Topic: 5 Loops Page: 9

Premature Exits from Loops

One often wants to exit from a loop before it
would otherwise end. There are two main ways

of doing this.

e Inside a procedure, return will exit from
the procedure(and hence any loop the

return is in)

e If one simply wants to exit from the loop
quitloop can be used

e.g. define find(item,list)
lvars x;
for x in list do
if x=item then
”found” =>
quitloop
endif
endfor
enddefine;

e See TEACH QUITLOOP for information
on quitloop(n). Also look up quitif.

Topic: 5 Loops Page: 10

Foreach

e This will look for every instance of a

pattern in a list

foreach <pattern> in <list> do
<actions>
endforeach ;

e Example

| [mary hates music]
john hates jelly]
lmary loves monkeys]
[sam hates singing]]|—>info list;

foreach [?person hates 7thing| in info_list do
["person “thing|=>

endforeach ;

%% |mary music|

+x [john jelly]

%% [sam singing]

Topic: 5 Loops Page: 11

Forevery

e This “looks” for every instance of a
combination of patterns

forevery <list of patterns> in <list>

do

<actions>
endforevery ;

e See TEACH FOREVERY for more details,

and limitations

Topic: 5 Loops Page: 12

An Example

| [mary hates music]

john hates jelly]

'mary loves monkeys]

sam hates music|

peter loves prunes]

susan hates music] |—>info_list;

define co_haters(thing, list);
vars pl, p2; ;;;note vars - used in matcher
forevery [[7pl hates “thing]
[7p2 hates “thing]] in list do
["pl AND "p2]=>
endforevery
enddefine;

cohaters(”music”, info_list);

x% [mary AND mary]
+x [mary AND sam]
xx [mary AND susan]
#% [sam AND mary]
+x [sam AND sam)]
xx [sam AND susan]
etc.

Topic: 5 Loops Page: 13

Decorated List Brackets

e In a Pop-11 list arbitrary Pop-11
statements may be included between “%”

signs

e These statements are “executed” when the
code containing the list is run. Anything
left on the stack by these statements is
then included in the list

e.g. % for i from 1 to 5 do
i

endfor %|=>
xx [1 2 3 4 5]

[abc % for i from 1 to 3 do i endfor % d|=>
xx [abcl23d]

e This is one of the reasons why the user
stack is so useful. It enables one to build
lists (and other data types) extremely
easily and flexibly

Topic: 5 Loops Page: 14

IS MSc
Al Programming 11

Topic 6

Recursion

Topic: 6 Recursion Page: O

Recursion

e Defining objects or actions in terms of
themselves

e To build a wall
1. Build a single layer of bricks
2. Build a wall on top of it

e Recursive Data Structures

e.g. A list is
either the empty list
or consists of two parts
- the head(any object)
- the tail which is a list

Topic: 6 Recursion

Page: 1

e A binary tree is
either the empty tree

or consists of 3 parts

- the root(any object)

- a left subtree a binary tree
- a right subtree a binary tree

The root

The - ~ The

eft - right
subtree e subtree

Topic: 6 Recursion Page: 2

Recursive Procedures

e Suppose we want to write a procedure
timesup, which given an integer n as
input, computes

1 X2X3X...Xxn
e.g. timesup(3)=>

x% 0

timesup(5)=>

xx 120

e We could implement this in Pop-11 as:

define timesup(n)—>answer;
lvars i;
1—>answer;
for i from 1 to n do
Ixanswer —>answer;
endfor ;
enddefine;

e This is an iterative solution - it uses a

loop

Topic: 6 Recursion

Page: 3

e But notice

timesup(n)=1x2x3 x...x (n—1) X

={1x2x3x...x(n—=1)} xn
= timesup(n — 1)xn
e This gives us a recursive definition of
timesup
timesup(1)=1 stopping case

timesup(n)=nx timesup(n — 1)

e leading to Pop-11 code

define timesup(n)—>answer;
if n=1 then
1—>answer
else
nxtimesup(n-1)—>answer

endif
enddefine;

e This is a recursive solution

Topic: 6 Recursion

n

Page: 4

Recursive Definitions

e In general recursive definitions have main

parts
(1) A non-recursive “stopping” part
(2) The recursive part

e Note that either of these may contain
several sub-parts

e Note also that (usually!) the recursive part
of the definition operates on something
“smaller” i.e. nearer to the stopping case

Topic: 6 Recursion Page: 5

Examples

e The definition of a list splits into two cases
— The empty list
— the recursive part (note how the tail is
shorter by one element)
e The definition of timesup splits into two
parts
— n=1 (stop by returning 1)

— n#1 (return nxtimesup(n-1)) n-1 is

nearer 1 than n!!

Topic: 6 Recursion Page: 6

Local Variables and Recursion

Question How does a Recursive Procedure
Keep Track of its Local Variables?

e Answer

Two cases to deal with

* lvars variables

* vars variables

e Local variables declared by lvars are
created on entry to the procedure. Every
time the procedure is called we therefore
have new variables which cannot interfere
with those in the calling procedure.
Therefore when we return back to the
calling procedure the variables still have
their previous values even though we have
in the meantime used different variables

with the same name

¢ Remember Input and output variables
are lvars by default.

Topic: 6 Recursion Page: 7

e Local variables declared by vars have
their values saved (somewhere) on entry to
the procedure. These saved values are

restored again on exit from the procedure

Where are the values saved?

On another stack known as the control
stack (not the user stack). Because it
is a stack there is no danger of recursive

calls overwriting previous saved values.

e We can override the default (lvars) for
input and output locals by declaring then
as vars . It is then possible for them to be
accessed (and possibly “interfered with”)
by procedures called from the one they are
declared in. Only do this for a good
reason!!

Topic: 6 Recursion Page: 8

The Towers of Hanoi

Disc

3 Pegs

Start Intermediate Destination

define hanoi(n,start,spare,destination);
if n=1 then
[move disc from “start to “destination]|=>
else
hanoi(n-1,start,destination,spare);
lmove disc from “start to “destination|=>
hanoi(n-1,spare,start,destination);
endif
enddefine;

hanoi(3,” pegl”,” peg2”,” peg3d”);

e Recursive solution is short and intuitively

obvious(!!)

e [terative solution needs deep insight into
the problem

Topic: 6 Recursion Page: 9

Recursive List Processing

e Because of the recursive nature of lists
many procedures which operate on lists are

(most) easily written recursively

e.g. Write a procedure iselement which
returns <true>if a given item is in a
list, and <false>otherwise

define iselement(item, list) —>result;
if list=[| then
false —>result
elseif hd(list)=item then
true —>result
else
iselement (item,tl(list)) —>result
endif
enddefine;

Topic: 6 Recursion Page: 10

Tracing

e Procedures (especially recursive ones) can
often most easily be understood by
tracing them.

e.g. trace iselement;
(<ENTER> :trace iselement; in VED)

iselement(3,[4 5 3 1 2])=>

> iselement 3 [4 5 3 1 2]
I > iselement 3 [5 3 1 2]
'l > iselement 3 [3 1 2]
'l < iselement <true>

I < iselement <true>

< iselement <true>

xx <true>

e Tracing can be turned off again by using
untrace procedures;

or untraceall;

e See TEACH TRACE and HELP TRACE
for more details

Topic: 6 Recursion Page: 11

Reversing A List

define reverse(list)—>answer;
lvars temp;
if list=[| then
[| —>answer
else
reverse(tl(list))—>temp;
[""temp " (hd(list))]—>answer
endif

enddefine;

reverse([a b c])=>

> reverse |a b ¢]
| > reverse |b c]
'l > reverse [c]
111 > reverse |
|
C

—

Il < reverse
'l < reverse [c]
| < reverse [c b]
< reverse [c b a]
xx [c b a]

Topic: 6 Recursion Page: 12

Predicates

e A predicate is a procedure taking one
argument which returns <true>or <false>

e.g. islist([1 2 3])=>
xk <true>

isnumber(3)=>
*xk <true>

isnumber([1 2 3])=>
x+x <false>

e An object such that a predicate returns
<true>when given that object as input is
said to satisfy the predicate

Topic: 6 Recursion Page: 13

Another List Processing Example

e Write a procedure psubset which takes a
list and a predicate as inputs and returns a
list of all those elements in the input list
which satisfy the predicate

define psubset(list,pred) —>result;
lvars temp;
if list=[| then
[| —>result
elseif pred(hd(list)) then
psubset(tl(list),pred)—>temp;
[(hd(list)) ""temp]| —>result;
else
psubset(tl(list),pred) —>result
endif

enddefine;

Topic: 6 Recursion Page: 14

trace psubset;

psubset([dog 4 5 cat], isnumber)=>

> psubset [dog 4 5 cat] <procedure isnumber>
| > psubset [4 5 cat] <procedure isnumber>

'l > psubset [5 cat] <procedure isnumber>

111 > psubset [cat] <procedure isnumber>

1111 > psubset [| <procedure isnumber>

111 < psubset |]

11l < psubset |]

'l < psubset [5]

| < psubset [4 5]

< psubset [4 5]

xx [4 5]

Topic: 6 Recursion Page: 15

psubset — again

define psubset(list,pred) —>result;
if list=[| then
| —>result

elseif pred(hd(list)) then

hd(list) :: psubset(tl(list),pred)—>result;
else

psubset(tl(list),pred) —>result
endif

enddefine;

Topic: 6 Recursion Page: 16

IS MSc
Al Programming 11

Topic 7

Boxes Model of Lists

Topic: 7 Boxes Model of Lists Page: 0

Some Rather Strange Behaviour

e Consider the following behaviour

vars list, list1;

la b c]—>list;
list—>list1;
93—>list1(2); ;;;change 2nd element

list1=>
xx [a 93]

e This is expected, BUT

list=>
xx [a 93 c]

e What is going on?

To understand this kind of behaviour
we have to go slightly deeper into the
nature of lists than we have so far.

Topic: 7 Boxes Model of Lists Page: 1

Pairs

e Lists in Pop-11 (and in Lisp) are built out
of more primitive building blocks known as
pairs.

e Pairs are structures with two components
known as the front and the back of the

pair.

e Pairs are represented diagramatically as
boxes:

The front

A pair ¢ ¢

Topic: 7 Boxes Model of Lists Page: 2

e A 3 element list is actually built out of 3

pairs “chained” together
e.g. [abc]

is actually

a b C

e Note The back of each pair contains a

pointer to the next

e The last pair contains a special nil object

as 1ts back

e A list is actually represented as a pointer

to a chain of pairs

So [a b c¢]—>];

results in

I a b C

and the value of 1 is a pointer

Topic: 7 Boxes Model of Lists

Page: 3

e Question What has happened to the list
brackets?

e Answer List brackets are purely syntactic

constructs present for our convenience.

e The printing procedure does something
like:

define print(object);
lvars item;

if islist(object) then
pr(77 [77);
for item in object do
print(item);
endfor ;
pr(”]??);
endif:

enddefine;

Topic: 7 Boxes Model of Lists Page: 4

e Similarly When the compiler “sees” an

Topic: 7

opening list bracket ”[” it knows it has to

start building a list structure.

So for each item following the opening
bracket it builds a pair (using conspair)
with the item in the front, until it reaches

the corresponding closing bracket ”|”.

These pairs chained together form the list

Boxes Model of Lists

Page: 5

Back to the original example

vars 1,11;
la b c]—>1;

results in

1

Then doing 1—>11; results in

a

e

1

Finally doing 93—>11(2); results in

b

a

e

93

e Both I and 11 change because of structure

sharing

Topic: 7

Boxes Model of Lists

Page: 6

Lists of lists

la [bc|def]glhi

Topic: 7 Boxes Model of Lists Page: 7

A Small White Lie

e [a b c|is really

a b C| word
' ' . | Structures

e Where previously we indicated the word
”a” as being “inside” the front of the pair,
actually the front of the pair contains a

pointer to a word structure.

e Everything in Pop-11, apart from a few
simple things like (smallish) integers is
actually represented by a pointer to an
appropriate structure

Topic: 7 Boxes Model of Lists Page: 8

To copy or not to copy

la b c]—>11;
d e f]—>12;
11<>12—>13; ;;; <> is the concatenation

operator

13=>
xx [abcdef]

Before concatenation the situation is:
11 a b c

[2 d e f

When doing 11<>12—>13; the system copies
11 but NOT 12, resulting in:

11 a b c
12 f d e f
13 a b c

So changes to 13 can never affect 11, but can
affect 12!!

Topic: 7 Boxes Model of Lists

Page: 9

e In general

Operations which build new lists out of
old ones do as much copying as is
necessary to ensure that “old” lists do

not change, but no more
e Exceptions are operations which
explicitly “side-effect” lists.
e.g. using hd or tl in updater mode

assigning to the second element of a list

etc

Also versions of operators with nc_ as
a prefix (non-copying)
For example nc_delete or nc_<>

Topic: 7 Boxes Model of Lists Page: 10

Circular Structures

[a b c]—>1;

I a b C

1—>t1(t1(t1(1)));

a b C

1=>
xx [abcabcabcabc.......

Topic: 7 Boxes Model of Lists Page: 11

opic: 8

IS MSc
Al Programming 11

Topic 8

Poplog

Poplog

Poplog

e Poplog is just a program
e Runs under control of OS(Unix)

e Asks OS to perform system tasks on its
behalf e.g. reading or writing files

Userl User 2
Mail
Program Poplog

Operating System
(Unix)

User 3 User 4

Topic: 8 Poplog

Page: 1

User

Structure of Poplog

Files

Pop-11

Topic: 8

VED

Lisp

VAX

Prolog

Virtua
Machine

SEQUENT

HELP
TEACH
REF
LIB
files

Poplog

ML

HP

DEC Alpha

Page: 2

The Compilation Process

Common
Lisp

Prolog ML Syspop

Can
acCess

Compileto} language specific Users

High-level VM
(extended for Syspop)

Topic: 8

Poplog

Optimise _
and Machine and language
Compileto independent

Low-level VM
(modified for Syspop)

Compileto J*Machinespecific

Native
Machine
Instructions
(or assembler for Syspop)

Page: 3

The Virtual Machine
! | |

User Control Symbol Heap Other Stacks
Stack Stack Table (for Prolog)
(Dictionary)

e The virtual machine consists of the above

+ instructions for operating on them

Topic: 8 Poplog Page: 4

Poplog Virtual Machine Instructions

e Poplog VM instructions are a bit like the

following (very) simplified instructions

push put something on user stack
pop take something off stack
call call(execute) a procedure

(remembering where it was called)

return return from a procedure
(to where it was called)

e Using these a procedure call is compiled

rather as follows:

Pop-11 VM

foo(a,b)—>c; push a :::1st argument
push b :;;2nd argument
call foo ;;;do call
pop ¢ ;33 assignment

Topic: 8 Poplog Page: 5

e A procedure itself is compiled rather as

follows:
Pop-11 VM
define foo(a,b)—>c; pop b ;;;get 2nd arg
(a+b)*23—>c; pop a ;;get 1st arg
enddefine; push a ;;;do arithmetic
push b 7
call + 57
push 23 57
call * S
pop C :;;assign to ¢
push C :;;push result
return

e Note scope for optimisations

Topic: 8 Poplog Page: 6

Conditional Statements and Loops

For these we need VM branch instructions

jumpif label goto label if stack top # <false>
jumpifnot label goto label if stack top =<false>
jump label goto label
Each of these (except jump) also pops the
stack.
Pop-11 VM
if x<3 then push X
5—>a; push 3
else call <
2—>a jumpifnot 11
endif; push 5
pop a
jump 12
11: push
pop a

12:

Topic: 8 Poplog Page: 7

Pop-11 VM

while x<3 do 11: push X
Xx=> push 3
x+1—>x; call <

endwhile; jumpifnot 12

push X
call =>
push X
push 1
call -
pop X
jump 11
12:

e These are not the real VM instructions

e Real ones are similar, but lots more of

them, and a bit more complex

Topic: 8 Poplog

Page: 8

Poplog Top-level Loop
|

¢

Read a command(expression)
from keyboard

Compile and
"wrap up’ as
aprocedure

v

Execute (call) the
procedure

Topic: 8 Poplog Page: 9

The heap is where all structures represented
by pointers (e.g. lists, procedures, vectors

The Heap

etc.) are stored. e.g.

define foo(a,b);

enddefine;
nil Pair
— 2
Pair
1
— <procedure foo>
foo]
varsvariables
associated with
hd Dic'[ionary WOrdSin
| dictionary
N
Pop-11 built-i
Lo <procedure hd> pr(?cedurg; "
eg. hd, ved, => efc.

Topic: 8 Poplog

Page: 10

vars a;
112 3]—>a;
results in
nil
3
2
1
a
Built In
Topic: 8 Poplog

Garbage

}Di ctionary

Page: 11

If we then do
4 5]—>a;
we get

—
v}

Inaccessible
(nothing pointsto it)

a }Dictionary

Built In

e Inaccessible objects in the heap are known
as garbage

Topic: 8 Poplog Page: 12

The General Situation

User HEAP
Stack 3 (containing complex multi-component objects)
/
X —— 4— -
foo T N
a] \
Dictionary
+— \\
/
\
\

= object inaccessible from user program (garbage)

e When POPLOG runs out of space it
performs garbage collection

Topic: 8 Poplog Page: 13

2 of many methods:

e Compacting Garbage Collector

Garbage Collection

Dictionary

Phase 1 - mark all accessible objects

Topic: 8

Built In

® = marked (i.e. accessible)

Poplog

Dictionary

Built In

Phase 2 - Compact used memory

Page: 14

e Copying Garbage Collector

Next time

[

[

[

_ _7]
Dictionary 7]
Built In
® = marked (i.e. accessible)
Phase 1 - mark all accessible objects Phase 2 - Copy used parts to separate area

of memory

Topic: 8 Poplog Page: 15

IS MSc
Al Programming 11

Topic 9

Search

Search

e Many problems in Al can be thought of as

search problems
e.g. Theorem proving
Planning
Parsing
Games

Puzzles

e This lecture: How to write searching

programs

e See TEACH SEARCHING & TEACH
TOWER

e See Thornton & du Boulay (1992): online
on COGSWEB

http://www.cogs.susx.ac.uk/local/help/cogsweb-index.html

Topic: 9 Search Page: 1

Search Graphs

e In general search spaces are graphs rather

than trees

e.g. 8-puzzle

e It is therefore important to be able to tell

if we have “seen” a state before.

e Therefore our search algorithm will

maintain two lists:

1. considered - a list of states that have
been looked at already (sometimes
called closed in the literature).

2. alternatives - a list of states that have
been generated but not yet fully
examined (sometimes called open in

the literature).

e The alternatives list can be thought of as
an agenda.

Topic: 9 Search Page: 2

Defining the Problem

e Information about the problem we are
trying to solve is given to the search
algorithm by means of 4 problem specific
procedures.

1. isgoal(state) - returns <true> if state
is a goal state, <false> otherwise.

2. isbetter(statel,state2) - returns
<true> is statel is “nearer” to a goal
state than state2, <false> otherwise.

3. nextfrom(state) - returns a list of the
“daughter” states of state.

4. samestate(statel,state2) - returns
<true> is statel and state2 can be
considered to be the same as far as the
problem is concerned, <false>

otherwise.

Topic: 9 Search Page: 3

Choosing a State Representation

e Before writing isgoal, isbetter,
nextfrom, and samestate you need to
decide how you are going to represent a
state.

e Questions

— What do you need to know about a
state?

— What needs to be represented
explicitly?

— What is OK being represented
implicitly?

— What difference would it make if some

things that could be held implicitly
were represented explicitly?

Topic: 9 Search Page: 4

— Given a choice of representations, which
makes the above procedures:
easier to write?
more efficient?
use less space(memory)?
create less garbage?
easier to modify?

e Often a time v. space trade-off.

e These are questions you should ask yourself
whenever you need to represent anything in

a program!!

Topic: 9 Search Page: 5

The Searching Code

define search(state);
lvars alternatives, considered, templist;
|“state] —>alternatives;
[] —>considered;
until alternatives==|] do
dest(alternatives)—>alternatives—>state;
state::considered—>considered;
if isgoal(state) then
return(state)
endif;
nextfrom/(state) —>templist;
for state in templist do
unless isoneof(state,alternatives)
or isoneof(state,considered) then
insert(state,alternatives) —>alternatives;
endunless
endfor
enduntil ;
return(false);
enddefine;

Topic: 9 Search Page: 6

define isoneof(state,list);
lvars prevstate;
for prevstate in list do
if samestate(state,prevstate) then
return(true)
endif
endfor ;
return(false)
enddefine;

define insert(newstate,list) —>result;
vars state, rest;
if list matches [?state 77rest]
and isbetter(state,newstate) then
insert(newstate,rest)—>(result);
state::result—>result;
else
newstate::list—>result;
endif
enddefine;

Topic: 9 Search Page: 7

Controlling the Search

e To get depth-first search

define isbetter(oldstate, newstate);
false
enddefine;
i.e. a newstate is always better than an old
state, so go on the front of the
alternatives list.

e To get breadth-first search

define isbetter(oldstate, newstate);
true
enddefine;
i.e. an old state is always better than a new
state, so new states go on the back of

the agenda.

Topic: 9 Search Page: 8

e To get best-first search

Need to define a domain-specific
heuristic isbetter procedure

Note: best-first means “best
according to the heuristic embodied in
isbetter” not necessarily the best in
absolute terms

e Because of agenda-driven nature of the

Topic: 9

algorithm it is possible for isbetter to

change during the search - it is very
flexible.

Search

Page: 9

Finding All Solutions

define search(state);
lvars alternatives, considered, templist;

[“state] —>alternatives;

[| —>considered;

[(Y%ountil alternatives==[| do
dest(alternatives)—>alternatives—>state;
state::considered —>considered;
if isgoal(state) then

state ;;;was return(state)
endif;
nextfrom(state) —>templist;
for state in templist do
unless isoneof(state,alternatives)
or isoneof(state,considered) then
insert(state,alternatives)—>alternatives;
endunless
endfor

enduntil %]

;;:no failure result because | | returned

enddefine;

e N.B. It is possible that this will not

terminate

Topic: 9 Search Page: 10

Hill Climbing

Try the “best” place “visible” from where you

are

X

.

e Problems

— plateaus

— foothills

e A variant of depth-first search in which one
always chooses the best (according to
isbetter) of the daughters of the current
state to explore next can be regarded as
hill climbing

Topic: 9 Search Page: 11

Code for Hill Climbing

define search(state);
lvars alternatives, considered, templist;
[“state] —>alternatives;
[| —>considered;
until alternatives==|] do
dest(alternatives)—>alternatives—>state;
state::considered —>considered;
if isgoal(state) then
return(state)
endif;
nextfrom (state) —>templist;
-smake list of previously unseen states
[%for state in templist do
unless isoneof(state,alternatives)
or isoneof(state,considered) then
state;
endunless
endfor %|—>templist;
:;;order these states
syssort (templist,isbetter) —>templist;
:snow put on front of agenda
templist<>alternatives —>alternatives;
enduntil ;
return(false);
enddefine;

Topic: 9 Search Page: 12

IS MSc
Al Programming 11

Topic 10

Pop-11 Data Structures

Topic: 10 Pop-11 Data Structures Page: O

Pop-11 Datatypes

e Have already met:

Topic: 10

decimals e.g. 5.3

integers e.g. 7

booleans e.g. <true> <false>

pairs (used primarily for building lists)
nil (a unique item [])

words e.g. ”cat”

strings e.g. 'cat’

procedures e.g. <procedure hd>

lists e.g. [the 3 cats] (a derived type)
vectors e.g. {the 3 cats}

Pop-11 Data Structures Page: 1

e There are lots of others:
— arrays
— properties
— user defined record types
— user defined vector types
— keys

— bignums and ratios and complex

numbers
— closures
— dynamic lists
— devices
— processes

— refs

e REF DATA contains a complete list

Topic: 10 Pop-11 Data Structures Page: 2

Vectors

{Jan Feb Mar Apr ...Dec}—>months;

months Jan | Feb | Mar S Dec

e Accessing components of vectors

e.g. months(3)=>
xx Mar

e Updating components of vectors

e.g. "March” —>months(3);

e To make an “empty” vector of length n
e.g. initv(n)—>vec; ;;;make vector

5 —>vec(i); ;;; update an element
e Can use vectors whenever we want a fixed

length structure. Can use length to find
out length.

A

e Can use %...% inside vectors (as well as

and ™).

Topic: 10 Pop-11 Data Structures Page: 3

Strings

e A special type of vector with ASCII codes
(numbers representing characters) as

elements

e.g. ’'hello rudi’—>str;
length(str)=>
xx 10 (the space counts)

str(8)=>
*x 117 (the code for u)

116—>str(8);
str=>
% hello rtdi

inits(n)—>str; ;;;creates a string of 0’s

e See HELP STRINGS

Topic: 10 Pop-11 Data Structures Page: 4

Arrays

e Arrays are “multi-dimensional” structures

Example 1 A 1-dimensional array

1962 1963 1964 1965 1988

250000 | 255000 e 300000

newarray([1962 1988])—>population;
250000—>population(1962);

255000—>population(1963);
300000—>population(1988);

Example2 A 2-dimensional array
1962 1963 1988

1| 130000 133000

2| 50000 | | L.

3| 70000 80000

newarray([1962 1988 1 3])—>population;
130000—>population(1962,1);

80000—>population(1988,3);

Topic: 10 Pop-11 Data Structures Page: 5

Representing Pictures

1 2 235 512

158 83

012

newarray([1 512 1 512])—>picture;

picture(235,158)=>
xx 83

e See
HELP NEWARRAY
(HELP NEWANYARRAY)

Topic: 10 Pop-11 Data Structures

Page: 6

Properties (Hash Tables)

e Properties are efficient association tables

e Create using:

Nnewassoc simple limited
newproperty less simple more general

newanyproperty complicated very flexible

e See:
— HELP NEWASSOC
— HELP NEWPROPERTY
— HELP NEWANYPROPERTY

Topic: 10 Pop-11 Data Structures Page: 7

Newassoc

newassoc([[sue 33] [mary 56|])—>age;
newassoc([[sue 15000] [mary 17500]])—>salary;

age(”mary”)=>
xx DO

salary(”sue”)=>

xx 15000

18000—>salary(” mary”);
age(”sue”)+1—>age("sue”);
age(”joe”)=>

xx <false>

3—>age(”joe”): :::can add new entries
g J YN

Topic: 10 Pop-11 Data Structures Page: 8

Newproperty

newproperty([[rudi 44] [ruth 14]], 100,
”unknown”, true) —>age;

age("rudi”)=>
xx 44

age(”joanna”)=>
** unknown

e Newproperty has 4 arguments
1. A list of initialisations (can be [])

2. A “size” for the property. This is not a
limit on how many items can be stored
in the property. More efficient if it is
(say) 1.5 times the maximum number of

items to be stored in the property.
3. The default value

4. To do with garbage collector (true is
safe value). (If it is false then the
garbage collector will collect all
item /value pairs whose item part is only

accessible via the property.)

Topic: 10 Pop-11 Data Structures Page: 9

Appproperty

e appproperty(<property> ,<procedure>)

applies the <procedure> to every
item /value pair in the <property> .
The <procedure> should take two
arguments, the first for the item, the
second for the value.

e Example

newproperty(|[rudi 44| [ruth 14]], 100,
false, true) —>age;

define myprint(x,y);
lvars x, y;

X=>

y=>
enddefine;

appproperty(age,myprint);
** ruth

**x 14

** rudi

xx 44

Topic: 10 Pop-11 Data Structures Page: 10

A Warning

Properties essentially use == when looking
items up. Therefore items which are = but not
== to items in the property won’t be found.
To get round this use newanyproperty. For

this purpose newmapping is often simpler.

e See HELP NEWMAPPING
e See HELP NEWANYPROPERTY

Topic: 10 Pop-11 Data Structures Page: 11

Recordclass

e See HELP RECORDCLASS

e We often want to be able to create objects
with a set of named fields

species name age

lion leo 35 |ananima object

e.g.

name age sex mother father address

rudi 44 male pearl walter | a person object

e recordclass is the simplest method
e.g. recordclass animal species name age;

— tells the system that we are defining a
new class of object - the animal class.

— tells the system that objects of this
class will have 3 fields.

— creates various procedures for

manipulating objects of this class.

— creates a key for this class of objects
(held in variable animal key).

Topic: 10 Pop-11 Data Structures Page: 12

e What procedures does recordclass create?

consanimal - for creating animal

objects

destanimal - for “taking apart” animal
objects (putting the fields on the stack)

— isanimal - for recognising animal type

objects

e.g. consanimal(”lion”,”leo” ,3.5)—>x;

X=>

**x <animal lion leo 3.5>
isanimal(x)=>

xx <true>

destanimal(x)=>
xx lion leo 3.5 (top-level)

Topic: 10 Pop-11 Data Structures Page: 13

Field Accessing and Updating

e In addition, recordclass creates
procedures (with the same names as the
fields of the type of object concerned) for
accessing and updating the fields

e.g. (in previous example) we get procedures
— species, name, and age

e These all mishap if given non-animal
objects as arguments

e Examples of use:

age(x)=>
*x% 3.D

age(x)+1—>age(x);
age(x)=>
xx 4.5
e Warning: Different recordclasses should
have different field names

e See also HELP VECTORCLASS

Topic: 10 Pop-11 Data Structures Page: 14

Pairs

e Pairs (used for building lists) are just a
kind of record.

e If pairs had not existed we could have
created them:

recordclass pair front back;
The front

A pair ¢ ¢

The back

Topic: 10 Pop-11 Data Structures Page: 15

Pop-11 Objects

Pop-11 Objects

Simple Compound (represented by pointer
) to structure)
pairs
records
vectors
words
arrays
procedures

(small) integers
decimals

e Given a simple object and a compound
object how does Pop-11 “know” one is
simple(not a pointer) and one is
compound(a pointer to a structure)?

e All values held in one “machine word”

32313029 4 3 2 1

0ojojojo|j1/0|0|1 o111

Bits 3 to 32 contain an integer (binary)

If bits1 and 2 are: 00 then thisistreated as machine addressi.e. a pointer
01 then thisis treated as a single precision floating point value
10 unused
11 then thisis treated as an integer

Topic: 10 Pop-11 Data Structures Page: 16

Pointers

e Given 2 pointers how does Pop-11 “know”
that one is a pointer to a procedural
object(say) and the other a pointer to a

pair(say)?
— Each object has at its start a special

field (called the key field which “says”
what kind of object it actually is.

— Actually this field contains a pointer to
an object called a key.

e.g. All pairs have a pointer to the pair key
in this field.

e.g. All words have a pointer to the word
key in this field.

etc.

Topic: 10 Pop-11 Data Structures Page: 17

The Key Structure

Procedures

foo

\L procedure key

hd

()

4 key key

Words

cat

, /(word key

dog

pair key

abc

I O B

Pairs

Topic: 10 Pop-11 Data Structures Page: 18

What’s in a Key

e See HELP CLASSES

class = | class_ class class class class class
- access cons apply print dest |recognise

e Keys contain generic information about the
class of objects they are keys for
e For example, the vector key contains:

— a procedure for testing equality of

vectors
— a procedure for creating new vectors
— a procedure for “taking vectors apart”
— a procedure for printing vectors
— a procedures for recognising vectors

— a procedure for applying vectors

e Some of these are user defineable

Topic: 10 Pop-11 Data Structures Page: 19

An example

recordclass person name age sex sibling;
consperson(”’rudi”,44,” male” false) —>x;
consperson(”heidi” ,40,” female” ,x)—>y;
y—>sibling(x);

X rudi 44 male —

y — = hedi 40 femae —

X=>
xx <person rudi 44 male <person heidi 40

female <person rudi 44 male <person heidi....

Makes debugging hard since mishap
messages also show this behaviour e.g.

MISHAP: List needed
INVOLVING: <person rudi 44 male <person...

Never gets to DOING list

Topic: 10 Pop-11 Data Structures Page: 20

Solution:redefine the class_print procedure for

person type objects

define person_print(x);
lvars x;
spr("PERSON”);
spr(name(x));
spr(age(x));
spr(sex(x));
spr(if sibling(x)==false then
false
else
name(sibling(x))
endif);
npr(”ENDPERSON”);
enddefine;

person_print—>class_print(person_key);

X=>
x** PERSON rudi 44 male heidi ENDPERSON

Topic: 10 Pop-11 Data Structures Page: 21

Recommended Reading

e Chapters 8, 9, and 10 of Laventhol form a
good summary of the basic information
about data structures in Pop-11

e See HELP CLASSES for more information

Topic: 10 Pop-11 Data Structures Page: 22

IS MSc
Al Programming 11

Topic 11

Common Errors

Topic: 11 Common Errors Page: O

Using Integers to Access Lists in Loops

Consider the following code to add all the

elements in a list of numbers:

0—>sum;

for i from 1 to length(list) do
sum+list (i) —>sum

endfor ;

it s

To get at list(i) Pop-11 starts from list and

follows pointers

To get at 1st element it follows 1 pointer
To get at 2nd element it follows 2 pointers
To get at 3rd element it follows 3 pointers

To get at Nth element it follows N pointer

If the list is IV elements long it therefore follows

14+2+3+...+ N =T o~ N2 pointers.

Topic: 11 Common Errors Page: 1

e What does this mean in practice?

e Assume Pop-11 can do 1,000,000 (10°)
pointer followings per second. Then the

times taken to process lists of various

lengths are:

N2

Length(N) | 5- Time

4 8 84S

10 50 50us

100 5000 hms

1000 5000000 | s

1000000 10~ 139 hours ~ 6 days

e For large lists this takes an unreasonable

amount of time!!

Topic: 11 Common Errors

Page: 2

e To access each element of a list use hd to
get at each element, and tl to shorten the
list each time. Or, use the for <item> in
<list> ...construction.

e Both of these only do 2 pointer followings
per item, so the above table now looks like:

Length(IN) | 2N Time
4 16 165
10 20 205
100 200 200us
1000 2000 2ms
1000000 2000000 | 2s

Topic:

e This is a dramatic improvement!!

11 Common Errors Page: 3

Adding Items to Lists

e Consider the following procedure which
builds a list consisting of the cubes of each
value in its input list:

define cubeall(list)—>res;
lvars item;
| | —>res;
for item in list do
[“"res ~(itemxitemx*item)|—>res

endfor
enddefine;

e This adds items to the end of a list using a

[*"y "x] construction.

e If possible, avoid adding items to the end
of lists like this (at least repeatedly in
loops). Why?

Topic: 11 Common Errors Page: 4

e y is copied, and a new pair containing
value of x is added at end

I B o B e B I e A

e length(y) new pairs are created when
copying y. Therefore:

1st time round loop 0 items copied
2nd time round loop 1 item copied

3rd time round loop 2 items copied

Nth time round loop (N-1) items copied

e Therefore, the total number of items copied
s 14+24...+ (N 1)~ B

e Again for large lists this can take a very
long time

Topic: 11 Common Errors Page: 5

Possible Solutions

e Solution 1: Add items at front and

reverse afterwards

define cubeall(list)—>res;
lvars item;
| | —>res;
for item in list do
" (itemxitemxitem) ""res|—>res;
endfor ;
rev(res)—>res;
enddefine;

e Solution 2: (even better in this case) Use
the stack:

define cubeall(list)—>res;
lvars item;
[%for item in list do
item*1tem+item
endfor %]|—>res
enddefine;

Topic: 11 Common Errors Page: 6

e Do not use <> to achieve the effect of ::

e To add a new element (held in x to the
front of a list (held in y) do:

e Do

e To carry out x::y only one new pair
(containing the value of x) is created i.e.

Use of <> and ::

X:y
not do:

["x]<>y

the absolute minimum necessary

resulting

list

Topic: 11 Common Errors

Page: 7

e To carry out ["x|<>y, an extra garbage
pair is created since

1. A list ["x] is created.

2. Then <> copies its first argument (the
list created in step 1.)

3. This copy is then “chained” to y,
leaving the original pair as garbage
(inaccessible).

-

— - x new pair (list) created for [*x]

endsup as
garbage

copied by <>, and then chained toy
vV

final list ——= X

Topic: 11 Common Errors Page: 8

X

e I often see things like:

[x]<>result—>result;
o |""x| is always identically equal to x

e So you could have written:

x< >result—>result;

e This is really just “bad style” indicating

some sort of confusion on your part.

Topic: 11 Common Errors Page: 9

True, False, Termin, and Nil

e Pop-11 has several unique constants:

<true>
<false>
<termin>

]

e The above is how they print, not how you
refer to them (except for [| of course).

e Pop-11 has variables:

true with value <true>
false with value <false>
termin with value <termin>

nil with value | |

Topic: 11 Common Errors Page: 10

e These are not the same as the words or

strings:

"true” or 'true’
”false” or ’false’
“termin’ or ‘termin’

"nil” or 'nil’

e Note: '<true>’is a string, not the
<true> object! Do not write this and
expect to get the <true> object.

Topic: 11 Common Errors Page: 11

Conditionals and <true> and <false>

e Do not write:

if <condition> then
true
else

false
endif;

e This is (slightly) inefficient, but suggests
that you do not understand the stack and
booleans properly

e | often see code like:

define less_than_three(x)—>result;
if x<3 then
true—>result
else
false—>result
endif

enddefine;

Topic: 11 Common Errors Page: 12

e This means something like:

If x<3 evaluates to <true> then put
the value of variable true (i.e. <true>)
on the stack, and then take it off again
and assign to result. Otherwise, if x<3
evaluates to <false> then put the value
of variable false (i.e. <false>) on the
stack, and then take it off and assign to
result. On leaving the procedure put
the value of result on the stack.

e Note: this has <true>(say) on the stack,
takes it off, puts it on again, takes it off,
and puts it on again!!!!

Topic: 11 Common Errors Page: 13

e It is much better to do one of the following:

1. define less_than_three(x)—>result;
x<3 —>result;
enddefine;

2. (better still in this case)

define less_than_three(x);
x<3
enddefine;

e These are all equivalent, but the last is the
most efficient, and probably the most
natural Pop-11 style

Topic: 11 Common Errors Page: 14

Topic: 11

Misuse of the Matcher

Do not use the matcher when it is easy to

use something simpler

BAD if list matches [a b c | then ...
GOOD if list=[a b c| then ...

BAD if list matches [=| then ...
GOOD if tl(list)==[| then ...
BAD list——>[7x ==]

GOOD hd(list)—>x;

BAD if list matches [== "x ==] then ...
GOOD if member(x,list) then ...

Common Errors Page: 15

Returning Results from Procedures

e Be consistent (within a procedure)
about how you return results.

e If using an output local make sure that
every path through the procedure assigns
to the variable involved

e If using return to return a result, use it on

all paths through the procedure

e If just leaving things on the stack, then
check that you leave something on every
path through the procedure(usually!).
Comment where you are doing this if the

procedure is complicated.

e (Usually) Do not mix the above
methods. You will avoid errors this way

Topic: 11 Common Errors Page: 16

IS MSc
Al Programming 11

Topic 12

Vars and Lvars

Topic: 12 Vars and Lvars Page: 0

An Aside - Anonymous Procedures

e Pop-11 has the facility to define

“anonymous” procedures

e.g. procedure(x); x+1 endprocedure

e This evaluates to a procedural object (left
on stack).

e Doing
define f(...);

enddefine

e is (very nearly) equivalent to:

vars f;
procedure(...);

endprocedure—>{;

Topic: 12 Vars and Lvars Page: 1

A Very Nasty Bug

define howmany(list,pred)—>result;
vars item list pred result;
0—>result;
for item in list do
if pred(item) then
result+1—>result
endif
endfor
enddefine;

define more(list1,predl,list2,pred2);

vars listl, predl, list2, pred2;
howmany(list1,pred1)>howmany(list2,pred2)

enddefine;

define most(list,pred);
vars list pred;
more(list,pred,list,procedure(x);
not(pred(x))
endprocedure)
enddefine;

most([1 2 3 cat 4],isinteger)=>
MISHAP - RECURSION LIMIT EXCEEDED

bOING: howmany more most

What is going on? There isn’t a recursion in

Topic: 12 Vars and Lvars Page: 2

sight!!l!

Topic: 12 Vars and Lvars Page: 3

pred

pred

list=[1 2 3 cat 4]

2nd call |howmany pred=procedure.....pred(...).....endprocedure

list1=[1 2 3 cat 4]

list2=[1 2 3 cat 4]

predl=isinteger

pred2=procedure.....pred(...)endprocedure

more

list=[123cat 4]
most pred=isinteger

Topic: 12 Vars and Lvars Page: 4

Dynamically Scoped Variables (vars)

vars X;
2—>X;
define foo();
X=>
enddefine;

define calls_foo();
vars x;

3—>X;
foo(); ;;;call foo
enddefine;

calls_foo();

What is output by this program?

Topic: 12 Vars and Lvars Page: 5

Lexically Scoped Variables

lvars x;
2—>X;

define foo();
X=>
enddefine;

define calls_foo();

lvars x;

3—>X;

foo(); ;;;call foo
enddefine;

calls_foo();

What is output by this program?
e See TEACH VARS_AND_LVARS

Topic: 12 Vars and Lvars Page: 6

Full Lexical Scoping

Consider a language with locally defineable
procedures, lexically scoped variables, and
procedures as “first-class” objects i.e. that can
be passed as arguments to, and returned as
results from, other procedures

define f();
lvars x;
define g();

X
enddefine;

return(g)
enddefine;

£()—>h;
h();

Topic: 12 Vars and Lvars Page: 7

e Procedure g has a built-in “reference” to x
in f
e If x is held in f’s stack frame this will no

longer exist when g is called (via h).

e In other words, the extent of the variable x
is “bigger” than its scope.

e Dealing with this (implementing it) so that
nothing goes wrong (no “dangling
references”) is hard - Type 3 lexical

variables

e Solution is to recognise when this may
happen and have these variables not in the
procedure stack frame but in the heap

e See REF VMCODE for more details

Topic: 12 Vars and Lvars Page: 8

Example of Use of Type 3 Lvars

define make_counter()—>counter;
lvars n=0;
procedure();
n+1—>n;
return(n);
endprocedure—>counter
enddefine;

make_counter () —>f;
make_counter()—>g;

Creates procedures with private variables
which maintain their value between calls e.g.

f()=>

*% 1

f()=>

*% 2

g()=>

*% 1

f()=>

%k 3

g()=>

*% 2

etc.

Topic: 12 Vars and Lvars

Page: 9

Guidelines

e If a variable is just a temporary local
variable use lvars (even for input and
output locals), unless you want to use the
variable as a pattern variable (after ? or
??7) in the matcher.

e For global variables use vars while
debugging, and change to lvars when
finished, unless it is used in the matcher.

e If something must be a vars variable
declare it as vars at top level and use
dlocal inside procedures instead of vars |,
to have the variable saved and restored on
entry/exit to/from the procedure

e See TEACH VARS_AND_LVARS

Topic: 12 Vars and Lvars Page: 10

Dlocal

Consider the following procedure:

define f(...);

vars X;

enddefine;

The vars declaration does two things:

o At compile time creates a global variable x.

e At run time causes the value of x to be
saved on entry to the procedure, and

restored on exit.

e The recommended style is to separate these

two functions, and to write:

vars x; ;;;global declaration of variable

define f(...);

dlocal x; ;;; save and restore

enddefine;

Topic: 12 Vars and Lvars Page: 11

Vars Variables and Words

e Every vars variable is associated with the
Pop-11 word of that name.

e Words are represented by pointers to
appropriate word records. These contain a
valof field, used to hold the value of the

variable (not quite the whole story!!)

e Clearly each vars variable needs a unique
location. Therefore words are stored in a
dictionary and so are unique - when code
to create a word is executed the dictionary
is consulted, and if the word already exists
the existing one is used, otherwise a new
word is entered in the dictionary for future

use.

e Creating (declaring) a vars variable
therefore amounts to making sure there is a
dictionary entry fo the word involved, and
“flagging” it as a variable.

Topic: 12 Vars and Lvars Page: 12

IS MSc
Al Programming 11

Topic 13

Advanced Features

Topic: 13 Advanced Features Page: 0

Character Repeaters and Consumers

e In Pop-11 characters are integers in range
0-255

e A procedure which takes no arguments and
produces a character as its result is known
as a character repeater

e A procedure which takes a a character as
its argument and produces no result is

known as a character consumer

e In Pop-11 all I/O is normally done via

character repeaters and consumers

Topic: 13 Advanced Features Page: 1

Charin and Charout Etc.

e charin - reads a character from the
keyboard

e charout - sends a character to the screen

e cucharin - all Pop-11’s input procedures
(e.g. readline) ultimately use cucharin.
The default value of cucharin is charin.

e cucharout - All Pop-11’s output
procedures (e.g. =>, pr, etc.) ultimately
use cucharout. The default value of
cucharout is charout.

e By assigning different values to cucharin
or cucharout we can make Pop-11 take its
input from somewhere else (e.g. a file), or
send its output somewhere else (e.g. a file).

Topic: 13 Advanced Features Page: 2

Discin and Discout

e discin(<filename>) - produces a character
repeater which reads from file <filename>

e discout(<filename>) - produces a
character consumer which writes to file
<filename>

e Example - suppose file rudi.foo contains
the characters:

Hello there Rudi aged 44

discin(’rudi.foo’)—>f; ;;; build repeater

f()=

xx 72 ;;;character code for H

f()=

xx 100 ,;;character code for e

etc.
f() produces <termin> at end of file

Note: Spaces are characters (code 32).
As a character 3 has code 51

Topic: 13 Advanced Features Page: 3

Topic: 13

Similarly:
discout('temp’)—>f; build consumer
f(97); ;;;write character a to file temp
f(98); ;;;write character b to file temp

f(termin); ;;;close file
File temp now contains the letters:

ab

discout(’temp’)—>cucharout;
ensures that all output via =>, pr, etc all
goes to file temp

Make sure that the program closes file
temp when it has finished
e.g. by cucharout(termin);

Advanced Features

Page: 4

Item Repeaters and Consumers

e These produce or consume items rather

than characters

e incharitem(<character repeater>)

produces an item repeater which gets
the characters to make up the items

using the given <character repeater>

e E.g. incharitem(discin(’rudi.foo’))—>f;

fO)=>
x* Hello
f()=>
x* there
f()=>
x*x Rudi
f()=>
x* aged
f()=>
*x 44
f()=>

*x <termin>

Subsequent calls to f will mishap.

Topic: 13 Advanced Features Page: 5

e Note: The characters are formed into
items using Pop-11’s normal itemisation
rules. These can be changed - see REF
ITEMISE

e outcharitem is similar. The item
consumers produced will take any Pop-11
object as argument, and send the
characters correponding to its printed form
to the appropriate place

Topic: 13 Advanced Features Page: 6

Writing to Different Files

e Some programs which write different types
of information to different files e.g.

— error messages to an error file
— real output to an output file

— progress information to a log file

If the main (top-level) procedure contains code
like the following:

define main(errorfile,outputfile,logfile);

vars werr, wout, wlog;
outcharitem(discout(errorfile))—>werr;
outcharitem(dicout(outputfile))—>wout;
outcharitem(discout(logfile))—>wlog;

enddefine;
then all procedures can use calls like:

werr([this is an error message]), or
wlog(|The program has reached here])
etc.

to write anything at all to the appropriate file.

Topic: 13 Advanced Features Page: 7

Dynamic Lists

e Lists with a procedure for calculating the

next element.

e They are constructed from the procedure
using pdtolist.

e.g. vars n=1;
define f();
2%1;
n+1—>n;
enddefine;

pdtolist(f)—>list;
list=>
list(2)=>

xk 4

list=>

xx [24 ...]
hd(list)=>
**k 2

t1(list) —>list;
list=>

xk [4 ...]

Topic: 13 Advanced Features Page: 8

Proglist
e The compiler always works on a list held in

vars variable proglist

e proglist is a dynamic list, containing the

items to be compiled.

e At top level, proglist is initialised by:
pdtolist(incharitem(cucharin))—>proglist;

Topic: 13 Advanced Features Page: 9

Topic: 13

Popval

popval compiles (and executes, if
appropriate) the items in a list

Example
vars list, x=3;

if x<2 then "yes”=> else "no”=> endif]
—>list;

list=>

#% [if x < 2 then” yes” => else " no ” =>

endif]

popval(list);
** 1O

The effect of:
load foo.p

could have been achieved by:
popval(pdtolist(incharitem(discin(’foo.p’))));

See HELP POPVAL (and more modern
equivalent HELP POP11_COMPILE)

Advanced Features Page: 10

Readitem

e readitem returns the first item in
proglist, and removes it from there

e It is roughly equivalent to:

define readitem()—>res;
if null(proglist) then
termin—>res
else
hd(proglist) —>res;
tl(proglist) —>proglist;
endif
enddefine;

e Note: In the above we could not write
if proglist==| | ...

since this would not work on dynamic lists.
The procedure null returns <true>on
either an empty ordinary list ([|) or on an
empty dynamic list (one whose procedure
has returned <termin>)

Topic: 13 Advanced Features Page: 11

Macros

e Macros are procedures which are executed
during compilation. Any results returned

are put back on the front of proglist and

normal compilation is resumed

e The execution is triggered when the
compiler encounters the name of the macro

in proglist

e.g. define macro swap;
lvars x, y;
readitem() —>x;
readitem()—>y;
X: 77;77 Ly " © X "N Ly
enddefine;
e Then writing:
swap a b;
in a program is exactly the same as writing
a;b—>a—>b;

since this is actually what is compiled

Topic: 13 Advanced Features Page: 12

Another Example

e Macros can be used to define arbitrary new

syntax forms

e.g. define macro dotwice;
lvars x;
"repeat”; 2; "times”;
readitem() —>x;
until x=="enddotwice” do
X;
readitem () —>x;
enduntil ;
”endrepeat”
enddefine;

dotwice
[hello there|=>
enddotwice

+x [hello there]
+x [hello there]

e See HELP MACRO for more information

e Also see Chapter 11 of Laventhol

Topic: 13 Advanced Features Page: 13

IS MSc
Al Programming 11

Topic 14

More Advanced Features

Topic: 14 More Advanced Features Page: 0

More about Procedures

e Procedures are complex objects, with
several fields that users can get at, e.g.

— pdprops
— pdnargs
— updater

e A variable with a procedure as its value
actually has a pointer to the appropriate
procedural object as its value (of course!)

e The pdprops field is normally used to
hold the name of the procedure. For a
procedure defined using the define
...enddefine syntax, this contains the
word (actually a pointer to the word)

representing the name of the procedure.

e For a procedure defined using the
procedure. .. endprocedure syntax, the
pdprops field contains <false>.

Topic: 14 More Advanced Features Page: 1

Pdnargs

e The pdnargs field of a procedure contains
the number of arguments that the
procedure expects. It is used by such
things as the tracing procedure.

e For a procedure defined by the define
...enddefine syntax the pdnargs field is
set to the number of arguments that the
procedure is defined with.

e See HELP PDNARGS and HELP
PDPROPS for more information on these

Topic: 14 More Advanced Features Page: 2

Updaters

e Consider the following two uses of
procedure hd:

(1) hd(x)=>
(2) 4—>hd(x);

e The first use of hd involves a procedure
that takes a single argument (a list), and
accesses it, putting one result (the first
element) on the stack.

e The second use of hd involves a procedure
that takes two arguments (a list, and a new
value for the head), and updates the list
(altering the contents of the first pair), and
leaves no results on the stack

e Although these two procedures have the
same name they are clearly different!

e How does this work?

Topic: 14 More Advanced Features Page: 3

e A procedure call to the right of an

assignment is said to be in updater mode.

e A procedure call not to the right of an
assignment is just a normal procedure call.
A procedure call in updater mode calls a
different procedure from a normal call - it

calls a updater procedure instead

e Updater procedures are stored in the
updater field of the normal procedure

e Procedures without an updater have
<false>in this field
e.g. 7T—>sqrt(49)
causes a mishap because the sqrt
procedure has no updater.
e.g. 4—>hd(x)
is OK because the hd procedure has an

updating procedure (actually a pointer)
in its updater field.

Topic: 14 More Advanced Features Page: 4

e For the hd procedure the situation is as
shown below:

P

word pdprops pdprops
hd
pdnargs pdnargs
1 2
valof — updater | updater
<false>
procedure plrjgggéﬁrre

(Key fields not shown)

Topic: 14 More Advanced Features Page: 5

Defining Your Own Updaters

e Suppose you have defined a procedure
second as follows:

define second(list)—>res;
hd(tl(list))—>res
enddefine;

e This enables one to write things like:
second(x)—>item;

e In some situations it might then be nice (to
increase code readability etc.) to be able to

write things like:
100—>second(x);

e Unless you write an updater for second
this would mishap (of course!)

Topic: 14 More Advanced Features Page: 6

e You can write an updater for second as

follows:

define updaterof second(vallist);
val—>hd(t1(list))
enddefine;
e You can only do this once second itself
has been defined.

e Now you can do the following:

la b c]—>list;
second(list)=>
** b

5—>second(list);

list=>
xx [a b C]

Topic: 14 More Advanced Features Page: 7

Closures

e Pop-11 supports the notion of “partially

applying” a procedure.

e Partial application involves “freezing” some
of the arguments to a procedure, resulting
in a new procedure requiring fewer

arguments.

e Consider the procedure add3 defined by:

define add3(nl,n2,n3)—>res;
nl4+n2+n3d3—>res;
enddefine;

e This procedure takes 3 arguments. If we fix
the last to be 5 then we have a new
procedure which expects 2 arguments, and
which returns the sum of these plus 5

e.g. partapply(add3,[5])—>add2;
add2(1,3)=>

*% 9

Topic: 14 More Advanced Features Page: 8

e Similarly we can “freeze” the last two
arguments, giving a procedure needing only

1 argument

e.g. partapply(add3,[10 9])—>add_nineteen;

add_nineteen(5)=>
xx 24

e In general partapply takes two arguments:
1. a procedure, taking n arguments.

2. a list of m values (representing values
for the last m arguments of the

procedure.

e The result of a call to partapply is:

3. A procedure expecting n — m

arguments.

Topic: 14 More Advanced Features Page: 9

e Any call to partapply such as:
e.g. partapply(add3,[10 9])—>add_nineteen;

e can also be written with the alternative

“nicer” syntax:

add3(%10,9%)—>add nineteen;

e In Pop-11 partially applied procedures are

known as closures.

e See HELP PARTAPPLY

Topic: 14 More Advanced Features Page: 10

Defining Infix Operators

e It is sometimes useful to define your own

infix operators

E.g. An infix operator to do vector addition

define 4 ++4(x,y);
lvars 1i;
unless isvector(x) and isvector(y)
and length(x)=length(y) then
mishap(’Need Equal Length Vects’,["x “y])
endunless;
{%for i from 1 to length(x) do
x(i)-+y (i)
endfor %}
enddefine;

{12 3}—>vl;
{8 9 10}—>v2;
vl4+4v2=>

xx {9 11 13}

1+4+2=>

::s MISHAP - Need Equal Length Vects
- INVOLVING: 1 2

3 DOING @ ++4 ...

Topic: 14 More Advanced Features Page: 11

e Alternative syntax for this is:

define 4 x ++ y;

eﬂddeﬁne;

e The number on the define line is the
precedence of the operation. The higher

this number the lower the precedence. For
instance + has precedence 5 while * has
precedence 4, meaning that multiplication
is done before addition in the absence of

bracketing information.
e See HELP PRECEDENCE
e See HELP OPERATION

Topic: 14 More Advanced Features Page: 12

Processes

e A process is a Pop-11 data structure that
records the state of an execution of a piece
of Pop-11 program

e Information stored in a process includes:

— the state of the call stack

— the state of the user stack

e There are 2 ways to create processes:
— consproc
— consprocto

e E.g. consproc(n,proc)—>p;

e n is an integer, and specifies how many
items will be taken from the user stack and
put on the process’ own private user stack

at the time it is created

e proc must be a procedure

Topic: 14 More Advanced Features Page: 13

e A process can be run using runproc
e.g. runproc(n,p);

where n is an integer specitying how
many items are moved from the user
stack to the process stack when it is

run, and p is a process.

e When a process is run for the first time,
the procedure (associated with the process)
is called. Subsequently, the procedure
starts from where it was last suspended

(see below).
e A process can suspend itself using suspend
e.g. suspend(n)

where n specifies how many items are
passed from the process user stack to
the main user stack.

Topic: 14 More Advanced Features Page: 14

e After suspension of a process, control then
returns to the program which called
runproc (or resume).

e A subsequent runproc on the process will
continue from the suspend

e If the procedure the process was created
with ever exits normally (i.e. is returned
from) then all values on the process stack
are put on the user stack and the call of
runproc returns. The process is then
marked as “dead”. Subsequent attempts to

run it will then mishap.

e See REF PROCESS for more details.

Topic: 14 More Advanced Features Page: 15

Summary of Processes

e Create by:
— consproc

— consprocto

e Activated by:
— TuUnproc
— resume

— kresume

e Suspended by:
— suspend

— ksuspend

e Tests:
— 1Sprocess

— isliveprocess

Topic: 14 More Advanced Features Page: 16

An Example

define search(state);
lvars alternatives, considered, templist;
|“state] —>alternatives;
[| —>considered;
until alternatives==|] do
dest(alternatives)—>alternatives—>state;
state::considered —>considered;
if isgoal(state) then
suspend (state,1) ;;; was return(state)
endif;
nextfrom(state) —>templist;
for state in templist do
unless isoneof(state,alternatives)
or isoneof(state,considered) then
insert(state,alternatives) —>alternatives;
endunless
endfor
enduntil ;
return(false);
enddefine;

consproc(init_state,1,search)—>get_solution;

Then every time we want a new solution, doing
runproc(0,get_solution)—>sol;

will leave a solution in sol.

Topic: 14 More Advanced Features Page: 17

Non-Standard Control

e Pop-11 has various facilities for altering the

normal control flow of a program
— exitfrom

— exitto

— chain

— catch

— throw

— etc.

e These provide facilities to:

— exit from the current procedure to a

named procedure in the call chain

— exit from a named procedure in the call
chain

— replace the current procedure call with

another one

— etc.

Topic: 14 More Advanced Features Page: 18

An Example

define f();
5()

eﬂddeﬁne
define g();

h()

eﬂddeﬁne
define h();

k()

eﬂddeﬁne

define k();
exitfrom(g)

eﬂddeﬁne

Topic: 14 More Advanced Features Page: 19

e Suppose the top-level call is:
£();

e When k is called the call chain consists of:

khgf

e The exitfrom therefore exits one from the
call of k, h, and g, returning to the point
in f as if g had returned normally. All local

variables are restored etc properly.

e The same effect could have been achieved
by:
exitto(f);

e See HELP EXITFROM and related files

Topic: 14 More Advanced Features Page: 20

TH

L)
g2
—
w

Topic: 14 More Advanced Features Page: 21

IS MSc
Al Programming 11

Topic 15

Introduction to Lisp

Topic: 15 Introduction to Lisp Page: O

Common Lisp

Zeta
Franz
MacLisp Scheme
Spice
P-Lisp

McCarthy 198
Lisp...Lisp 1.5 TLC Common
1956...1962 Lisp

UCI
InterLisp Standard

PSL

NIL

XLisp

Topic: 15 Introduction to Lisp Page: 1

Main Differences

e No infix operators in Lisp

e Lvery expression has parentheses

e (Therefore (lots (and (lots (and lots)))
(of brackets)
)

)

e Things like the following are valid variable

names:
a-b
xabcx
cat36
mc” 2

e No (user) stack!!

Topic: 15 Introduction to Lisp Page: 2

Topic: 15

Books

Steele,G. (1984) Common Lisp: The
Language. Digital Press

This is the reference manual for Common
Lisp

Hughes, S. (1986) Lisp. Pitman, Computer
Handbook Series

A pocket-sized mini reference book (cheap!)

Wilensky, R. (1986) Common Lispcraft.
W.W. Norton and Co.

A thorough introduction.

Winston, P.H., and Horn, B.P.K (1984)
LISP(2nd edition)

A good introduction to the language and
basic AI Programming techniques

Introduction to Lisp Page: 3

On-Line Documentation

e TEACH READLISP
e TEACH CLISP

e TEACH LISPVED

e TEACH POPTOLISP

Topic: 15 Introduction to Lisp Page: 4

Lisp to Pop Translation

CLisp

Parentheses

List Brackets
String Quote

Word Quote

End Line Comment
Comment Brackets
List construction
List item insertion
List Seq. insertion
Procedure Calls

Operators

Global Variables

Assignment to Var.

(...
(...

77

)
)

7

"<atem>

(
(
(+
(
(

fxyz)
+ a2 c)

(x a b)(fc))
defvar fred 7)

setq x (x 3 5))

f(x,y,2)
a+2+4-c
axb-+1f(c)
vars fred=7;

3*kd—>X;

Topic:

15 Introduction to Lisp

Page: 5

Variables and Procedures

e In Common Lisp the procedure named foo
has nothing to do with the variable named
foo

(car ’(a b ¢)) has result A
(setq car 7) sets variable “car” to 7

(car ’(a b ¢)) still has result A, i.e. built

in procedure car
variable car still has value 7
(+ car 5) has value 12
e Fach identifier in Common Lisp can have 2
different “values” at the same time:
— A procedural(function) value

— An ordinary value

e In Pop-11 variables only have one value

Topic: 15 Introduction to Lisp Page: 6

Procedures and Variables

e Procedure definitions

(defun <nme> (<ps>) | define <nme> (<ps>);
<expressionl> <expressionl>
< expressionN> < expressionN>

) enddefine;

e Local Variables (inside a procedure)

(let ((x 0) y)

< exrpressions>

)

lvars x=0,y;

< exrpressions>

e Updater calls (when updaters exist)

(setf (fxy) v)

V_>f(X7Y);

(setf x 3)

3—>X;

Topic: 15 Introduction to Lisp Page: 7

Lists

Common Lisp Pop-11

nil nil
) []
null list) null(list) OR list==]]

listp list) islist(list)

cons x list) cons(x,list) OR x::list

(
(
(
(
(list 1 x "a string” 0) | [% 1, x, ’a string’, 0 %]
(
(
(
(

car list) hd(list)
first list)
cdr list) t1(list)
rest list)

Topic: 15 Introduction to Lisp Page: 8

List Processing

e Compound list accessing

Lisp Pop-11

car (cdr list))
cadr list) hd(tl(list))

second list)

(
(
(
(cdr (cdr list))
(
(

cddr list) t1(t1(list))
caddr list) hd(t1(tl(list)))

e cadadr etc. defined for up to 4 or 5 basic

operations

Topic: 15 Introduction to Lisp Page: 9

e Updating a list

(rplaca list x) x—>hd(list)
(setf (car list) x)
(rplacd list y) y—>tl(list)
(setf (cdr list) y)

e Standard procedures:
(member x list) member(x,list)
(append list1 list2) | list1<>list2
(length list) length(list)
(cons x list) x::list

Topic: 15 Introduction to Lisp Page: 10

Quoting Lists

e In Pop-11 the syntax for lists and for
procedure calls is different. In Lisp they
are the same. How do we specify which we

mean’

e Use quote

(f x (g8 y) z) means f(x,8(y),z)
BUT (quote ((f x (g y) z)) means
[f x [g y] 2]

299

e The special character is used as a

shorthand:
(f x y z) is read as (quote (f x y z))

e quote stops evaluation

foo means foo i.e. the value of foo

BUT ’foo or (quote foo) means ”foo”

Topic: 15 Introduction to Lisp Page: 11

Top-Level Read-Eval-Print Loop

Read An Expression S

UseEva on S

Print Result

e Note: Every Lisp expression has a value

Topic: 15 Introduction to Lisp Page: 12

How to Use ClLisp

e At Unix prompt:
%clisp

e Common Lisp will announce itself:

Sussex Poplog (Version .. .)
Copyright (c) 1982-1995 ...
Common Lisp (Version 2.0)

Setlisp
—— This is the Lisp prompt

e Type at prompt
== (+123)
6

e To leave Common Lisp type:

== (bye)

Topic: 15 Introduction to Lisp Page: 13

e To start ved

== ved myfile.lsp or whatever!

e Normal ved commands work as normal
e Lisp files should end in .Isp

e See HELP CLISP

Topic: 15 Introduction to Lisp Page: 14

Definition of Eval

YES YES
IsSan atom? Is S anumber? Return the number
NO
NO Return value of S
Is quote the first YES Return second
element of S element of S
NO
Isthefirst element of S
aname indicating that Yes |DoNOT evauatethe
special handling is arguments. Treat as a
required? special case

Use eval on al of the
elements of S, other
than the first

Apply first element of S,
(which must be a procedure)
to the resulting values, and
return the value computed.

e Figure from Winston and Horn

e Assumes quoting done by (quote ...)

Topic: 15 Introduction to Lisp Page: 15

Logic and Conditionals

Common Lisp Pop-11
t true
nil false

not <expr>)

not(<expr>)

and <el> <eZ>)

<el> and <e2>

<el> or <e2>

(
(
(or <el> <e2>)
(

if <condition>
<thenexpr>
<elseexpr>

if <condition>
then <thenexpr>

else <elseexpr>
endif;

Topic: 15

Introduction to Lisp

Page: 16

Predicates

e Type Testing

Common Lisp | Pop-11
(null list) null(list)
(listp x) islist(x)
(atom x) atom(x)
(symbolp x) isword(x)
(numberp x) | isnumber(x)
e Equality
(eq x y) X==
(=xy) x=y (numbers only)
(equal x y) | x=y (“similar things”)

Topic: 15 Introduction to Lisp Page: 17

e Arithmetic Comparison

Topic: 15 Introduction to Lisp Page: 18

Examples

e Append

(defun append (Ista lstb)
(if (null lsta)
Istb
(cons (car lsta)
(append (cdr Ista) Istb)
)

)
)

e Length
(defun length (list)
(if (null list)
0
(+ 1 (length (cdr list)))

Topic: 15 Introduction to Lisp Page: 19

More Conditionals

Common Lisp Pop-11

(when <condition> if <condition> then

< exrpression> < exrpression>

) endif;

(unless <condition> unless <condition> then
< expression> < expression>

) endunless;

(cond (<condition1> | if <condition1>

<exprsl>) then <exprsi>
(< condition2> elseif <condition2>
<exprs2>) then <exprs2>
(t else
<elseexprs>) < elseexprs>
) endif;

Topic: 15 Introduction to Lisp Page: 20

Another Example

e A member function

(defun mymember(item list)
(cond ((null list) nil)

((eq item (car list)) t)
(t (mymember item (cdr list)))

Topic: 15 Introduction to Lisp Page: 21

Loops

Common Lisp Pop-11

(loop repeat
< exrpressions> < exrpressions>

) endrepeat

(dotimes (i n) for i from 0 to n-1 do
< erpressions> < exrpressions>

) endfor;

(dolist (x list) for x in list do
< expressions> < expressions>

) endfor

e There are also other loops, more akin to
those in C e.g. do

Topic: 15 Introduction to Lisp Page: 22

Yet Another Example

e Intersection

(defun intersection (lista listb)
(let ((ans nil))
(dolist (x lista)
(if (member x listb)
(setq ans (cons x ans))

)
)

ans

Topic: 15 Introduction to Lisp

Page: 23

Prog

Common Lisp | Pop-11

(prog (x (y 3)) | lvars x,y=3;

<exprsl> <exprsl>
foo foo:

< exprs2> <exprs2>

(go foo) goto foo;

< exrprs3> < exrprs3>

)

e Progs return nil unless use return

(prog (...)
.(I.‘éturn 42)

..

e Note: In Pop-11 return always returns
from the enclosing procedure. The Lisp

equivalent to this is return-from

e.g. (return-from foo (+ n 5))

Topic: 15 Introduction to Lisp

Page: 24

Specialised Versions of Prog

e Progl

(progl
<erpl>

<exrpN>
)

e ProgN

(progN
<erpl>

<erpN>

Topic: 15 Introduction to Lisp

Executes the sequence

of expressions and

returns value of first one

Executes the sequence

of expressions and

returns value of last one

Page: 25

Printing and Reading

e Output
Common Lisp | Pop-11
(terpri) nl(1);
(printc x) pr(x);
(print x) nl(1); spr(x);
e Input

(read) returns a Lisp object

e.g. If Lisp reads
(a (b (23)c))
it returns a nested list (C.F. listread in
Pop-11).

e.g. If Lisp reads
"a string”

1t returns a string

e.g. If Lisp reads
foo
it returns the symbol 'foo

Topic: 15 Introduction to Lisp Page: 26

Anonymous Functions

e In Lisp these are called lamda expressions:

Common Lisp Pop-11

(lambda (<args>) | procedure(<args>);

< erpressions> < erpressions>

) endprocedure

e Can pass functions as arguments either by
passing the name, or by passing an

anonymous procedure
e.g (mapcar 'square (1 2 3))
No direct Pop-11 equivalent
e.g (mapcar (function square) ’(1 2 3))
In Pop-11: maplist(|[1 2 3], square)
e.g. (mapcar #’(lamda (x) (x x x)) (1 2 3))

In Pop-11:
maplist([1 2 3],procedure(x);
X*X
endprocedure)

Topic: 15 Introduction to Lisp Page: 27

e The following will not work in Common

Lisp:

Common Lisp (NOT OK)

Pop-11 (OK)

(defun apply (f x)

(f x)

)

define apply(f,x);

f(x)

enddefine;

e We must use funcall

e.g. (defun apply (f x)
(funcall f x)

)

Topic: 15 Introduction to Lisp

Page: 28

Property Lists

e Property lists are lists of the form:

(colour red size 3 age 2)
e They can be accessed by:

(getf <plist> <pname>)
returns the value

e They can be updated by:
(setf (getf <plist> <pname>) <pvalue>)

e Every symbol has an associated property

list, accessed by:
(get <symbol> <pname>)
e and updated by:

(setf (get <symbol> <pname>) <pvalue>)

Topic: 15 Introduction to Lisp Page: 29

An Example

(setf (get ’clyde 'species) ’elephant)
(get ’clyde ’species)

e These are analogous to properties in
Pop-11

Topic: 15 Introduction to Lisp Page: 30

