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Abstract

To show how causal interactions in neural dynamics are modulated by behavior, it is valuable to ana-
lyze these interactions without perturbing or lesioning the neural mechanism. This paper proposes a
method, based on a graph-theoretic extension of vector autoregressive modeling and ‘Granger causal-
ity,’ for characterizing causal interactions generated within intact neural mechanisms. This method,
called ‘causal connectivity analysis’ is illustrated via model neural networks optimized for controlling
target fixation in a simulated head–eye system, in which the structure of the environment can be experi-
mentally varied. Causal connectivity analysis of this model yields novel insights into neural mechanisms
underlying sensorimotor coordination. In contrast to networks supporting comparatively simple be-
havior, networks supporting rich adaptive behavior show a higher density of causal interactions, as well
as a stronger causal flow from sensory inputs to motor outputs. They also show different arrangements
of ‘causal sources’ and ‘causal sinks’: nodes that differentially affect, or are affected by, the remainder
of the network. Finally, analysis of causal connectivity can predict the functional consequences of net-
work lesions. These results suggest that causal connectivity analysis may have useful applications in the
analysis of neural dynamics.
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Introduction

Many neurobiological processes involve mutual interactions among behavior, environment

and neural mechanisms (Edelman 1987; Clark 1997; Seth 2000; Seth & Edelman 2004a,

2004b). Neural mechanisms generate behavior, and are at the same time modulated by

the correlations imposed by behavior and environment. To advance our understanding of

these interactions, this paper proposes a method for characterizing the causal connectivity

of a neural system, i.e., the directed graph of dynamical interactions among elements of the

neural system in which each edge reflects a causal influence between two nodes. The method

is based on vector autoregressive modeling and ‘Granger causality,’ adapted from time-

series analysis (Granger 1969; Hamilton 1994), together with techniques from graph theory

(Bollobás 1985). Unlike alternative approaches for determining causality (Pearl 1999; Tononi

& Sporns 2003; Keinan et al. 2004), the method does not require perturbation or lesioning

of network elements, and hence is well suited to analyzing data sets acquired during behavior

from intact (simulated or biological) neural systems.
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The approach is illustrated by showing how behavior and environment modulate the causal

connectivity of a simulated neural network engaged in sensorimotor coordination. Evolution-

ary algorithms are used to generate neural networks that support target fixation behavior in

a simulated head/eye system, in which the complexity of the sensorimotor environment can

be experimentally varied (Seth & Edelman 2004a). The causal connectivities of evolved net-

works are then compared with their structural and behavioral properties. Causal connectivity

analysis suggests several novel predictions regarding neural mechanisms of sensorimotor co-

ordination. For example, the analysis predicts that neural mechanisms supporting head–eye

coordination in rich environments will show a higher density of causal interactions, and a

stronger causal flow from sensory inputs to motor outputs, than mechanisms supporting

comparatively simple coordination.

The concept of Granger causality is based on prediction: if a signal A causes a signal B,

then past values of A should contain information that helps predict B, above and beyond the

information contained in past values of B alone (Granger 1969; Wiener 1956). In practice,

Granger causality is usually determined by linear modeling of time series (Hamilton 1994). In

the simplest case with two variables, if the variance of the prediction error for B is significantly

reduced by including past observations of A in the regression model, then A can be said to

cause B (Granger 1969).

Granger causality analysis has been used previously to identify causal relations in neu-

robiological data. Bernasconi and Konig applied a spectral version of Granger causality

(Geweke 1982) to local field potential data from cat visual cortex, identifying bidirec-

tional causal influences between supragranular and infragranular layers during a go/no-go

visual discrimination task (Bernasconi & Konig 1999). Liang et al. used a time-varying

spectral technique to differentiate feedforward, feedback and lateral dynamical influences

in monkey ventral visual cortex during visual pattern discrimination (Liang et al. 2000).

Kaminski et al. noted increasing anterior to posterior causal influences during the transi-

tion from waking to sleep by analysis of electroencephalographic (EEG) signals (Kaminski

et al. 2001). Hesse et al. used an adaptive estimation of Granger causality to iden-

tify causal interactions in human EEG data recorded during performance of a Stroop

task; they found dense webs of posterior to anterior interactions that appeared ∼400 ms

following stimulus onset (Hesse et al. 2003). Recently, Brovelli et al. identified causal

influences extending from primary somatosensory cortex to motor cortex in the beta-

frequency range (15–30 Hz) during lever pressing by awake monkeys (Brovelli et al.

2004).

The present research differs from these studies by applying Granger causality analysis to

simulated neural systems that support adaptive behaviors, and by describing causal connec-

tivity in terms of graph-theoretic properties. Concepts of causal density, causal disequilib-

rium, causal flow, and causal sources and causal sinks in networks are introduced in order to

describe and compare causal connectivities. Causal density reflects the fraction of significant

causal interactions present in a set of network dynamics, causal disequilibrium reflects the

deviation of this pattern from reciprocity, causal flow reflects the balance between outgo-

ing and incoming causal influences for a given node and causal sinks and sources identify

network nodes that respectively differentially affect, or are affected by, the remainder of

the network. Applying these concepts to a simulation model allows causal connectivity to

be related to structural connectivity, and permits a detailed analysis of the modulation of

causal connectivity by behavior and environment. As well as yielding insights into neural

mechanisms of sensorimotor coordination, the model illustrates the utility of causal connec-

tivity analysis, providing a platform for application of the method within the neurobiology of

behavior.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
us

se
x]

 A
t: 

14
:0

9 
7 

Ju
ly

 2
00

8 

Causal connectivity of evolved neural networks 37

Causal connectivity analysis

Granger causality is usually tested in the context of linear autoregressive models that predict

the evolution of a time series or of a set of time series (Hamilton 1994). Univariate autore-

gressive models describe a single time series in terms of linear combinations of past values

(lags) of the time-series. Multivariate (vector) autoregressive (VAR) models include lags of

multiple time-series. To illustrate Granger causality, consider two time series X1(t) and X2(t)

of length T. Suppose that the temporal dynamics of X1(t) and X2(t) can be described by a

bivariate autoregressive model:

X1(t) =

p
∑

j=1

A11, j X1(t − j ) +

p
∑

j=1

A12, j X2(t − j ) + E1(t)

(1)

X2(t) =

p
∑

j=1

A21, j X1(t − j ) +

p
∑

j=1

A22, j X2(t − j ) + E2(t)

where p is the maximum number of lags included in the model (the model order,

p < T), A contains the estimated coefficients of the model, and E1, E2 are residu-

als for each time series. If the variance of the prediction error E1 (or E2) is reduced

by the inclusion of the X2 (or X1) terms in the first (or second) equation, then it is

said that X2 (or X1) Granger-causes X1 (or X2). In other words, X2 Granger-causes

X1 if all the coefficients in A12 are jointly significantly different from zero. This can be

tested by performing an F-test of the null hypothesis that A12 = 0, given assumptions

of covariance stationarity on X1 and X2 (see Appendix A). The magnitude of a given

Granger causality interaction can be estimated by the logarithm of the corresponding

F-statistic.

This concept can be readily extended to the multivariate case by estimating an N-variable

VAR model. In this case, X2 Granger-causes X1 if knowing X2 reduces X1’s prediction error

when the activities of all other variables X3 . . . XN are also taken into account. Multivariate

analyses can provide robustness to false positives in cases of common input. In a system in

which X1 and X2 are both influenced by X3 but are otherwise independent, a bivariate model

of X1 and X2 may wrongly suggest the existence of a causal relationship between X1 and X2.

A multivariate model including all three variables would not, since knowing X1(2) would not

help predict X2(1) in the context of knowing X3. For this reason this paper adopts a fully

multivariate approach.

Significant Granger causality interactions between variables can be represented as edges

in a graph, allowing the application of graph-theoretic techniques. Since Granger causality

is in general not symmetric, these edges will be directed. Graphical representation can be

used to summarize causal connectivity in several novel ways:

• Causal density. The causal density (cd) of a network’s dynamics reflects the fraction of

interactions among nodes that are causally significant. A set of independent nodes will

have low cd, as will a network in which all nodes have identical dynamics. Causal density

is defined as cd = gc/(2N(N − 1)), where gc is the total number of significant causal

links observed, and N is the network size. A related quantity, the unit causal density

cdu(i), is defined as the total number of significant causal links involving node i . For

unweighted graphs (graphs in which all edges are equivalent), cdu(i) is equivalent to the

degree of node i , i.e., the total number of afferent (out-degree) and efferent (in-degree)

connections.
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• Causal flow. The causal flow (c f ) of a node i in a Granger-causality graph is defined as the

difference between its out-degree and in-degree.∗ The causal flow profile of the graph is the

vector F = [c f (1), c f (2), . . . , c f (n)] for nodes i = 1 . . . n. This profile identifies nodes

that have distinctive causal effects on network dynamics: A node with highly positive c f

exerts a strong causal influence over the network (a causal source); a node with negative

c f may be said to be a causal sink of the network. Note that the present definition uses

the difference between out-degree and in-degree, rather than the ratio (see Kötter &

Stephan 2003), in order to obtain a measure unaffected by how many balanced efferent

and afferent connections a node may have.

• Causal reciprocity. The causal reciprocity (crecip) of a Granger-causality graph is defined

as the fraction of edges for which a directly reciprocal edge exists. This measure provides

an estimate of the degree of functional reciprocity sustained by a network. It is analogous

to the quantity frecip calculated for anatomical networks (Sporns et al. 2000).

• Causal disequilibrium. A more informative but more complex measure of functional

reciprocity is given by causal disequilibrium (cde). This quantity reflects the deviation of

directed dynamical interactions from reciprocity, measured over all network bipartitions.

It is defined as

cde =

(

1

Np

) Np
∑

i=1

(|gc Ai Bi
− gcBi Ai

|)/(NAi
NBi

)

where Np is the total number of bipartitions of the graph, gc Ai Bi
is the number of links

from nodes in partition Ai to nodes in its complement Bi (and vice-versa for gcBi Ai
),

and NAi
(NBi

) is the number of nodes in partition Ai (Bi ). Calculation of cde allows

identification of network partitions which maximize or minimize cross-partition causal

interactions, which may correspond to informative functional decompositions. Causal

disequilibrium is related to causal flow: networks with high causal disequilibrium will

tend to have causal flow profiles with high variance. It is also related to the property of

node symmetry as calculated for anatomical networks (Kötter & Stephan 2003).

‘Weighted’ versions of cd, cdu, c f , and cde can be calculated by scaling the contribution

of each connection by its magnitude, which is given by the logarithm of the corresponding

F-statistic. The resulting values are labelled cdw, cduw, c fw, and cdew, respectively. There is

no weighted version of crecip. MATLAB (Natick, MA) routines for calculating and graphically

representing these measures are provided on the author’s website www.nsi.edu/users/seth.

Simulation model of target fixation

The modulation of causal connectivity by behavior and environment is illustrated here by

analysis of a simulation model of target fixation. This model has been previously described

and analyzed using an information-theoretic approach (Seth & Edelman 2004a, 2004b), the

results of which will be compared to the present analysis in Discussion. Full details of the

model are given in (Seth & Edelman 2004a); we describe only those features necessary for

comprehension.

The model consists of a simulated head–eye system in which a neural network controls

the movements of a head (H) and an eye (E) in an x, y plane (Figure 1). Good performance

∗‘Causal flow’ is distinct from a previous definition of ‘flow’ in graph theory, which refers to the problem of
assigning non-negative values to directed edges such that total inflow is equal to total outflow for all nodes except
two (Bollobás 1985).
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Causal connectivity of evolved neural networks 39

Figure 1. Simulation model of target fixation. A neural network (top left, N = 32, K = 256) controls ‘head’ (H)

and ‘eye’ (E) movements to fixate a target (T). Only 5 out of 22 interneurons (INs, black) are shown, and only

a small number of possible connections are illustrated. Visual inputs (v-inputs, blue) respond to displacement of

gaze direction from the target. ‘Proprioceptive’ inputs reflect the offset between H and E (e-inputs, cyan), and the

displacement of H from a central axis (h-inputs, green). Motor outputs control H (H-outputs, yellow), as well as

movements of E relative to H (E-outputs, red).

in the model corresponds to fixation of a target (T) with H and E aligned. Networks con-

sist of N = 32 neurons nodes and K = 256 weighted connections edges (inhibitory and

excitatory), with a per-neuron in-degree (indeg) of 8. Network dynamics are implemented

as a continuous system in which neuron output is a sigmoidal function of the sum of its

inputs. In a given network, six neurons are sensory inputs and four neurons are motor out-

puts (see Figure 1 for details). The remaining 22 neurons are ‘interneurons’ (INs). Note

that input neurons are also modulated by the remainder of the network (indeg = 8 for all

neurons).

Evolutionary algorithms were used to generate networks able to support target fixation in

a ‘simple’ context φS, in which the target is stationary. A second set of networks were evolved

in a ‘complex’ context φC, in which the target drifts and jumps, and in which movements

of H and E are constrained by more complex parameters including, for example, time-lags

and differing momenta. These parameters constitute the ‘phenotype’ of the model. During

evolution, connection and weight distributions of networks were allowed to mutate but N,

K, and indeg were not.

Ten networks were evolved in each context. Those evolved in φS are referred to as S-

networks, and those evolved in φC as C-networks. Each evolved network was analyzed in

both contexts, as well as in a random noise context (φR). Ten randomly generated networks

were also analyzed in each context (R-networks: N = 32, K = 256, indeg = 8). The present

analysis therefore consists of nine different combinations of network type and context, with

ten sets of neural dynamics for each combination. These combinations are labelled by the

shorthand: CC for a C-network in φC, CS for a C-network in φS, SC for an S-network in

φC, and so on.

Behavioral results from the model, described in (Seth & Edelman 2004a), show that C-

networks are able to fixate targets in both contexts, whereas S-networks show poor fixation in
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φC. Moreover, C-networks are able to compensate for unexpected perturbations to the head

position, whereas S-networks are not. These results suggest that network optimization in a

rich sensorimotor environment can facilitate the emergence of robust and adaptive behavior.

In the following analysis, these behavioral observations are related to a causal connectivity

analysis of the corresponding network dynamics.

VAR model estimation

Separate (multivariate) VAR models were estimated for each of the 90 sets of neural dynamics.

To keep the number of parameters to be estimated within a reasonable range, from each set a

subset was excised corresponding to the 6 input and 4 output neurons. Each time-series was

pre-treated by first-order differencing (see Appendix A) and by removing the first 25 values.

The resulting matrices (10×575) are referred to as ‘activity profiles’. It should be emphasized

that these profiles reflect rates of change of neural activity rather than absolute values.

To select the appropriate model order (i.e., the number of lagged observations to in-

clude), the Bayesian Information Criterion (BIC) was used (Schwartz 1978). The model

order pmin resulting in the lowest BIC represents the best compromise between accu-

racy of fit and parameter parsimony. For an observation of length T and model order p,

BICp = log(det(�̂)) + log(T)nest/T, where �̂ is an estimate of the covariance matrix of the

residuals of the corresponding VAR (see equation 1), and nest is the number of freely esti-

mated parameters (n2 × p for an n-dimensional VAR). For each activity profile, BICp for p ∈

(Clark 1997; Tononi & Sporns 2003) was calculated by estimating a 10-dimensional VAR

model for each model order, using the method of ordinary least squares. The resulting values

of pmin differed within and between conditions, ranging from 2 to 4. To maintain consis-

tency across conditions, p = 4 was chosen for all subsequent analyses. To confirm that the

temporal relationships among variables were captured by each p = 4 model, it was verified

that the residuals were serially uncorrelated (P < 0.01 in all cases, Ljung-Box ‘Q’ statistic

(Box et al. 1994)). It was also verified that each model captured most of the variance in the

data (R2
adj in all cases lay in the range [0.5, 0.8] (Draper & Smith 1998)).

Results

Causal connectivity

Given a p = 4 VAR model for each activity profile, significant Granger causality interac-

tions between input neurons and output neurons were calculated using an F-test corrected

for multiple comparisons (P < 0.01). Causal interactions between input neurons were not

considered, nor were interactions between output neurons. Figure 2 shows representative

casual connectivity graphs from each of the nine conditions. Each arrow indicates a signif-

icant Granger causality interaction and the width of the arrow is scaled by the magnitude

of the interaction, as determined by the logarithm of the corresponding F-statistic. It bears

repeating that a significant causal interaction from A to B shows a statistical relation, i.e., that

the activity of B can be better predicted by including past observations of A in a multivariate

linear model of the dynamics of all (10) neurons in the network.

C-networks. Figure 2 reveals several features of dynamical organization. For example, causal

graphs for C-networks tested in φC (CC) have strong causal connectivity from v-inputs to

motor outputs, suggesting that their dynamics are driven largely by visual signals. There is

also strong reciprocal causal connectivity between the motor outputs and (proprioceptive)
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Causal connectivity of evolved neural networks 41

Figure 2. Causal connectivity graphs for nine representative activity profiles. CC: C-network in context φC , CS:

C-network in φS, CR: C-network in φR, SC: S-network in φC , SS: S-network in φS, SR: S-network in φR, RC: R-

network in φC , RS: R-network in φS, and RR: R-network in φR. Each panel shows six input neurons (black lettering,

v: v-inputs, e: e-inputs, h: h-inputs) and four output neurons (grey lettering, H: H-outputs, E: E-outputs). The

labelling of the top-left panel applies to all panels. Red arrows show input to output causal connections, green

arrows show output to input causal connections, and blue arrows show reciprocal causal connections. Causal links

are included if significant at the P < 0.01 level (Bonferroni-corrected F-test). The width of each arrow and size of

the arrowhead reflect the magnitude of the causal influence, as determined by the logarithm of the corresponding

F-statistic.

e-inputs, suggesting that the corresponding dynamics are modulated by the displacement

between head position and eye position, and little if any among motor outputs and (pro-

prioceptive) h-inputs, suggesting that these inputs are not functionally significant in this

case. This profile is altered when the same network is tested in contexts φS and φR (CS

and CR respectively): causal projections from visual inputs are weaker, and the fraction of

unidirectional output to input connections increases. These observations reflect a network

that is organized to be driven preferentially by visual input in rich sensorimotor contexts,

with additional modulation from proprioceptive sensors, particularly e-inputs.

One may compare causal graphs with the underlying network structure, as well as with dy-

namical covariances among network elements. Figure 3 shows the (direct) structural connec-

tivity among input neurons and output neurons for the networks whose causal connectivity

is depicted in Figure 2. Not surprisingly, there is some overlap between structural and causal

representations. For example, for the C-network, the strong causal connectivity from v-

inputs to motor outputs is reflected in the structure. But there are also differences: Struc-

turally, the C-network shows only one reciprocal connection, whereas the corresponding

causal graph (CC) shows strong reciprocal connectivity between motor outputs and e-inputs.
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Figure 3. Structural connectivity for a representative C-network, S-network, and R-network. Each panel shows six

input neurons and four output neurons (labelled as in Figure 2). Red arrows show input to output connections,

green arrows show output to input connections, and blue arrows show reciprocal connections. Line widths and

arrowhead sizes are scaled by the corresponding connection strengths.

More generally, causal connectivity graphs show the influence of interactions among net-

work structure, phenotype, and environment (hence the differences among panels CC, CS,

and CR), whereas representations of network structure are necessarily invariant to these

contextual influences. Note that structural graphs omit indirect structural connections via

INs. One reason for this is that in all networks, all neurons are structurally connected to all

other neurons via many differently-weighted paths of diverse lengths. Evaluating only direct

connections between the observed neurons provides a parsimonious representation that is

consistent with the causality analysis (and the following covariance analysis): Each considers

the same restricted set of variables.

Figure 4 shows covariances among input neurons and output neurons for the same activity

profiles as in Figure 2. Two neurons are connected if their correlation is significant at the P <

0.01 level (t-test corrected for multiple comparisons) and the width of each link indicates the

strength of covariance (thicker lines correspond to higher covariance values). Again, these

graphs provide an impoverished representation of network dynamics as compared to causal

connectivity. Although covariance graphs vary with context (compare CC with CS and CR),

since covariances are by definition symmetric they do not give any indication of directionality.

Also, covariance patterns clearly differ from the corresponding causal connectivities. For

example, covariances in condition CC are sparse, give less emphasis to v-inputs, and do

not distinguish between proprioceptive e-inputs and h-inputs. By contrast, the covariance

pattern in condition CS is dense and contains little obvious organization.

S-networks and R-networks. Networks adapted to different contexts show different patterns

of causal connectivity. In contrast to the C-network, S-network motor outputs are driven

strongly by h-inputs as well as by v-inputs in φC (Figure 2). This suggests that the S-network

is less specifically sensitive to visual signals than the C-network in this context. Also, the C-

network has more reciprocal causal connections between e-inputs and motor outputs than

the S-network (or R-network), suggesting that proprioceptive visual signals play a greater

functional role in the C-network. Despite these differences, both networks are affected by

changes in context in a similar way, showing a decrease in input→output causal connec-

tivity as the testing environment is switched from rich (φC) to simple (φS) to random (φR)

(Figure 2, middle panels). Finally, R-networks show sparse and disorganized causal connec-

tivity irrespective of the environment of testing (Figure 2, right panels).

These patterns of causal connectivity can be compared with the corresponding structural

and covariance patterns (Figures 3 and 4). S-network causal projections from motor outputs
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Figure 4. Covariance patterns by condition (labelled as in Figure 2). Two neurons are connected if their correlation

is significant at the P < 0.01 level (Bonferroni-corrected t-test). Only covariances between input and output neurons

are shown. Each panel shows six input neurons and four output neurons (labelled as in Figure 2). The width of each

line reflects the magnitude of the covariance. Light grey lines indicate positive covariance, dark grey lines indicate

negative covariance.

to e-inputs are not reflected in the S-network structure. The strong causal projections from

v-inputs are also largely absent in the corresponding structure graph. Covariance patterns

for the S-network are highly variable among conditions and—as for the C-network—differ

from the corresponding causal patterns. For example, covariances in condition SC lack con-

nections from v-inputs. R-networks, as expected, show little organization in either structure

or covariance in all conditions.

Taken together, comparisons among causal, structural and covariance patterns suggest

that causal connectivity provides a comparatively rich representation of network dynamics.

Unlike covariance patterns, causal connectivity graphs are directed, and unlike structural

graphs, they are sensitive to context. Moreover, causal patterns appear to provide an intu-

itive interpretation of the relation between network dynamics and behavior, for example by

highlighting the importance of visual signals in rich sensorimotor environments.

Group analysis of causal connectivity

To test the consistency of the above observations, ‘composite causal connectivity’ graphs

were derived for each set of 10 activity profiles from each condition. Each panel in Figure 5

shows the causal interactions that are reliably present in each set of profiles. Black indicates

a strong presence of a given connection across all activity profiles for the condition; white

indicates that a connection is never present. For example, the top-left panel shows that causal
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Figure 5. Composite causal connectivity by condition (conditions are labelled as in Figure 2). Each panel shows

the causal interactions that are reliably present in each set of 10 activity profiles from each condition. The composite

causal connectivity between a pair of neurons is the sum of the magnitudes of causally significant interactions over

all activity profiles, divided by the largest value of this sum across all connections and all conditions. Horizontal

axes show source neurons and the vertical axes show target neurons. The labelling of the top-left panel applies to all

panels. Black indicates a strong presence of a given connection across all profiles, white indicates that an interaction

is never present. Six input neurons are shown (black lettering, v: v-inputs, e: e-inputs, h: h-inputs), and four output

neurons (grey lettering, H: H-outputs, E: E-outputs).

connections from v-inputs to motor outputs are strong across all activity profiles for condition

CC, whereas connections from h-inputs to motor outputs are less prevalent.

These composite patterns warrant several observations consistent with Figure 2. The

causal connectivity of a network depends on the environment in which it operates. C-networks

in φC tend to have rich causal interactions from v-inputs and e-inputs to motor outputs, as

well as a high proportion of causal connections from motor outputs back to e-inputs. By

contrast, connections from h-inputs to motor outputs are rare. This pattern changes with

progressive simplification of the environment (CS and CR). In condition CS, H-outputs are

less responsive to v-inputs, and h-inputs are less disconnected from motor outputs. In con-

dition CR, there remains only a general tendency for input neurons to drive output neurons.

The same general point holds for S-networks and R-networks: environmental simplification

leads to a reduction in the range of causal interactions reliably sustained by a network.
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Figure 6. Effect of context on causal connectivity. Shown are composite causal connectivity differences between

conditions CC and CS, scaled by magnitude and labelled as in Figure 5. Warm colors (cool colors) show causal

interactions that are reliably stronger (weaker) when a network is switched from context φS to φC . The color scale

is normalized to the largest difference in composite causal connectivity.

The environment to which a network has adapted influences the richness of causal connec-

tivity. For a given testing context, C-networks tend to have a higher density of input→output

causal interactions than either S-networks or R-networks. S-networks, however, show strong

causal connections from H-outputs to v-inputs (except in φR), implying that visual signals

are predictable from preceding head movements. This suggests that for S-networks (unlike

C-networks) the generation of behavior does not involve complex coordination of head and

eye movements. As expected, R-networks in φR show no reliably present causal connections.

However, in conditions RC and RS there are strong causal connections between v-inputs and

motor outputs, which demonstrates that the sensorimotor correlations imposed by an envi-

ronmental and phenotypic context can be sufficient to generate reliable causal interactions

even in randomly connected networks.

The effect of context on network dynamics is illustrated further in Figure 6, which shows

differences between composite causal connectivity patterns for conditions CC and CS. Warm

colors and cool colors respectively indicate the causal interactions that are reliably strength-

ened or weakened, when a C-network is switched from φS to φC. Consistent with Figure 5,

switching the network to a richer sensorimotor context leads to greater causal connectivity

from sensory inputs to motor outputs. Connections from motor output to e-inputs are also

generally stronger in the rich environments, with the exception of two connections from

H-outputs to e-inputs that may reflect a greater dissociation of head and eye movements in

φC. Finally, connections from motor outputs to v-inputs are consistently weaker in the richer

context, supporting the suggestion that visual signals are less predictable from prior head

movements in rich environments.

Causal flow

Causal flow profiles are consistent with the foregoing analyses. Figure 7 shows that C-

networks in φC have a prevalence of causal connections extending from v-inputs (these

neurons are causal sources; see Causal connectivity analysis). Motor output neurons have

predominantly incoming causal connections (causal sinks). Environmental simplification

(CS and CR) lessens the prominence of this pattern. S-networks and R-networks in φC
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Figure 7. Causal flow profiles for each condition (conditions are labelled as in Figure 2). Each panel shows the

mean and standard deviation causal flow c f (i) for each neuron (the difference between the out-degree and the in-

degree), averaged across 10 activity profiles for each condition. Dark grey bars correspond to inputs (black lettering:

v, h, e), light grey to outputs (grey lettering: H, E). The labelling of the top-left panel applies to all panels.

show the same general pattern of sources and sinks, but v-inputs are less prominent in these

cases. In contrast, flow profiles for graphs based on covariances or structural connectivity,

are generally flat (not shown).

Causal density

Figure 8(a) shows that weighted causal density cdw falls significantly as the environment is

simplified, and that the highest overall values are for S- and C-networks in φC. Random R-

networks show low cdw regardless of the testing context. A qualitatively similar pattern was

observed for unweighted causal density cd. Therefore, for networks adapted to a structured

environment (S- and C-networks), behavior within a rich environment evokes high causal

density in the corresponding network dynamics.

Causal disequilibrium

Figure 8(b) shows how weighted causal disequilibrium cdew varies across conditions. The

results are broadly similar to cdw: Rich environments evoke high cdew as compared to simple

or random environments, for both C-networks and S-networks (CC and SC respectively).

Interestingly, unlike cdw, cdew does not distinguish between φS and φR for either C-networks

or S-networks. This suggests that while imposing simple sensorimotor correlations can in-

crease the density of causal interactions (as compared to random activation, see Figure 8a),

this increase is not accompanied by a corresponding increase in the deviation from overall

reciprocity of these interactions. For such an increase reliably to take place, behavior in a

rich sensorimotor environment (φC) is necessary.
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Figure 8. (a). Mean and standard deviation weighted causal density cdw for each set of 10 activity profiles from each

condition (conditions are labelled as in Figure 2). (b). Weighted causal disequilibrium cdew. (c) Causal reciprocity

crecip. Asterisks shows significant differences by two-tailed t-test (P < 0.01).

Causal reciprocity

Figure 8c shows that causal reciprocity crecip follows a pattern that differs from both cdw and

cdew. Highest values are found for non-random networks tested in φS, and lowest values are

found for random networks in any context. This suggests that crecip responds to uniformity

and regularity in network dynamics.

Predicting the influence of network lesions

A potential application of causal connectivity analysis is prediction of the effects of network

lesions on behavior. To test this possibility, a C-network (shown in Figure 3) was retested in

φC after removing all connections to and from each of the six input neurons in turn. Each

lesioned network was retested 50 times.

Figure 9(a) shows the mean residual fitness for each lesioned network, as a proportion of

the mean fitness value obtained by the non-lesioned network. Lesions to v-inputs had severe

effects on fitness, lesions to e-inputs had moderate effects, and lesions to h-inputs had very

mild effects. These results are consistent with the causal connectivity of the network (Figure 2,

top-left panel): v-inputs have strong causal connections to the motor outputs, e-inputs have

reciprocal causal connections with the outputs, and h-inputs are mostly disconnected from

the outputs. By contrast, the corresponding structural representation is only partly consistent

with the lesion data. As Figure 3 shows, there are strong projections from v-inputs to output

neurons; however, h-inputs also have widespread (albeit weaker) structural connectivity with

output neurons, suggesting that lesions to h-inputs would have substantial effects on fitness,

which is not the case. Finally, e-inputs have sparse and weak structural connectivity with

outputs, which is at odds with the significant effects on fitness of lesions to these inputs.

There is no obvious similarity between the lesion data and the corresponding covariance

graph (Figure 4, top-left panel).

This analysis was extended by calculating the causal connectivity among all 32 neurons

in a C-network during behavior in φC.† Each of the 22 ‘intermediate’ neurons (INs) were

then lesioned, and the fitness consequences assessed. Each lesioned network was tested 50

times, allowing identification of the four INs that had the most severe fitness effects when

lesioned, and the four that had the mildest. Figure 10 shows, for each of these neurons,

†This required estimating a 32-dimensional p = 4 VAR. The mean R2
adj

was 0.9, and the residuals were uncorre-

lated (P < 0.01, Ljung-Box ‘Q’ statistic).
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Figure 9. (a) Mean post-lesion fitness of a representative C-network in φC following sensory input lesions, shown

as a proportion of the fitness of a non-lesioned network (v: v-inputs, e: e-inputs, h: h-inputs). Asterisks shows

significant differences by two-tailed t-test (P < 0.01). (b-d) Residual fitness following lesions to INs of C-networks,

as a proportion of the fitness of the intact network, plotted against (b) mean cduw of the IN, (c) mean c fw of the

IN, and (d) mean absolute covariance of the IN with the remainder of the network. Intact networks and lesioned

networks were each tested 12 times in φC . All 22 INs were lesioned in turn for all 10 C-networks. Each panel shows

Pearson’s correlation coefficient (r) as well as the corresponding P-value.

the causal connections involving the IN and the sensory and motor neurons. For severe

lesions (top row), the corresponding INs mediate input-output causal pathways; that is,

they are causally affected by sensory input, and they causally affect motor output. For mild

lesions, the corresponding INs are causally isolated (they are caused, but they do not cause).

Neither structural representations nor covariance representations showed equivalent corre-

spondences. INs associated with mild fitness effects are not structurally isolated: all four

project to input neurons, and #7 and #22 project also to output neurons. One IN associated

with severe fitness effects (#10) had no significant covariances with either input or output

neurons, and conversely, one IN associated with mild fitness effects (#15) covaried strongly

with both input and output neurons.

This analysis was generalized across all INs in all ten C-networks (see Figure 9b–d),

showing that post-lesion fitness correlates with both cduw and c fw of the lesioned IN. By

contrast, there is no correlation between post-lesion fitness and mean absolute covariance

of the lesioned IN with the remainder of the network. These results confirm that the causal

connectivity of a neuron is a useful predictor of the dynamical and behavioral consequences

of network damage.

Discussion

This paper has described a method for characterizing directed dynamical interactions within

intact neural systems during behavior. Causal connectivity analysis is based on Granger

causality (Granger 1969), which formalizes the ability of a linear autoregressive model to
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Figure 10. Causal connectivity of selected ‘intermediate’ neurons (INs) with sensory and motor neurons. Connec-

tions among sensory inputs (black lettering) and motor outputs (grey lettering) are omitted for clarity. Red (green)

arrows indicate causal connections from (to) the IN, blue arrows indicate reciprocal causal connections. Arrow

width and arrowhead size are scaled by the magnitude of causal influence (the logarithm of the corresponding

F-statistic). Each graph is labelled by the index of the corresponding IN (for example, IN #5) as well as by the

fractional fitness decrement caused by lesioning the IN (for example, 0.55).

elucidate significant causal relations within a set of variables. Given such a model, graph-

theoretic concepts can be applied to characterize the resulting patterns of causal connectivity.

Specifically, one may measure the causal density, causal reciprocity, causal disequilibrium

and causal flow profile of a network, and identify causal sinks and causal sources.

Throughout this paper the term ‘causality’ has been used following Wiener (Wiener 1956)

and Granger (Granger 1969). It is important to stress that this concept of causality is statis-

tical rather than physical. If a system is only partially observed, there are several situations in

which Granger causality may not correspond to physical causal chains. For example, A may

enhance the predictability of B if both A and B are driven by a common (unobserved) input

C, or if A physically causes an (unobserved) intermediate process D which itself physically

causes B.‡

This sensitivity to unobserved variables is true in general for dynamical analyses, and can

in fact be useful: many network systems cannot be observed in toto, especially when the net-

work does not form an isolated system; biological networks, for example, are embodied in

phenotypes and embedded in environments (Edelman 1987; Clark 1997). Causal connectiv-

ity analysis, in virtue of its sensitivity to indirect interactions, remains able to describe causal

influences among observable elements of a system, even if the activity of these elements is

physically caused in part by factors outside the scope of observation.

An alternative approach to determining causal interactions in a network is to measure the

effects of selective perturbations. For example, Tononi and Sporns stimulate selected subsets

‡As was remarked in the Introduction, if common inputs or intermediate variables (e.g., C and D in the above
example) are part of the observed system, a multivariate Granger causality analysis will reveal the causal interactions
mediated by these variables, instead of the indirect causal interactions that they support.
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of a network with Gaussian noise and interpret the resulting mutual information between

the subset and the rest of the network as a measure of their causal connectivity (Tononi &

Sporns 2003). Similarly, Keinan et al. assess the functional contribution of individual network

elements by measuring network performance following lesions to subsets of elements (Keinan

et al. 2004). While these approaches are in principle robust to artifacts induced by common

input, in practice their use is restricted to situations in which networks can be repeatedly

and reversibly perturbed, which for many biological systems is currently not possible. Nor

are these approaches suitable for analyzing the influence of behavior and environment on

network dynamics, since such analyses require data derived from intact neural networks

in different contexts. Another approach which does not require network perturbation is

‘structural equation modeling’ (SEM) (Haavelmo 1943; McIntosh & Gonzalez-Lima 1994).

However, whereas causal connectivity analysis infers causal interactions directly from data,

SEM tests a priori hypotheses about causal relationships. It may be useful to compare these

approaches for situations in which structural connectivity is known.

There are many opportunities to extend the graph-theoretic components of causal con-

nectivity analysis. Kötter and Stephan (2003) have recently proposed a series of ‘network

participation indices’ for analyzing neuroanatomical connectivity: some of these may have

useful interpretations for causal graphs. It may be useful to look for ‘small-world’ properties

in causal connectivity graphs. Small-world networks combine high local clustering with short

characteristic path lengths (Watts & Strogatz 1998), and are usually identified by analysis

of network topology. The question remains open: What network topologies would support

small-world causal connectivity, and what functional properties would such causal connec-

tivity provide?

Linearity and stationarity

Causal connectivity analysis involves linear modeling of stationary time-series. The present

application investigated the validity of assumptions of stationarity and linearity and found

them satisfactory. In general, linear models are simple to estimate, and for signals gener-

ated by a Gaussian process are superior to any other estimator (Bernasconi & Konig 1999).

Fortunately, large-scale neurodynamics such as interactions among distinct brain areas ap-

pear to be well described by linear models (Sporns et al. 2000; McIntosh & Gonzalez-Lima

1994; McIntosh et al. 1994). In contrast, interactions among individual spiking neurons are

generally nonlinear (Izhikevich 2003) and future work may usefully address the application of

suitable nonlinear modeling techniques (Chen et al. 2004; Friewald et al. 1999) to assessing

causal interactions in such systems.

Non-stationarities in time-series data can be addressed in several ways, for example by dif-

ferencing (see Appendix A), or by the use of adaptive VAR models that have time-varying coef-

ficients (in these models, a time-series is broken into short segments which may approximate

stationarity). An advantage of adaptive models is that they can identify changes over time

in causal influences (Hesse et al. 2003), however they generally require a greater number

of parameters to be estimated with less data (Bernasconi & Konig 1999), and as such may

provide a weaker basis for statistical inference of causal interactions.

Environmental and behavioral modulation of network dynamics

This paper illustrated causal connectivity analysis using a simulation model of target fixa-

tion (Seth & Edelman 2004a). The method provided several insights into network dynam-

ics and their modulation by behavior. In the model, networks evolved and tested in rich
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environments (C-networks in φC, Figure 2) were driven largely by visual signals (v-inputs),

with proprioceptive modulation (e-inputs). In these networks, as expected, the visual inputs

are causal sources and the motor outputs are causal sinks. Networks adapted to compara-

tively simple environments (S-networks) were less specifically sensitive to visual signals, and

less responsive to modulation by e-inputs (Figure 2). Unlike C-networks, S-networks showed

strong causal projections from head motor outputs (H-outputs) to v-inputs, suggesting that

for these networks the generation of behavior did not involve a complex coordination of head

and eye movements. In general, these features were not recapitulated in either structural or

covariance representations of the same networks (Figures 3 and 4).

For all networks, including randomly connected networks, behavior in a comparatively rich

sensorimotor environment tended to evoke input-to-output causal interactions in network

dynamics. This trend was noted in representative causal graphs (Figure 2), summaries of all

networks (Figures 5 and 6), causal flow profiles (Figure 7), and mean causal disequilibrium

(Figure 8).

A useful summary of global causal connectivity is given by causal density, which reflects

the fraction of interactions among network elements that are causally significant. In general,

dense causal interactivity in a network signifies that nodes are both globally coordinated

in their activity (in order to be useful for predicting each other’s activity) and at the same

time dynamically distinct (so that nodes contribute in different ways to these predictions).

High causal density may therefore reflect an intuitive property of complex systems in gen-

eral, i.e., that they are intermediate between completely ordered systems and completely

random systems (Tononi et al. 1994; Seth & Edelman 2004b). In our model, adaptation to

a structured sensorimotor environment evoked dense causal interactions when compared to

random networks, and behavior within such a context evoked dense causal interactions when

compared to behavior in a simple environment (Figure 8). These observations are consistent

with the hypothesis that adaptation to complex environments yields complex systems (Seth

2000; Seth & Edelman 2004a).

Causal connectivity analysis was able to predict the functional consequences of network

lesions (Figures 9 and 10). Lesions to input neurons with strong causal projections to outputs

yielded correspondingly large fitness deficits. Lesions to interneurons (INs) that mediated

input-to-output causal pathways yielded large fitness decreases, whereas INs associated with

mild post-lesion fitness decreases tended to be causally isolated. Finally, post-lesion fitness

correlated with both cduw and c fw of the lesioned IN, but not with the covariance of the IN

with the remainder of the network. It is an exciting possibility that similar analyses will allow

assessment of the context-specific functional robustness of biological as well as simulated

neural networks.

Although the present model is not intended as a realistic model of the neurobiology of

eye movements (see Shibata et al. 2001; Freedman & Sparks 2000), the results nevertheless

suggest several hypotheses. They predict that head–eye coordination in rich sensorimotor

environments will be accompanied by increased causal density and increased input→output

causal flow in the underlying neural dynamics. They suggest that signals reflecting head–eye

displacement will affect performance more than signals reflecting head position in a global

reference frame. Lastly, they predict that causal connectivity will be differentially affected by

adaptation and by behavior. For example, adaptation to a structured environment (whether

simple or rich) will yield neural mechanisms capable of displaying high causal density, but

behavior within a rich environment will be necessary for this density to be expressed.

A previous study (Seth & Edelman 2004a) explored how behavior and environment mod-

ulated the ‘neural complexity’ of the same simulation model described in this paper. Neural

complexity is an information-theoretic measure of global network dynamics which reflects the
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extent to which a system balances dynamical integration and dynamical segregation (Tononi

et al. 1994). It was found that neurally complex dynamics accompanied adaptive behavior

in rich sensorimotor environments. Other related dynamical measures, such as entropy (the

level of statistical independence among network elements) and integration (the converse),

did not show such correlations with adaptive behavior (for details of these measures see

(Sporns et al. 2000; Seth & Edelman 2004b)). The present results are consistent with these

findings inasmuch as causal density may also reflect system complexity. Nevertheless, causal

density and neural complexity are distinct concepts and measure system dynamics in very

different ways.

Furthermore, a fundamental limitation of the ‘neural complexity’ study was that it was

not able to provide insight into the causal transactions in networks that supported adaptive

behavior: neural complexity, being a global measure, yields only a scalar quantity for each

analyzed network. Also, neural complexity is based on the symmetric quantity of mutual

information and as such cannot take account of or describe directional interactions in net-

work dynamics. By contrast, the present analysis not only characterizes directed dynamical

interactions, but is able to link global descriptions of these interactions (causal density, causal

disequilibrium) to the specific causal transactions in networks that underlie their adaptive

interactions with behavior and environment.

The present approach may generalize to many cases of neurobiological significance. Envi-

ronment and behavior can modulate neural dynamics over a number of different timescales.

For example, during behavior, active vision involves neural mechanisms which control gaze

direction; gaze direction modulates visual input, and this in turn drives subsequent neural dy-

namics (Ballard 1991). During the lifetime of an individual, differences in perceptual history

can affect the organization of the nervous system (Edelman 1987); for instance, more neurons

in monkey inferotemporal cortex respond to familiar than to unfamiliar stimuli (Kobatake

et al. 1998). Although relevant empirical data are hard to collect, it has often been argued that

exposure to rich environmental niches over the course of evolution promotes the evolution

of complex neural mechanisms (Godfrey-Smith 1996; Seth 2000). While previous compu-

tational and neurorobotic models have addressed each of these phenomena (Floreano et al.

2004; Seth et al. 2004; Krichmar & Edelman 2002; Fletcher et al. 1998; Seth 1998), they

have mostly lacked a quantitative analysis of the influences of behavior and environment

on the directed dynamics of the corresponding neural networks. As suggested above, causal

connectivity analysis is well suited for this task by its ability to elucidate causal interactions

from data generated by intact neural networks during behavior.

This paper has examined the causal interactions generated by networks acting as sensori-

motor controllers. It is likely that other networks which generate dynamics in the service of

other functions will show different and distinctive causal connectivity patterns. The Internet

(Faloutsos et al. 1999), protein interaction networks (Yook et al. 2004), and co-authorship

networks of scientists (Newman 2001) all present complex topologies that support diverse

dynamical interactions. Extending causal connectivity analysis to these cases should advance

our understanding of network dynamics in many different ways. For example, causal sources

and causal sinks might suggest potential targets for pharmacological intervention in intra-

cellular metabolic pathways or in protein interaction networks, and causal density patterns

may help distinguish between normal and pathological states of these systems.

Acknowledgements

This research was made possible by the Neurosciences Research Foundation, which supports

the work of The Neurosciences Institute. For providing many useful comments I thank



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
us

se
x]

 A
t: 

14
:0

9 
7 

Ju
ly

 2
00

8 

Causal connectivity of evolved neural networks 53

Raffaella Giacomini, Gerald Edelman, Jason Fleischer, Jeff Krichmar, Joseph Gally, Eugene

Izhikevich, and two anonymous reviewers.

References

Ballard DH. 1991. Animate vision. Artificial Intelligence 48:57–86.

Bernasconi C, Konig P. 1999. On the directionality of cortical interactions studied by structural analysis of electro-

physiological recordings. Biol Cybern 81:199–210.

Bollobás B. 1985. Random graphs. London: Academic Press.

Box GEP, Jenkins GM, Reinsel GC. 1994. Time series analysis: Forecasting and control. 3rd ed. Englewood Clifs,

NJ: Prentice Hall.

Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler S. 2004. Beta oscillations in a large-scale senso-

rimotor cortical network: Directional influences revealed by Granger causality. Proceedings of the National

Academy of Sciences, USA 101:9849–9854.

Chen Y, Rangarajan G, Feng J, Ding M. 2004. Analyzing multiple nonlinear time series with extended Granger

causality. Phys Lett A 324:26–35.

Clark A. 1997. Being there: Putting brain, body, and world together again. Cambridge: MIT Press.

Draper NR, Smith H. 1998. Applied regression analysis: 3rd ed. New York: John Wiley and Sons.

Edelman GM. 1987. Neural Darwinism. New York: Basic Books.

Faloutsos M, Faloutsos P, Faloutsos C. 1999. On power-law relationships of the internet topology. Computer

Communications Review 29:251–262.

Fletcher JA, Zwick M, Bedau MA. 1998. Effect of environmental texture on evolutionary adaptation. In: Adami C,

Belew RK, Kitano H, and Taylor CE, editors. Proceedings of the Sixth International Conference on Artificial

Life, Cambridge: MIT Press. pp 189–199.

Floreano D, Kato T, Marocco D, Sauser E. 2004. Coevolution of active vision and feature selection. Biol Cybern

90:218–228.

Freedman EG, Sparks DL. 2000. Coordination of the eyes and head: Movement kinematics. Exp Brain Res 131:22–

32.

Friewald WA, Valdes P, Bosch J, Biscay R, Jimenez JC, Rodriguez LM, Rodriguez V, Kreiter AK, Singer W. 1999.

The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies.

J Neurosci Methods 94:105–119.

Geweke J. 1982. Measurement of linear dependence and feedback between multiple time series. J Am Stat Assoc

77:304–13.

Godfrey-Smith P. 1996. Complexity and the function of mind in nature. Cambridge: Cambridge University Press.

Granger CWJ. 1969. Investigating causal relations by econometric models and cross-spectral methods. Economet-

rica 37:424–438.

Haavelmo T. 1943. The statistical implications of a system of simultaneous equations. Econometrica 11:

1–12.

Hamilton, JD. 1994 Time series analysis. Princeton: Princeton University Press.
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Appendix A

Covariance stationarity

VAR modeling and Granger causality analysis assume that time-series are covariance-

stationary, i.e., that the mean and variance of the process are constant over time (Hamilton

1994). In the context of an autoregressive model x(t) = a1x(t−1)+· · ·+apx(t− p) covariance

stationarity is assessed by testing for ‘unit roots’ as solutions of the equation:

1 − a1z − a2z2 − · · · − apzp = 0 (A.1)

The existence of one or more unit roots, indicated by one or more solutions to this equation

lying on the unit circle, implies that the assumption of covariance-stationarity is violated.

If the series has a unit root, covariance-stationarity can be induced by differencing, i.e., by

transforming the time-series as follows:

�x(t) = x(t) − x(t − 1) (A.2)

All time-series analysed in this paper were pre-treated by first-order differencing and sub-

sequently tested for unit roots: none were found (Dickey–Fuller test, p < 0.01).


