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Abstract— Neurons engage in causal interactions with one
another and with the surrounding body and environment. Neural
systems can therefore be analyzed in terms of causal networks,
without assumptions about information processing, neural cod-
ing, and the like. Here, we describe the analysis of causal
networks in simulated neural systems using a combination of
time-series analysis (“Granger causality”) and network theory.
Implications are drawn for causal pathways in the hippocam-
pus, for the relation between synaptic plasticity and behavioral
learning, and for the neural dynamics underlying consciousness.

I. I NTRODUCTION

A basic fact about neural systems is that their elements
enter into causal interactions with one another, as well as
with the surrounding body and environment. Because neural
systems are generally composed of large numbers of elements,
a useful analysis of their causal interactions must involve
causal networks. Neural systems can be analyzed in terms
of causal networks without assumptions about whether or not
they are ‘information processing’ devices [1], or whether or
not there exist ‘neural codes’ [2].

In this paper, time-series analysis techniques based on
“Granger causality” [3] are combined with network theory
in order to characterize causal networks in simulated neural
systems [4], [5], [6], [7]. We analyze neural simulations, as
opposed to empirical data [8], [9], in order to best expose the
utility of a causal network perspective. The results provide
heuristics for interpreting empirical data and raise a number
of specific hypotheses.

After reviewing the principles of Granger causality analysis
[3], [4], we describe its application to a complex embodied
neural simulation - abrain based device(BBD) [10] - that
incorporates a detailed model of the mammalian hippocampus
[11], [5]. The BBD learns a task similar to a classical ex-
perimental paradigm in which rodents are trained to locate
a ‘hidden platform’ in a pool of milky water (a Morris
‘water maze’ [12]); a task for which an intact hippocampus is
required. The analysis reveals causal pathways involving the
hippocampus that mediate sensory input and motor output; it
also suggests how these pathways are modulated as a result
of learning.

We then show how an extension of the above analysis can
be used to distinguish causal networks in complex neural
populations that lead to specific outputs [6]. The concept of

a causal coreis introduced to refer to the set of neuronal
interactions that are significant for a given output, as assessed
by Granger causality. Illustrated by application to the same
BBD, this analysis reveals that large repertoires of neural
interactions contain comparatively small causal cores and that
these causal cores become smaller during learning, a result
which may reflect the selection of specific causal pathways
from diverse repertoires.

Finally, we discuss the application of a causal network
perspective to the neural dynamics underlying consciousness
[7]. At least in humans, and very likely in other mammals
as well [13], some causal interactions in the brain contribute
to conscious scenes, whereas others do not. We analyze
the suggestion that a particular measure applicable to causal
networks, causal density, may provide a useful means of
quantifying the complexity of the neural dynamics relevant
to consciousness [7]. A system with high causal density is
one that exhibits a dynamical balance between integration and
differentiation, just as conscious scenes are themselves both
differentiated (each is composed of many parts and is therefore
unique) and integrated (each is experienced as a unified whole)
[14], [15], [16].

Taken together, the research reviewed in this article indicates
that a causal network perspective provides both novel concepts
for understanding neural systems, and a set of practically
applicable methods for illustrating, refining, and testing the
usefulness of these concepts.

II. GRANGER CAUSALITY

The concept of Granger causality is based on prediction: If
a signalX1 causes a signalX2, then past values ofX1 should
contain information that helps predictX2 above and beyond
the information contained in past values ofX2 alone [3]. In
practice, Granger causality can be tested using multivariate
regression modelling. For example, suppose that the temporal
dynamics of two time series,X1(t) andX2(t) (both of length
T ), can be described by a bivariate autoregressive model:

X1(t) =
p∑

j=1

A11,jX1(t− j) +
p∑

j=1

A12,jX2(t− j) + E1(t)

X2(t) =
p∑

j=1

A21,jX1(t− j) +
p∑

j=1

A22,jX2(t− j) + E2(t)



where p is the maximum number of lagged observations
included in the model (the model order,p < T ), A contains the
coefficients of the model (i.e., the contributions of each lagged
observation to the predicted values ofX1(t) andX2(t)), and
E1, E2 are the residuals (prediction errors) for each time
series. If the variance ofE1 (or E2) is reduced by the inclusion
of theX2 (or X1) terms in the first (or second) equation, then
it is said thatX2 (or X1) Granger-causesX1 (or X2). In other
words, X2 Granger-causesX1 if the coefficients inA12 are
jointly significantly different from zero. This can be tested by
performing an F-test of the null hypothesis thatA12 = 0, given
assumptions of covariance stationarity onX1 and X2. The
magnitude of a Granger causality interaction can be estimated
by the logarithm of the corresponding F-statistic [17].

Importantly, the concept of Granger causality can be ex-
tended to then variable case (wheren > 2), by estimating an
n variable autoregressive model. In this case,X2 Granger-
causesX1 if knowing X2 reduces the variance inX1’s
prediction error when the activities of all other variables
X3 . . . Xn are also taken into account.

Significant Granger causality interactions between variables
can be represented as edges in a graph, allowing the ap-
plication of graph-theoretic techniques [4]. Because Granger
causality is in general not symmetric, these edges will be
directed. As shown below, the resulting graphs, or causal
networks, can provide an intuitive and valuable representation
of functional connectivity within a system.

III. C AUSAL NETWORKS IN A BRAIN-BASED DEVICE

A useful illustration of causal network analysis is given
by its application to Darwin X [11], [5]. Darwin X is a
brain-based device (BBD), that is, a physical device which
interacts with a real environment via sensors and motors,
whose behavior is guided by a simulated nervous system in-
corporating aspects of the neuroanatomy and neurophysiology
of the mammalian hippocampus and surrounding areas (see
Fig. 1). Full details of the construction and performance of
Darwin X are given in [11], [5]; for present purposes it is
sufficient to mention only the following. Darwin X contained
analogs of several mammalian brain areas including subareas
of the hippocampus and three sensory input streams which
receive input from a CCD camera and from odometry (see Fig.
1). Each neuronal unit in Darwin X was taken to represent
a group of≈100 real neurons and was simulated using a
mean firing rate model. Synaptic plasticity was implemented
using a modified version of the BCM learning rule [18] in
which synapses between strongly correlated neuronal units are
potentiated and synapses between weakly correlated neuronal
units are depressed. In some pathways, synaptic changes are
further modulated by the activity of a simulatedvalue system
(area S in Fig. 1) which responded to salient events (see
below). The full Darwin X model contained 50 neural areas,
≈90,000 neuronal units, and≈1,400,000 synaptic connections.

Darwin X was trained on a ‘dry’ version of the Morris
water maze task [12], in which the device learned to locate
a ‘hidden platform’ in a rectangular arena with diverse visual
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Fig. 1. Schematic of Darwin X’s simulated nervous system. There were two
visual input streams responding to the color (IT ), and width (Pr), of visual
landmarks on the walls, as well as one odometric input signalling Darwin
X’s heading (ATN ). These inputs were reciprocally connected with the
hippocampus which included ‘entorhinal’ cortical areasECin and ECout,
‘dentate gyrus’DG, and theCA3 and CA1 hippocampal subfields. The
number of simulated neuronal units in each area is indicated adjacent to each
area. This figure is reprinted from [6].

landmarks hung on the walls. Darwin X could only detect
the hidden platform when it was directly overhead, by means
of a downward facing infrared sensor. Each encounter with
the platform stimulated the value system which modulated
synaptic plasticity in the value-dependent pathways of Darwin
X’s simulated nervous system. Darwin X was trained over
17 ‘trials’, each beginning from one of four initial positions.
Initially, Darwin X moved randomly, but after about 10 trials,
the device reliably took a comparatively direct path to the
platform from any starting point [11], [5].

Causal interactions in Darwin X were analyzed by selecting
‘functional circuits’ as follows (see [5] for details). For a given
neuronal unit inCA1 (the reference unit), a set of neuronal
units was selected by identifying those units (from different
neural areas) that covaried the most in their activity with the
reference unit. The activity time-series corresponding to these
functional circuits were then analyzed using a multivariate
Granger causality analysis. Fig. 2 shows patterns of causal
interactions from a representative reference unit both early in
learning (left) and late in learning (right). After learning, the
causal network involving the reference unit is much denser and
has developed a so-calledtrisynaptic loop in which sensory
signals from cortex follow a chain of causal influences through
the various subareas of the hippocampus before returning to
cortex.

Repeating the above analysis 400 times (see [5]), using
each CA1 neuronal unit as a reference unit, revealed (i)
an increase in the proportion of causal ‘shortcuts’; in these
shortcuts (which reflect the so-calledperforant pathway) sig-
nals from cortex causally influenced theCA1 reference unit
without causally involving the intermediate stages ofDG and
CA3, and (ii) after learning, the causal influence exerted by
neuronal units inATN (reflecting head direction signals) grew
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Fig. 2. Causal connectivity patterns for a representativeCA1 reference
unit during the first trial (left) and the last trial (right). Grey arrows show
unidirectional connections and black arrows show bidirectional connections.
The width of each arrow (and size of arrowhead) reflect the magnitude of the
causal interaction. This figure is adapted from [5].

markedly. These observations together suggest that as learning
progressed, Darwin X relied less on integrating multisensory
signals and its behavior was increasingly driven by odometric
signals with modulation from visual areas. This hypothesis
may be testable in future animal experiments.

IV. ‘C AUSAL CORES’ IN NEURAL POPULATIONS

The causal networks described above were identified using a
multivariate analysis of a small number of neuronal units from
different regions of Darwin X’s simulated nervous system.
We turn now to a variant of this analysis which distinguishes
causal interactions within large neural populations that lead to
specific outputs [6]. Because this analysis requires complete
knowledge of neuroanatomy and dynamics of the studied
system, it is also well illustrated by application to Darwin
X.1

The general framework for this analysis is illustrated in
Fig. 3. First, aneural reference(NR) is selected from among
many possible neuronal events, in this example by virtue of
its relationship to a specific behavioral output (Fig. 3A). In
the terminology introduced above, a NR refers to the activity
of a reference unit at a particular time. Second, acontext
network is identified by recursively examining the activity of
all neurons that led to each NR, a procedure referred to as
a backtrace[11] (Fig. 3B). The first iteration of a backtrace
identifies those neurons that were both anatomically connected
to the NR neuron and active (above a threshold) at the previous
time-step. The procedure can then be iterated as allowed by
computational tractability. In general, a low iteration depth
ensures the identification of the most salient neural interactions
for a particular NR while avoiding a combinatorial explosion.
Third, a Granger causality analysis is applied to assess the
causal significance of each connection in the context network
(Fig. 3C). In order to ensure robust statistical inferences,
each connection is assessed over a time period considerably

1Recent methodological advances suggest that investigators soon may be
able to characterize both anatomical and functional architectures in biological
systems at microscopic scales. These advances include retrograde transneu-
ronal transport of virus particles [19], metabolic markers for neuronal activity
[20], and high-resolution optical imaging [21].
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Fig. 3. Distinguishing causal interactions in neuronal populations.A. Select
a neural reference(NR), i.e., the activity of a particular neuron (yellow) at
a particular time (t). B. The context networkof the NR corresponds to the
network of all coactive and connected precursors, assessed over a short time
period. C. Assess the Granger causality significance of each interaction in
the context network, based on extended time-series of the activities of the
corresponding neurons. Red arrows indicate causally significant interactions.
D, E. Thecausal coreof the NR (red arrows) is defined as that subset of the
context network that is causally significant for the activity of the corresponding
neuron [i.e., excluding both non-causal interactions (black arrows) and ‘dead-
end’ causal interactions such as 5→4, indicated in blue].

longer than that used to identify the context network. Also,
each connection is assessed separately; i.e., using a repeated
bivariate design with correction for multiple comparisons. The
resulting networks of significant Granger causality interactions
are referred to asGranger networks. Last, thecausal coreof
each NR is identified by extracting the subset of the corre-
sponding Granger network consisting of all causally significant
connections leading, via other causally significant connections,
to the NR (Fig. 3D-E).

As reported in detail in [6], application of the above analysis
to Darwin X involved selecting 93 NRs corresponding to bursts
of activity in CA1 neuronal units at different time points
spanning the learning process. Context networks for each NR
were identified by iterating the backtrace algorithm for 6 time
steps. Fig. 4 shows the context network, Granger network,
and causal core for a representative NR. The causal core
is strikingly small as compared to the context and Granger



networks, and is largely free from the intra-entorhinal interac-
tions which dominate these other networks. These observations
generalized to the remaining 92 NRs, suggesting that (i) even
in large neural populations, only comparatively small subsets
may be causally recruited at a given time for a given function,
and (ii) trisynaptic and perforant pathways had greater causal
influence on the selected NRs than did entorhinal interactions.
Importantly, as reported in [6], causal cores could not in
general be identified on the basis of synaptic strengths alone.
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Fig. 4. A. The context network for a representative NR in Darwin X. The
thickness of each line (and size of each arrowhead) is determined by the
product of synaptic strength and presynaptic activity.B. The corresponding
Granger network. Line thickness here reflects magnitude of the corresponding
causal interaction.C. The corresponding causal core. Networks were visual-
ized using the Pajek program (http://vlado.fmf.uni-lj.si/pub/networks/pajek/),
which implements the Kamada-Kawai energy minimization algorithm. This
figure is adapted from [6].

An interesting question that can be addressed with the above
analysis is: How are causal interactions modulated during
learning? Evidence indicates that learning can induce synaptic
plasticity [22]. However, synaptic plasticity and behavioral
learning operate over vastly different temporal and spatial
scales [23] and, in part because of this, the precise functional
contributions of synaptic plasticity to learned behavior have
so far remained unclear.

Fig. 5 shows that causal cores reliably diminish in size
as learning progresses; we have called this reduction in size
refinement[6]. Because neither context networks nor Granger
networks showed similar refinement during learning, causal
core refinement in Darwin X may best be understood as
arising from the selection of particular causal pathways from
a diverse and dynamic repertoire of neural interactions. This
is consistent with the notion [6] that synaptic plasticity may
underlie behavioral learning via modulation of causal networks
at the population level, and not by strengthening or weakening
associative links between internal representations of objects
and actions.
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Fig. 5. A. Size of context networks as a function of trial number during
learning, in terms of number of edges (K), for 15 differentCA1 neuronal
units. B. Sizes of the corresponding Granger networks.C. Sizes of the
corresponding causal cores. Insets of panelsB and C show the same data
on a magnified scale. This figure is adapted from [6].

V. ‘C AUSAL DENSITY’ AND CONSCIOUSNESS

The analyses described above demonstrate the usefulness
of a causal network perspective for probing the functional
connectivity of neural circuits and for analyzing the principles
governing causal interactions in large neural populations. In
this last section, we turn to the possible utility of such a per-
spective for characterizing the neural bases of consciousness.

A prominent theory of global brain function that has been
applied to consciousness, thetheory of neuronal group se-
lection (TNGS), has proposed that consciousness is entailed
by complex interactions among neural populations in the
thalamocortical system, the so-calleddynamic core[14], [15],
[16], [24]. This proposal raises the question: How can these
complex interactions best be characterized quantitatively?

A rewarding approach to this question is to consider phe-
nomenology. A fundamental property of conscious scenes is
that they are bothdifferentiated (reflecting the discrimina-
tory capability of consciousness; every conscious scene is
one among a vast repertoire of different possible scenes)
and integrated (reflecting the unity of conscious experience;
every conscious scene is experienced “all of a piece”) [14],
[15], [16]. Therefore, a useful measure of complex neural
interactions relevant to consciousness should reflect a balance
between integration and differentiation in neural dynamics;
this balance can be referred to as therelevant complexityof
the system.

As we have argued previously [7], a useful quantitative
measure of relevant complexity should also reflect the fact
that consciousness is a dynamic process [25], and not a thing
or a capacity; it should also take account of causal interactions



within a neural system and between a neural system and its
surroundings, i.e., bodies and environments. To be practically
applicable, a useful measure should also be calculable for
systems composed of large numbers of interacting elements.

Several measures of relevant complexity have now been pro-
posed, including ‘neural complexity’ (CN ) [26], ‘information
integration’ (Φ) [27], and, most recently, causal density (cd)
[4]. All of these measures reflect in some way the balance
between differentiation and integration of multivariate neural
dynamics. In the present, we focus on causal density; a detailed
comparative analysis of all three measures is provided in [7].

The causal density (cd) of a network’s dynamics measures
the fraction of interactions among nodes that are causally
significant [4], [7]. cd is calculated asα/(n(n − 1)), where
α is the total number of significant causal links observed,
according to a multivariate Granger causality analysis, andn
is the number of elements in the network. As reported in [7], it
is also possible to calculate a ‘weighted’ version ofcd which
takes into account the varying contributions of each causally
significant interaction.

In terms of the criteria listed above,cd naturally reflects a
process because it is based on ongoing dynamics; it reflects
causal interactions because it is based on an explicit statistical
measure of causality. However, it is presently difficult to
calculate for large systems because multivariate autoregressive
models become difficult to estimate as the number of variables
increases. It is possible that extended approaches based, for
example, on Bayesian methods [28], may be able to address
this practical limitation.

Does causal density capture aspects of relevant complexity?
Fig. 6 shows a comparison of structural connectivity and
causal connectivity for three example networks, along with the
corresponding values ofcd. The dynamics for each network
were generated using a mean-firing-rate neuronal model; each
node received an independent Gaussian noise input. While
both a fully connected network (having near-identical dynam-
ics at each node) and a fully disconnected network (having
independent dynamics at each node) have lowcd, a randomly
connected network has a much higher value. These results
support the notion that high values ofcd indicate that elements
in a system are both globally coordinated in their activity
(in order to be useful for predicting each other’s activity)
and at the same time dynamically distinct (reflecting the fact
that different elements contribute in different ways to these
predictions). High causal density is therefore consistent with
high relevant complexity in that it reflects a dynamical balance
between differentiation and integration.

It is important to recognize the limited role that a quantita-
tive measure of neural dynamics can play within a scientific
theory of consciousness. At the neural level, the relevant com-
plexity of neural dynamics is likely to be multidimensional,
involving spatial, temporal, and recursive aspects [7]. Because
phenomenal states appear to exhibit a balance between dif-
ferentiation and integration along each of these dimensions,
a satisfying measure of relevant complexity must be sensitive
to these aspects of complexity in neural dynamics; indeed,
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Fig. 6. Example simple networks (top row) and corresponding causal
connectivity patterns (bottom row).A. Fully connected network.B. Fully
disconnected network.C. Randomly connected network. Grey arrows show
unidirectional connections and black arrows show bidirectional connections.
The width of each arrow (and size of arrowhead) reflect the magnitude of the
causal interaction. Corresponding values of causal density (cd) are also given.

the simultaneous application of multiple measures may be
required.2 Like other measures of relevant complexity (i.e.,CN

[26] andΦ [27]), cd is best suited to measuring complexity in
the spatial domain, although its basis in multivariate regression
implies some integration over time.

More fundamentally, some aspects of consciousness are
likely to resist quantification altogether. Conscious scenes have
many diverse features, several of which do not appear to
be readily quantifiable [14], [13], [7]. These features include
subjectivity, the attribution of conscious experience to a self,
and intentionality, which reflects the observation that con-
sciousness is largely about events and objects.

In light of the above, it is clear that the quantitative
characterization of relevant complexity can only constitute one
aspect of a scientific theory of consciousness. It is worth noting
that, unlikecd or CN , Φ has been proposed as an adequate
measure of the amount consciousness generated by a system
[27]; however, this claim is challenged not only by the above
considerations but also by a demonstration thatΦ can grow
without bound even for a simple Hopfield-type network [7].

VI. D ISCUSSION

A causal network perspective provides a very general means
of analyzing neural systems. As described above, causal net-
works can be used to trace functional pathways connecting
sensory input to motor output, to distinguish causal inter-
actions in large populations that lead to specific outputs, to
explore how these interactions are modulated by synaptic
plasticity, and to connect global features of neural dynamics
to corresponding features of conscious scenes.

2Recursive complexity refers to the balance between differentiation and
integration across different levels of description. The phenomenal structure
of consciousness appears to be recursive inasmuch as individual features
of conscious scenes are themselves Gestalts which share organizational
properties with the conscious scene as a whole.



The Granger causality method for identifying causal net-
works can be contrasted with alternative techniques which
require perturbation or lesioning of the studied system (e.g.,
[29], [30], [31]). The interpretation of causal inference based
on such interventions is complicated by the fact that the
studied system is either no longer intact (for lesions) or may
display different behavior (for perturbations).

The identification of causal networks in neural systems
involves no assumptions about whether these systems ‘process
information’ or operate according to ‘neural codes’. For exam-
ple, causal cores are not information-bearing representations
nor do they require explicit encoding and decoding. Instead,
they are dynamic causally effective processes that give rise
to specific outputs. This perspective can lead to different
interpretations of commonly observed phenomena. For exam-
ple, variability in neural activity [32] is often treated as an
inconvenience and is minimized using averaging. According
to the present view, however, such variability may indicate
the existence of diverse and dynamic repertoires of neuronal
interactions underlying causal core refinement during learning.

Although the experiments described in the present paper
utilized a very simple implementation of Granger causality, re-
cent methodological developments may lead to enhanced tech-
niques better suited to the often non-linear and non-stationary
time-series generated by embedded, embodied neural systems
[33], [34]. When combined with network-theoretic and graph-
theoretic techniques, these methods hold great promise for
elucidating how neural systems function.
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