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Abstract— The introduction of noise into an evolutionary
Iterated Prisoner’s Dilemma model can promote the evo-
lution of strategy memory. In this paper, an analysis in
terms of Ashby’s Law of Requisite Variety enables a distinc-
tion to be drawn between the adaptive evolution of memory
and non-adaptive evolution, or drift, a distinction which in
such situations is remarkably insensitive to fitness statistics.
As part of this, it is demonstrated how the influence of noise
can depend on its locus in the evolving system. Additional
evidence is presented for a second influence of noise in facil-
itating drift, an influence which can be interpreted in terms
of noise-induced genotype-phenotype degeneracy.

I. INTRODUCTION

The Tterated Prisoner’s Dilemma (IPD) provides a con-
venient platform for the exploration of phenomena in evo-
lutionary dynamics. Previous work has indicated that the
introduction of noise into an IPD system can encourage the
evolution of strategies with increased memory [5]-[7] , how-
ever it was not clear whether the evolved memory was an
adaptation to the presence of noise, or a serendipitous side-
effect, an instance of (non-adaptive) genetic drift somehow
facilitated by noise. This is an example of the general prob-
lem of distinguishing adaptation from non-adaptive drift
in evolving systems. Here we examine this question in the
context of the IPD with an analysis inspired by W. Ross
Ashby’s Law of Requisite Variety (LRV) [1], which suggests
how the influence of noise should critically depend on its lo-
cus in the system. On this basis, evidence is found that, in
some cases, evolved memory can indeed be understood in
terms of adaptation to noise. Interestingly, fitness metrics
alone were not sufficiently sensitive to reveal this effect.

In other cases, however, it is argued that noise and mem-
ory are not adaptively linked. In these cases evidence is
presented for a role for noise in facilitating genetic drift,
an effect interpreted in terms of noise-induced degeneracy
in genotype-phenotype mappings, where degeneracy refers
to the ability of structurally distinct genotypes to yield the
same phenotype [3].

A. The Iterated Prisoner’s Dilemma

The IPD is an iterated non-zero-sum game, for two or
more players, in which each player chooses either to coop-
erate or defect on any given iteration. Each player is ig-
norant of the present move (though not necessarily of the
history of moves) of its opponent, with payoffs distributed
according to table I. Although IPD models are renowned
for providing insight into how cooperation can arise in a
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Fig. 1. IPD model genotype encoding scheme. Each time a previ-
ous move in the game history (between two particular individuals) is
considered, half of the genotype is (temporarily) discarded (the non-
shaded areas) - one half if the move had been cooperative, the other
for a defection. Thus a genotype of length 16 (as above) can encode
a strategy of memory of 4 moves. For example, the black square in-
dicates which allele would be accessed for a [c,d,c,d] history. In
practice the genotype must actually be longer in order to specify the
initial moves up until this memory limit is reached (in this case an
extra 15 alleles). This scheme is based on Lindgren [5].

B coop B defect
A coop | A3 pts- B3 pts | AOpts- B 5 pts
A defect | Abpts- BOpts | Alpt-B1pt

TABLE 1
Standard IPD payoff table for 2 players.

population of selfish individuals [2], the present focus is on
the relations between strategy memory and noise (defined
later). Following previous work [6]-[7], IPD ecologies here
consist of populations of variable length genotypes, each
encoding a strategy for playing the IPD (fig. 1). A sim-
ple GA (population size 30) applies crossover (p = 0.95),
point mutation, and ‘splitting’ and ‘doubling’” mutations
(all p = 0.005) to the genotypes; doubling copies the latter
half of the genotype twice again onto its own end, thereby
increasing the strategy memory by 1, splitting reverses the
effect. Genotype fitness is simply the accumulated payoff
after a series of IPD interactions.

Again following [6]-[7], two distinct IPD models are anal-
ysed in what follows: a ‘compulsory’ model, in which each
individual engages in the IPD with every other individual
in the population (for 60 iterations per contest), and an
‘IPD/CR’ model in which individuals choose and refuse
partners with reference to continuously updated expected



payoffs that each individual maintains for every other. The
IPD/CR algorithm is based on Stanley et al. [8], and is
fully described in Appendix A. For present purposes, as we
shall see, the significant difference between the two mod-
els is that stable cooperation evolves with much greater
reliability in the latter. But first let us consider the LRV.

B. The Law of Requisite Variety

For an agent to maintain relative stability in certain (in-
ternal) essential variables (for example heart rate, body
core temperature), it must prevent the transmission of
environmental variability through to these essential vari-
ables. In the same way that a good thermostat prevents
the transmission of environmental variations in tempera-
ture through to a particular object (for example, the inte-
rior of a refrigerator should remain at a constant cool tem-
perature despite the fluctuating temperature of a kitchen
on a midsummer day), a well adapted agent prevents the
transmission of certain environmental variables (for exam-
ple the prevalence or scarcity of food, the proximity, or
otherwise, of predators) through to such essential internal
variables as blood sugar level or heart rate.! With this in
mind, the LRV can be easily formulated: Consider a set
of possible environmental disturbances D, a set of possible
responses on the part of the agent, R, and a set of possible
outcomes, O. Consider also that for each D;, there is dis-
tinct outcome O;, and a particular response R;, with these
mappings mediated by the ‘system’ S. Stability in the es-
sential variables requires minimising the variation in O, and
this then requires that the variety in D is matched by the
variety in R. Ashby himself provides a concise summary:
“If R’s move is unvarying, then the variety in outcomes will
be as large as the variety in D’s moves; only variety in R’s
moves can force down variety in the outcomes” ([1], p.206).

Ashby also reminds us that not all environmental vari-
ability need threaten the survival of the agent, arguing for
two fundamental forms: “There is that which threatens the
survival of the gene-pattern. This part must be blocked at
all costs. And there is that which, while it may threaten the
gene-pattern, can be transformed (or re-coded) through the
regulator R and used to block the effect of the remainder”
(ibid, p.212). According to Ashby, environmental variabil-
ity can be either potentially beneficial or downright dan-
gerous.

Now consider the IPD in terms of the components of the
LRV: D, R, S, and O. D would be the set of all moves
made over all iterations of the game, by all the opponents
(of a given agent). R would be the strategy of the agent,
S would be the IPD payoff table, and O would be the set
of scores awarded. In a stable, cooperating population, the
overall fitness of each agent (over many generations) will
be maximised with minimum variation in O away from re-
peated cooperation payoffs (since mutual cooperation, in
the IPD, maximises overall payoff in the population). Any
deviation from stable cooperation can then be expected to
have a deleterious effect on fitness, unless it is countered by

1Of course, these variables can and do vary within certain limits,
but trespass beyond these limits is severely maladaptive.

a strategy that can effectively cope with such deviations.
For example, an occasional ‘accidental’ defection will throw
a population of ‘tit-for-tat’ players into continual mutual
defection but a ‘tit-for-two-tats’ population will ‘absorb’
such a defection, permitting general cooperative behaviour
to persist throughout the population. In terms of the LRV,
any variety in D can only be prevented from affecting O if
it is countered through the action of R on S; that is, if the
variety in R (given S) matches that of D. Given the as-
sumption that environmental variability can be associated
with noise (‘dangerous’ environmental disturbance, which
need not be structured or predictable), this construal of the
IPD allows us to predict that noise (variety) on D may lead
to the evolution of longer memories (supporting variety in
R) to counter this disturbance, but that noise on O will
not. Noise on the outcome, after all, is precisely what the
strategies would be expected to prevent, and if the noise is
applied directly to O, then, by definition, no strategy can
provide an effective response, because payoffs have already
been determined.

Two types of noise must therefore be distinguished: (1)
M-noise; on each iteration, for each player, there is a cer-
tain probability that the move specified by the genotype
is flipped, and only then are the payoff scores calculated,
and (2) O-noise; on each iteration, for each player, there
is a certain probability that the payoff awarded is selected
randomly from the 4 possible payoff values. By the above
argument, if evolved memory is adaptively significant, M-
noise should encourage the evolution of longer memories,
but O-noise should not.

Importantly, both types of noise can be thought of as
inducing genotype-phenotype degeneracy, but in different
ways. M-noise makes the phenotype expressed by any given
genotype slightly less predictable, and thus may tend to
obscure the differences between phenotypes (in the limit,
100% M-noise would entail total genotype-phenotype de-
generacy, all phenotypes would be identical). O-noise tends
to homogenise fitnesses of genotypes/phenotypes, thus ob-
scuring phenotypic differences from the point of view of
selection (in the limit, 100% O-noise would entail all phe-
notypes had the same fitness).

II. ANALYSIS OF THE MODEL

Both compulsory and IPD/CR models were analysed in
each of 3 conditions; 2% M-noise, 2% O-noise, and zero
noise. In each condition (in each model) 12 evolutionary
runs of 10,000 generations each were performed. All pop-
ulations were initialised with a universal memory of 1. For
the compulsory model, Fig. 2 shows that with zero noise,
long memories never really evolve: evolved memory tends
to stay either at the initial level of 1, or drop to zero. With
2% M-noise, long memories do evolve; not always, and not
always to the maximum, but it does happen. However 2%
O-noise has the same effect as 2% M-noise, suggesting that
the evolved memory is not adaptively significant. These ob-
servations are statistically significant (by t-test, p < 0.05
between M-noise and zero noise, p < 0.05 between O-noise
and zero noise, and p > 0.5 between M-noise and O-noise).
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Fig. 2. Evolution of memory in compulsory (a,c,e) and IPD/CR (b,d,f) models. Each figure superimposes results from 12 evolutionary runs.

Average population memory is shown. See text for details.

A very different pattern emerges from the IPD/CR
model (also fig. 2), for which there is significantly more
evolved memory in the 2% M-noise condition than with
2% O-noise or zero noise (p < 0.01 in each case), but no
significant difference between the zero noise and the 2% O-
noise conditions (p > 0.1). These results suggest that the
evolution of memory in the IPD/CR model is indeed adap-
tively significant. (It should also be recorded that in this
model, initial observations indicated that the population
rapidly reached maximum memory in all conditions, and
so, in order to differentiate the conditions, a small fitness
penalty on evolved memory was applied in all conditions:
0.0025% of total fitness per memory unit. The evolution of
memory under M-noise despite this cost further attests to
its adaptive significance. To control for this modification,

the same fitness cost was also introduced to compulsory
models under 2% M-noise and O-noise: the evolution of
memory was completely abolished in both cases: fig. 3.)

A second set of experiments corroborated these results.
Modified compulsory and IPD/CR models were analysed in
which, although heritable memory was allowed to vary nor-
mally, a maximum functional memory of 1 was imposed.
In these models, then, there is no possible functional differ-
ence, with regard to the IPD, between strategies of mem-
ory 1 and of memory 6. Therefore, if memory is evolving
as an adaptation to the presence of M-noise, it may be
expected to be abolished by this modification. As fig. 4
clearly illustrates, whilst this is indeed the case for the
modified IPD/CR model (with 0.0025% fitness cost per
memory unit), it is not the case for the modified compul-
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10,000 generations each).

sory model.

We can begin to understand these differences by inspect-
ing how the two kinds of model perform in general. Average
cooperation in the IPD/CR model is high, mandating ap-
plication of the LRV framework (fig. 6b; the slightly lower
- but still high - average cooperation under M-noise may
be understood to result from the evolved strategies failing
to cope perfectly with noise.) However in the compulsory
model average cooperation is low (fig. 6a; for present pur-
poses we may overlook the differences between O-noise and
the other conditions, all are low when compared to 6b).
And if there is no stable cooperating population to begin
with, there is no reason (with respect to the LRV) to expect
long memories to evolve to cope with noise. The question
therefore arises: why do long memories ever evolve in the
compulsory model in either 2% O-noise or 2% M-noise con-
ditions?

A. The insufficiency of fitness metrics

Before addressing this question it is worth forestalling a
possible objection. Why, one might ask, bother with the
LRV at all? Surely adaptive and non-adaptive evolution
can be distinguished simply from fitness statistics?

In this case not, or at least not easily. First, consider
a single run of the compulsory model under 2% M-noise.
Fig. 5(a) scatter-plots fitness and memory of the entire pop-
ulation every 200 generations for 10,000 generations (as
defined in section I-A). At this gross level, no relation is
discernible. Fig. 5(b) represents the same data in a dif-
ferent way, showing only those generations for which there
is a non-zero diversity in memory across the population,
normalising the recorded range in such cases to [0.0,1.0],
and plotting this data against ranked and normalised fit-
ness values; once again there is no discernable relation. So
far so good - we already have reason to believe that evolved
memory in the compulsory model is not adaptive. However,
repeating this analysis for the IPD/CR model (under 2%
M-noise) reveals exactly the same pattern (figs. 5¢ and d).
Therefore there is no evidence from these fitness measures
that longer memories, in the IPD/CR model with M- noise,
provide any reliable selective advantage over shorter mem-
ories. One may consider the interesting implication that
adaptive evolution cannot always be distinguished from
non-adaptive evolution with confidence by relying on sim-

ple fitness metrics. (The possibility must nevertheless be
left open that other statistical fitness measures and/or vi-
sualisation techniques than those deployed here may enable
some discrimination to be made. We must be content to
say that fitness measures do not readily illuminate such
discriminations.)

None of this is to say that longer memories do not pro-
vide fitness advantages in the IPD/CR model with M-noise.
At some level of analysis they must, if it is true that they
evolve as adaptations. However, because IPD fitness land-
scapes are extremely rugged and prone to rapid change,
these advantages may show themselves only rarely and un-
predictably. For example, in a population undergoing a
rapid change from high fitness to low fitness, it may not be
appropriate to draw any conclusions from observing the
memory of the ‘fittest’ individual. In other words, the
large-scale population dynamics of IPD ecologies may well
disguise any direct selective advantages of longer memo-
ries, without implying that these selective advantages do
not exist.

B. The facilitation of genetic mobility

To return - finally - to the puzzling and apparently non-
adaptive evolution of memory in the compulsory model,
here we briefly evaluate the hypothesis that this is an exam-
ple of enhanced genetic drift promoted by noise. A compul-
sory IPD model is considered in which strategy memory is
genetically limited to being either 0 or 1 (the average pop-
ulation memory can range continuously from 0.0 to 1.0),
with the motivation of investigating differences between the
three noise conditions that are relatively independent of the
evolution of memory.? In other words, to try to distinguish
between the causes of the evolved memory, and a mixture of
the causes and consequences. If strategy memory is given
free reign to evolve, the causes and consequences of its evo-
lution cannot be rigorously distinguished. The following
experiments allow such a distinction to be drawn - if not
rigorously, then at least in outline. Twelve evolutionary
runs were performed in each of the 3 conditions; zero noise,
2% O-noise, and 2% M-noise. Fig. 7 illustrates that in both
O-noise and M-noise conditions, average evolved memory
is near to the expected average (0.5). But with zero noise,
in each case the average evolved memory (usually) either
stays near the initial level of 1.0, or is very close to 0.0.
This indicates that both O-noise and M-noise are permit-
ting evolution to wander easily within the prescribed area
of genotype space (determined by the maximum memory
limit of 1), but with zero noise, the evolving population
often becomes ‘stuck’ on either memory 1 or memory O.
Furthermore, the means of these average memories are not
significantly different between any of the conditions. The
average (of the average memory) in the M-noise condition
is 0.26; in the O-noise, 0.34; and with zero noise, 0.41, and
pairwise t-tests between all sets of means all give p > 0.05,
indicating that neither type of noise is actually encourag-
ing (or discouraging) the evolution of memory per se in this

20f course, this genetic limitation entails a corresponding functional
limitation.
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model. All this strongly suggests that noise does facilitate
genetic drift, at least in the dimension reflected by strategy
memory in the present model.

What of the origins of this effect? We have seen that
another way to consider noise in an evolving system is
as inducing genotype-phenotype degeneracy, and this may
be enough. Consider an analogy with the Baldwin effect,
which describes how lifetime learning can ‘smooth out’ fit-
ness landscapes [4]. The principle of this effect is that if
individuals vary genetically in their ability to learn some
trait, those most able to do so will leave the most descen-
dants, and over time the trait itself will become genetically
assimilated. Hinton & Nowlan provide a simple simulation
model of this effect [4], in which learning is instantiated
as random search, which can be informally construed as
noise, or genotype-phenotype degeneracy, through its effect
that any given genotype will be awarded a greater diver-
sity of fitnesses than would otherwise have been the case.
Thus it is possible to imagine that noise, through inducing
genotype-phenotype degeneracy and smoothing out sharp
peaks in fitness landscapes, could enhance genetic mobil-
ity. Further work is clearly required to fully explore this
possibility.

III. SUMMARY

In this paper, analysis of both the compulsory IPD model
and the IPD/CR model indicated that noise encourages
the evolution of strategy memory. However, only in the
IPD/CR model can this memory be appropriately inter-
preted as an adaptive response, an interpretation justified
by (a) the abolition of such evolution if M-noise is replaced
by O-noise, or under the application of a functional mem-
ory limit, and (b) the evolution of memory despite a fitness
penalty. The importance of the LRV framework in making
this distinction - interestingly, fitness metrics alone were
not sufficient - suggests that similar analyses may help con-
trast adaptive from non-adaptive evolution in other diffi-
cult cases, and help explore the influence of noise in evolv-
ing systems in general.

Further analysis of the compulsory model provided evi-
dence for a second influence of noise: the facilitation of ge-
netic drift. This is not anticipated by the LRV framework,
which views noise as either potentially useful or potentially
harmful (section I-B). One interpretation is that noise can

be thought of as inducing genotype-phenotype degeneracy
which may ‘smooth out’ fitness landscapes allowing greater
mobility throughout genotype space.

A final comment concerns the term ‘redundancy’, which
is often employed in discussions of genotype-phenotype
mappings where I have used ‘degeneracy’. As Edelman &
Gally point out, however, ‘redundancy’ refers to the same
function (or outcome) realised by multiple identical struc-
tures. They argue that this term is often misused in place
of ‘degeneracy’, which refers to “the ability of elements that
are structurally different to perform the same function or
yield the same output” [3] (p.13763). It is clear, at least
in the present case and perhaps more generally throughout
the relevant literature, that degeneracy is the more appro-
priate term.
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Appendiz A: the IPD/CR algorithm

Each individual maintains a set of ‘expectation values’ E; for every
other individual (indexed by ¢). These values reflect the expected
outcome of a prisoner’s dilemma interaction, and each FE; is initially
set to 3.0. For each subsequent iteration, each individual signals its
willingness to play to m of its most preferable partners (determined
by the values of E; for all i; n is a constant); the recipients thus
form lists of those individuals who have proposed to them. Every
individual now has a list of potential partners, and engages in IPD
interactions with those partners for whom E; > w, where w is a
fixed threshold value common to all individuals; both participants are
awarded payoffs according to table I. If, however, E; < w, the refusee
is awarded a payoff of value 1.0 (mutual defection payoff). After each
interaction or refusal, values of F; are updated according to E;[t+1] =
vE;[t] + (1 — v)p[t], where v is a (fixed) learning rate, and p[t] is
the payoff awarded to that individual during the IPD interaction or
refusal event at time ¢ (note that only the refusee is updated after
a refusal). After all accepted interactions have occurred, individuals
who have not interacted at all are awarded a ‘wallflower’ payoff w.
Here, v =0.7,n =2,w = 1.6.
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