
Supporting Text

Neural Complexity

The neural complexity CN of a system is defined as the ensemble average
mutual information (MI) between subsets of a given size, ranging from 1 to
n/2 for a neural system composed of n elements, and their complements (1).
This value is high if each of the system’s subsets can take on many different
states and if these states make a difference to the rest of the system. In
practice, CN of a network X is calculated as follows:

CN(X) =

nt/2∑

k=1

〈MI(Xk
j ; X −Xk

j )〉,

where
MI(A; B) = H(A) + H(B)−H(AB).

In the case of Gaussian-distributed system variables, the entropy calculation
simplifies to:

H(X) =
1

2
ln((2πe)n|COV(X)|).

In the above, k is the subset size, Xk
j is the j-th subset of size k, nt is the

total number of subsets of size k, 〈〉 is the ensemble average, MI(A; B) is the
mutual information between A and B, H(X) is the entropy of X, COV(X)
is the covariance matrix of X, and |.| indicates the matrix determinant. An
approximation to CN which considers only bipartitions consisting of a single
element and the rest of the system (2) is given by:

C(X) = H(X)−
n∑

k=1

H(xi|X − xi),

where H(A|B) is the conditional entropy of A given B. For reviews of neural
complexity and associated measures, see refs. 3-5 .
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Information Integration

Information integration, or Φ, is proposed to measure the total amount of
information that a system can integrate. It is calculated as follows (see refs.
6 and 7 for a full account): Given a system of n elements, one identifies all
possible bipartitions of the system. For each bipartition A|B, one replaces
the outputs from A by uncorrelated noise (i.e., maximally entropic activity),
and one measures how differentiated are the responses of its complement (B).
This is the effective information (EI) between A and B:

EI(A→B) = MI(AHmax; B),

where MI(AHmax; B) is the mutual information between A and B when the
outputs from A have maximal entropy. EI(A→B) measures the capacity for
causal influence of partition A on its complement B (i.e., all possible effects
of A on B). Given that EI(A→B) and EI(B→A) are not necessarily equal,
one can define:

EI(A↔B) = EI(A→B) + EI(B→A).

The minimum information bipartition (MIB) is the bipartition for which the
normalized EI(A↔B) is lowest. Normalization is accomplished by divid-
ing EI(A↔B) by min {Hmax(A); Hmax(B)}, so that effective information is
bounded by the maximum entropy available. The resulting MIB corresponds
to the informational “weakest link” of the system, and the Φ value of the
system is the nonnormalized EI(A↔B) across the MIB.

A further stage of analysis has been described (7) in which a system can
be decomposed into “complexes” by calculating Φ for different subsets of
elements; a complex is a subset having Φ > 0 that is not included in a larger
subset with higher Φ. As we show below, the example Hopfield-like network
described in the main text cannot be decomposed into complexes because
the Φ value of the complete network is greater than that of any subset.

Determining Φ for a Hopfield-Type Network. Let us consider a
simple fully connected Hopfield network (8),

xi(t + 1) =
n∑

j=1

2jf(xj(t)) , where f(x) =

{ −1 if x < 0
+1 if x ≥ 0 ,

[1]

where each xi(t) denotes the state of neuron i at time t, and n ≥ 1 is the
number of neurons. The synaptic connections among the neurons are chosen
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in such a way that the effect of neuron xj(t) on every other neuron in the
network (including itself) is 2jf(xj(t)), i.e., ±2j. Apparently, the dynamics
of this network is driven by the last neuron xn(t).

Theorem 1. The Hopfield network [Eq. 1] of size n has information inte-
gration

Φ = n bits.

The proof of the theorem is based on a number of propositions that are stated
and proved below. For clarity, we treat Eq. 1 as a discrete-time dynamical
system, and we refer to “neurons” as elements.

First, let us establish boundary conditions on the activities of elements
in Eq. 1:

Proposition 1. Let

a =
n∑

j=1

2j = 2n+1 − 2 ,

then all |xi(t)| ≤ a for all t > 0.

Proof. The maximal (minimal) value of the sum in Eq. 1 is obtained
when all xj(t) are positive (negative), so that f(xj(t)) = +1 (−1). ¤

Let us now show that the network [Eq. 1] has very simple behavior in
which all elements receive identical inputs, and hence have identical states:

Proposition 2. The dynamical system [Eq. 1] has only two attractors

x1 = x2 = · · · = xn = ±a ,

where a is defined above. It converges to one or the other attractor depending
on the sign of xn(0). The convergence takes only two time steps.

Proof. Because 2n >
∑n−1

j=1 2j = 2n − 2 (Proposition 1), the sign of every
variable, xi(t+1), in Eq. 1 is determined completely by the term 2nf(xn(t)).
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Suppose xn(0) ≥ 0 (so that f(xn(0)) = +1), then the first iteration results
in all xi(1) > 0. Because all f(xj(1)) = +1, the second and all subsequent
iterations result in xi(t) =

∑n
j=1 2j = a, for all t = 2, 3, . . .. Similarly, if

xn(0) < 0, then all xi(1) < 0, and xi(t) = −a for all t = 2, 3, . . .. ¤

Let us show now that the transfer function in Eq. 1 maps different state
vectors of the network into different integer values:

Proposition 3. Let A be a subset of {1, 2, . . . , n} with k ≤ n distinct ele-
ments. Let yj, j ∈ A, be k variables from the domain {−1, +1}. The function
F defined by:

F (y) =
∑
j∈A

2jyj , y = {yj}, j ∈ A , [2]

maps different vectors y to different integer numbers, i.e., it is injective (an
embedding).

Proof. Let us use a new coordinate system zj = (1 + yj)/2 if j ∈ A and
zj = 0 if j /∈ A. Apparently, zj = 0 or +1. In the new coordinates, the
function F has the form

F (z) = 2

(
n∑

j=1

2jzj

)
−

∑
j∈A

2j

The term in parenthesis is an integer number with binary representation
z = (z1, . . . , zn), which is determined uniquely by the vector y. The other
terms are constants. Hence, different vectors y (corresponding to binary
vectors z) result in different integer numbers defined by Eq. 2. ¤

Let us now derive the entropy of the output from a subset A in Eq. 1
in the case where the output from each element in A is replaced by random
noise:

Proposition 4. Let A be a subset of {1, 2, . . . , n} with k ≤ n distinct ele-
ments. Let yj(t), j ∈ A, be k independent random variables that take values
{−1, +1} with probabilities 0.5. The entropy of the random variable

∑
j∈A

2jyj(t)
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is k bits.

Proof. The vector y(t) can assume 2k different values with equal prob-
ability. Indeed, it is of the form (±1,±1, . . . ,±1) with k elements. From
Proposition 3 it follows that the random variable also assumes 2k distinct
random values, which have equal probabilities p = 2−k. Hence, the entropy
is:

H = −
∑
j∈A

p log p = −2k(2−k log 2−k) = k ,

which follows from the Shannon−Weaver formula (9) . We measure entropy
in bits so that logarithms are taken with base 2 and log 2 = 1. ¤

Let us now derive the entropy of the output from the entire network [Eq.
1] in the case where the output of each element in A is replaced by random
noise:

Proposition 5. Let A be a subset of {1, 2, . . . , n} with k < n elements.
Let yj, j ∈ A, be k random variables yj(t) that take values {−1, +1} with
probabilities 0.5. Each random variable defined by (see Eq. 1):

xi(t + 1) =
∑
j∈A

2jyj(t) +
∑

j /∈A

2jf(xj(t)), i ∈ (1, . . . , n), [3]

has the following entropy:

• H = k, if n /∈ A, or

• H = k + 1, if n ∈ A.

Proof. Suppose n /∈ A, then all xi(t + 1), i /∈ A, have the same sign as
xn(t), which has the same sign as xn(0). Then, Eq. 3 can be rewritten in
the form:

xi(t + 1) =
∑
j∈A

2jyj(t) + sign (xn(0))
∑

j /∈A

2j . [4]

Note that the second term of Eq. 4 is a constant. From Proposition 4 it
follows that the entropy of the random variable xi(t) is k.
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Now suppose that n ∈ A. Then the sign of all xj(t), j /∈ A, is equal to
the sign of yn(t− 1). That is, Eq. 3 has the form:

xi(t + 1) =
∑
j∈A

2jyj(t) + yn(t− 1)
∑

j /∈A

2j . [5]

Because yn(t− 1) is independent from yn(t), the entropy of this sum is k +1.
¤

Now we need to derive the effective information between two nonover-
lapping subsets, A and B, of Eq. 1 in the case when one subset, for example
A, is replaced by random noise. For this case, we need to describe the state
of the union AB, and there are at least two alternative ways to do that,
as shown in Fig. 1. We note that the definition of Φ (in ref. 7) does not
consistently specify which alternative to use. For the purpose of illustration,
we assume that each set consists of only one element, e.g., A = {1} and
B = {2}. Then, the state of the union AB = {1, 2} can be treated as

• Alternative a: (x̃1(t), x2(t)), i.e., the variable x1(t) is replaced by
the random variable x̃1(t), so that the output y1(t) = f(x̃1(t)) will be
transmitted when the time variable steps from t to t+1 (in other words,
the random output at time t will exert influence on {2} at time t + 1).

• Alternative b: (x1(t), x2(t)), i.e., the replacement of the output from
x1(t) by the random variable y1(t) occurs somewhere along the trans-
mission line.

The first alternative implies that the state of A at time t is completely in-
dependent from the state of B, so that the entropy H(AB) = H(A)+H(B),
and the effective information EI(A → B) = MI(AHmax; B) = H(A)+H(B)−
H(AB) = 0, not only for the Hopfield network above, but for any discrete-
time dynamical system. This alternative therefore leads to the undesirable
conclusion that Φ = 0 for all such systems. Thus, we use the second alter-
native in the theorem below.

Proposition 6. Let A and B be two distinct nonoverlapping subsets of the
set {1, 2, . . . , n}. Let k be the number of elements in A. Let us replace the
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outputs from the elements in the subset A in Eq. 1 by random variables that
maximize the entropy H(A). Then, the effective information from elements
in A to elements in B in Eq. 1, defined as:

EI(A → B) = MI(AHmax; B) = H(A) + H(B)−H(AB) ,

is k.

Proof. The maximal entropy of outputs from A is H(A) = k when each
output is replaced by a random variable yj(t) = ±1 with the probability 0.5
of being positive or negative, so we can use Proposition 5.

Suppose first that n /∈ A, then from Proposition 5 it follows that every
element in B has the entropy k. Because elements of B receive identical
inputs, they have identical states, so the entropy of the whole of B is also k.
Moreover, from Eq. 4 it follows that the state of B is a linear combination
of only yj, j ∈ A. All elements in the union AB also receive identical inputs,
hence they have identical states, and the entropy of the union is the entropy
of any constituent element, hence H(AB) = k.

Now suppose that n ∈ A. Repeating the same arguments as above, and
using Eq. 5, we conclude that the entropy of each element in B, the entropy
of the whole of B, and the entropy of the union AB is k + 1.

In both cases (i.e., whether n ∈ A or not) EI(A → B) = k. ¤

Corollary 1. Let A and B be two distinct nonoverlapping subsets of the set
{1, 2, . . . , n}. Let m be the total number of elements in the union AB. Then,
the effective information between elements in A and B in Eq. 1, defined as:

EI(A ↔ B) = EI(A → B) + EI(B → A) ,

equals m.

Proof. Let kA be the number of elements in A, and kB be the number
of elements in B, so that kA + kB = m. From Proposition 6 it follows that
EI(A → B) = kA and EI(B → A) = kB. ¤

Proof. Now let us prove Theorem 1. Consider a subset, S, of m elements
in the Hopfield network [Eq. 1]. Let A|B be any bipartition of S. From
Corollary 1, it follows that the effective information across this bipartition is
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m. Because all bipartitions are equivalent with respect to effective informa-
tion, the effective information across the minimal information bipartition of
S, and therefore the information integration value for the subset S, is also m
(we do not even need to find the minimal information bipartition). Because
larger subsets have higher values of information integration, information inte-
gration is maximal when S is the whole network. Therefore, the information
integration value for the network, denoted by Φ, is n, i.e., the network size. ¤

Φ Depends on the Choice of Variables. Interestingly, the network
[Eq. 1] can be rewritten in a different form:

vi(t + 1) = f

(
n∑

j=1

2jvj(t)

)
, [6]

where each vi(t) = f(xi(t)) is a new, binary or spike-like, variable that de-
scribes the output from the i-th neuron. The two systems are equivalent in
the sense that if they start with the same initial conditions, they will produce
identical behavior. However, as we show below, the system described by Eq.
6 has Φ ≤ 2, a value which does not grow as a function of network size n.

Consider a (k, n− k) bipartition, A|B, of the network with the subset A
having k elements. Replace the outputs from each neuron vi in A by either
+1 or −1 (with probability 0.5), to maximize the entropy of A, which is

H(A) = k .

Because v = f(input), each element in B has the state v = +1 or v = −1,
therefore its entropy is less than or equal to log 2, which is 1 (recall that in x
coordinates, this value was equal to k). Because every element in B receives
identical input, the entropy of the whole of B,

H(B) ≤ 1 .

Furthermore, because elements in B are driven by output from A, we can
repeat the steps in Proposition 5 to show that the entropy of the whole
network is equal to the entropy of the subset A plus the entropy of B at the
previous time-step, i.e.,

H(AB) ≥ k .
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Therefore, the effective information,

EI(A → B) = MI(AHmax; B) = H(A) + H(B)−H(AB) ≤ k + 1− k = 1 .

Similarly, EI(B → A) ≤ 1, which implies that any bipartition has:

EI(A ↔ B) = EI(A → B) + EI(B → A) ≤ 2 .

Because this value does not grow as a function of network size n, neither
does the corresponding value for Φ.

The above result reinforces our comment in the main text that all com-
plexity measures or other quantities based on Shannon entropy necessarily
depend on the exogenous choice of variables chosen to characterize the sys-
tem. In the above example, the Φ value can either be bounded by a constant
or it can be an unbounded function of system size, depending on the variables
selected. According to the information integration theory of consciousness,
the appropriate spatial and temporal scales for measurement should be cho-
sen according to the criterion that the corresponding value of Φ is maximized
(7). However, because we have shown that Φ can be unbounded even for a
simple class of Hopfield-type network, this criterion cannot be applied in
practice.

Calculating Φ for Continuous Variables. Consider a system com-
posed of two coupled oscillators A and B with continuous dynamics and
having phases ϑ and θ defined on the interval [0, T ], where T > 0 is the
period of oscillation. The coupling is assumed to be strong so that the oscil-
lators quickly synchronize and maintain the in-phase relationship, i.e., ϑ = θ.
The effective information from A to B is the same as from B to A, and it is
equal to the entropy of a continuous random variable on the interval [0, T ],
denoted here as H([0, T ]). Because the system consists of only two elements,
the minimal information bipartition (MIB) is A|B, and therefore Φ is equal
to 2H([0, T ]). However, the entropy, H([0, T ]), of a continuous variable is
infinite; hence, the system of two oscillators has an infinite value for Φ.

To see why the entropy of a continuous variable is infinite, we can apply
the Shannon−Weaver formula (9) to the interval [0, T ]. Let us subdivide
this interval into m subintervals of equal length T/m. Because A and B
are oscillators, their phase variables monotonically increase and sweep the
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interval [0, T ] periodically. Hence, the probability of the phase falling in any
subinterval is p = 1/m, and the entropy is

−
∑

p log p = −
∑ 1

m
log

1

m
= log m.

Now, if the subdivisions are refined by making m larger, the entropy in-
creases, and it becomes infinite in the limit m → ∞. One could try to
salvage this situation by considering the differential entropy (10) :

H([0 T ]) = −
∫

p(x) log(p(x))dx = log T, (because p(x) = 1/T ).

However, differential entropy, by its definition, is dependent on the units
of measurement of the relevant variables: here, the units of time used to
measure T . Because this dependence is logarithmic, differential entropy can
become negative. In the present example, differential entropy would be zero
for T = 1 and negative for T < 1. This creates a problem for the determi-
nation of the MIB for a system, because in order to do so, it is necessary
to normalize EI(A↔B) by min {Hmax(A); Hmax(B)} (see ref. 7 and above).
This normalization is not well defined when the latter quantity is zero or
negative. In summary, a simple system characterized by continuous vari-
ables has either infinite Φ or requires an exogenous choice of measurement
units in order to allow calculation of a well-defined value for Φ.

As we mention in the text, it is expected that quantitative measures of
relevant complexity will vary according to the variables chosen to character-
ize the system, and also according to the units of measurements chosen for
these variables. These dependencies apply not only to Φ, but also to neural
complexity CN and to causal density cd. However, in contrast to Φ, neither
of these alternative measures has been proposed to reflect a fundamental
quantity that corresponds to the “amount” of subjective experience.
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Causal Density

In previous work, we have developed the use of Granger causality (11) for
the analysis of simulated neural systems (12, 13). As we mention in the main
text, the causal density (cd) of a network’s dynamics reflects the fraction of
interactions among nodes that are causally significant (12). cd is calculated as
α/(n(n−1)), where α is the total number of significant causal links observed,
and n is the number of elements in the network. Because cd is dependent only
on the proportion of interactions that are causally significant, it is bounded
in the range [0,1].

The contribution, or “magnitude” of a causally significant connection
can be estimated as the logarithm of the corresponding F statistic (see ref.
14 and main text). This allows the calculation of a “weighted” version of
causal density which takes into account the varying contributions of each
interaction. Weighted causal density, cdw, is calculated as:

cdw =
n−1∑
i=1

n∑
j=i+1

(f(ij)(τij) + f(ji)τji)),

where τij is the magnitude of the causal interaction from element i to element
j, and f(.) is equal to 1 if the interaction is statistically significant and 0 oth-
erwise. The two measures cd and cdw are complementary: cd emphasizes the
distribution of causal interactions throughout a network but is not sensitive
to their varying contributions; cdw takes into account these variations, but
its value for a network may in some cases be dominated by a small number
of highly significant interactions.

MATLAB (Natick, MA) routines for calculating causal density are provided
on the website www.nsi.edu/users/seth/.
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