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Glossary

• Thalamocortical system. The network of highly interconnected cortical areas and

thalamic nuclei that comprises a large part of the mammalian brain. The cortex

is the wrinkled surface of the brain, the thalamus is a small walnut-sized structure

at its center. An intact thalamocortical system is essential for normal conscious

experience.

• Theory of neuronal group selection (TNGS). A large-scale selectionist theory of

brain development and function with roots in evolutionary theory and immunology.

According to this theory, brain dynamics shape and are shaped by selection among

highly variant neuronal populations guided by value or salience.

• Neural correlate of consciousness. Patterns of activity in brain regions or groups

of neurons that have privileged status in the generation of conscious experience.
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Explanatory correlates are neural correlates that in addition account for key

properties of consciousness.

• Dynamic core. A distributed and continually shifting coalesence of patterns of

activity among neuronal groups within the thalamocortical system. According to

the TNGS, neural dynamics within the core are of high neural complexity by virtue

of which they give rise to conscious discriminations.

• Neural complexity. A measure of simultaneous functional segregation and functional

integration based on information theory. A system will have high neural complexity

if each of its components can take on many different states and if these states make

a difference to the rest of the system.

• Small-world networks. Networks in which most nodes are not neighbors of one

another, but most nodes can be reached from every other by a small number of hops

or steps. Small-world networks combine high clustering with short path lengths.

They can be readily identified in neuroanatomical data, and they are well suited to

generating dynamics of high neural complexity.

• Metastability. Dynamics that are characterized by segregating and integrating

influences in the temporal domain; metastable systems are neither totally stable

nor totally unstable.

1. Definition of the subject and its importance

How do conscious experiences, subjectivity, and apparent free will arise from their

biological substrates? In the mid 1600s Descartes formulated this question in a form

that has persisted ever since [1]. According to Cartesian dualism consciousness exists in

a non-physical mode, raising the difficult question of its relation to physical interactions

in the brain, body and environment. Even in the late twentieth century, consciousness

was considered by many to be outside the reach of natural science [2], to require strange

new physics [3], or even to be beyond human analysis altogether [4]. Over the last decade

however, there has been heightened interest in attacking the problem of consciousness

through scientific investigation [5, 6, 7, 8, 9]. Succeeding in this inquiry stands as a key

challenge for twenty-first century science.

Conventional approaches to the neurobiology of consciousness have emphasized

the search for so-called ‘neural correlates’: Activity within brain regions or groups of

neurons that has privileged status in the generation of conscious experience [10]. An

important outcome of this line of research has been that consciousness is closely tied to

neural activity in the thalamocortical system, a network of cortical areas and subcortical

nuclei that forms a large part of the vertebrate brain [11, 12]. Yet correlations by

themselves cannot supply explanations, they can only constrain them. A promising

avenue toward explanation is to focus on key properties of conscious experience and

to identify neural processes that can account for these properties; we can call these

processes explanatory correlates. This article clarifies some of the issues surrounding
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this approach and describes ways of characterizing quantitatively the complexity of

neural dynamics as a candidate explanatory correlate.

Complexity is a central concept within many branches of systems science and

more generally across physics, statistics, and biology; many quantitative measures have

been proposed and new candidates appear frequently [13, 14, 15]. The complexity

measures described in this article are distinguished by focusing on the extent to

which a system’s dynamics are differentiated while at the same time integrated.

This conception of complexity accounts for a fundamental feature of consciousness,

namely that every conscious experience is composed of many different distinguishable

components (differentiation) and that every conscious experience is a unified whole

(integration). According to the theoretical perspective described here, the combination

of these features endows consciousness with a discriminatory capability unmatched by

any other natural or artificial mechanism.

While the present focus is on consciousness and its underlying mechanisms, it is

likely that the measures of complexity we describe will find application not only in

neuroscience but also in a wide variety of natural and artificial systems.

2. Introduction

2.1. Consciousness

Consciousness is that which is lost when we fall into a dreamless sleep and returns when

we wake up again. As William James emphasized, consciousness is a process and not a

‘thing’ [5]. Conscious experiences have content such as colors, shapes, smells, thoughts,

emotions, inner speech, and the like, and are commonly accompanied by a sense of self

and a subjective perspective on the world (the ‘I’). The phenomenal aspects of conscious

content (the ‘redness’ of red, the ‘warmth’ of heat, etc.) are in philosophical terminology

called qualia [16].

It is important to distinguish between conscious level, which is a position on a

scale from brain-death and coma at one end to vivid wakefulness at the other, and

conscious content, which refers to composition of a conscious scene at a given (non-zero)

conscious level. Obviously, conscious level and conscious content are related inasmuch

as the range of possible conscious contents increases with conscious level (see Figure 1).

It is also possible to differentiate primary (sensory) consciousness from higher-order

(meta) consciousness [6, 17]. Primary consciousness refers to the presence of perceptual

conscious content (colors, shapes, odors, etc.). Higher-order consciousness (HOC) refers

to the fact that we are usually conscious of being conscious; that is, human conscious

contents can refer to ongoing primary conscious experiences. HOC is usually associated

with language and an explicit sense of selfhood [18] and good arguments can be made

that primary consciousness can exist in principle in the absence of HOC, and that in

many animals it probably does [19, 20].
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Figure 1. Conscious level is correlated with the range of possible conscious
contents. PVS = persistent vegetative state, MCS = minimally conscious state.
Adapted from [21].

2.2. Consciousness as discrimination

There are many aspects of consciousness that require explanation (see Table 1).

However, one especially salient aspect that has been too often overlooked is that every

conscious scene is both integrated and differentiated [22]. That is, every conscious scene

is experienced ‘all of a piece’, as unified, yet every conscious scene is also composed of

many different parts and is therefore one among a vast repertoire of possible experiences:

When you have a particular experience, you are distinguishing it from an enormous

number of alternative possibilities. On this view, conscious scenes reflect informative

discriminations in a very high dimensional space where the dimensions reflect all the

various modalities that comprise a conscious experience: sounds, smells, body signals,

thoughts, emotions, and so forth (Figure 2).

Because the above point is fundamental, it is useful to work through a simple

example (adapted from [22, 24]). Consider a blank rectangle that is alternately light

and dark (Figure 3A,B). Imagine that this rectangle is all there is, that you are seated in

front of it, and that you have been instructed to say “light” and “dark” as appropriate.

A simple light-sensitive diode is also in front of the screen and beeps whenever the

screen is light. Both you and the diode can perform the task easily, therefore both

you and the diode can discriminate these two states: lightness and darkness. But each

time the diode beeps, it is entering into one of a total of two possible states. It is

minimally differentiated. However, when you say “light” or “dark” you are reporting

one out of an enormous number of possible experiences. This point is emphasized by

considering a detailed image such as a photograph (Figure 3C). A conscious person will
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Figure 2. The figure shows an N -dimensional neural space corresponding to
the dynamic core (see Section 3). N is the number of neuronal groups that, at
any time, are part of the core, where N is normally very large (much larger than
is plotted). The appropriate neural reference space for the conscious experience
of ‘pure red’ would correspond to a discriminable point in the space (marked
by the red cross). Focal cortical damage can delete specific dimensions from
this space.

readily see this image as distinct both from the blank rectangle and from a scrambled

version of the same image (Figure 3D). The diode, however, would classify both images

and the rectangle as “light” (depending on its threshold), because it is insufficiently

differentiated to capture the differences between the three.

Consider now an idealized digital camera. The electronics inside such a camera

will enter a different state for the scrambled image than for the non-scrambled image;

indeed, there will be a distinct state for any particular image. A digital camera is

capable of much greater differentiation than the diode, but it is still not capable of

discrimination because it is minimally integrated. In idealized form it is a collection of

many independent light-sensitive diodes that must, to a good approximation, remain

functionally independent from each other. From the perspective of this camera the

image and the scrambled image are equivalent. We (as conscious organisms) can tell

the difference between the two is because we integrate the many different parts of the

image to form a coherent whole. We perceive each part of the image in relation to all

the other parts, and we perceive each image in relation to all other possible images and

possible conscious experiences that we may have. Successful discrimination therefore

requires both integration and differentiation, and it can be hypothesized that it is this

balance that yields the unity and diversity that is conscious experience.

Experimental evidence as well as intuition testifies to the fundamental nature

of integration and differentiation in consciousness. A striking example is provided

by so-called ‘split brain’ patients whose cortical hemispheres have been surgically

separated. When presented with two independent visuospatial memory tasks, one
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Table 1. Thirteen features of consciousness that require theoretical explanation. Items
1-6 are to some degree open to quantitative measurement whereas items 7-13 are more
readily understood through logical and qualitative analysis. This list is drawn from
[23] and a related list appears in [17].

1 Consciousness is accompanied by irregular, low-amplitude, fast (12-70 Hz) electrical brain
activity.

2 Consciousness is associated with activity within the thalamocortical complex, modulated
by activity in subcortical areas.

3 Consciousness involves distributed cortical activity related to conscious contents.
4 Conscious scenes are unitary.
5 Conscious scenes occur serially - only one conscious scene is experienced at a time.
6 Conscious scenes are metastable and reflect rapidly adaptive discriminations in perception

and memory.
7 Conscious scenes comprise a wide multimodal range of contents and involve multimodal

sensory binding.
8 Conscious scenes have a focus/fringe structure; focal conscious contents are modulated by

attention.
9 Consciousness is subjective and private, and is often attributed to an experiencing ‘self’.
10 Conscious experience is reportable by humans, verbally and non-verbally.
11 Consciousness accompanies various forms of learning. Even implicit learning initially

requires consciousness of stimuli from which regularities are unconsciously extracted.
12 Conscious scenes have an allocentric character. They show intentionality, yet are shaped

by egocentric frameworks.
13 Consciousness is a necessary aspect of decision making and adaptive planning.

to each hemisphere, they perform both very well [25]. In contrast, normal subjects

cannot avoid integrating the independent signals into a single conscious scene which

yields a much harder problem, and performance is correspondingly worse. In general,

normal subjects are unable to perform multiple tasks simultaneously if they both require

conscious input and they cannot make more than one conscious decision within the so-

called ‘psychological refractory period’, a short interval of a few hundred milliseconds

[26].

A loss of differentiation can be associated with the impoverishment of conscious

contents following brain trauma. In ‘minimally conscious’ or ‘persistent vegetative’

states the dynamical repertoire of the thalamocortical system is reduced to the extent

that adaptive behavioral responses are excluded [21]. In less dramatic cases focal

cortical lesions can delete specific conscious contents; for example, damage to cortical

region V4 can remove color dimensions from the space of possible experiences (cerebral

achromatopsia [27]; c.f., Figure 2). Reportable conscious experience is also eliminated

during generalized epileptic seizures and slow-wave sleep. Neural activity in these states

is again poorly differentiated, showing hypersynchrony (epilepsy) or a characteristic

synchronous ‘burst pause’ pattern (sleep) [22].
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Figure 3. A. A light-colored rectangle. B. A dark-colored rectangle. C. A
detailed image (the summit of Mount Whitney, California). D. A scrambled
version of the same image. A simple light-sensitive diode would be able to
discriminate A from B, but not among A, C, and D, since all these images
would appear as ’light’. An idealized digital camera would enter a different
state for each image A, B, C, and D, but would not discriminate between C
and D because the camera does not integrate the various parts of each image
to form a coherent whole. We can discriminate among all images because (i)
our brain is capable of sufficient differentiation to enter a distinct state for each
image, and (ii) our brain is capable of integrating the various parts of each
image to form a coherent whole.

3. Consciousness and complexity

3.1. The dynamic core hypothesis

The notion that consciousness arises from neural dynamics that are simultaneously

differentiated and integrated is expressed by the dynamic core hypothesis (DCH). This

hypothesis has two parts [22, 28]:

• A group of neurons can contribute directly to conscious experience only if it is

part of a distributed functional cluster (the dynamic core) that, through reentrant

interactions in the thalamocortical system, achieves high integration in hundreds

of milliseconds.

• To sustain conscious experience, it is essential that this functional cluster be highly

differentiated, as indicated by high values of complexity.

The concept of a functional cluster refers to a subset of a neural system with dynamics

that displays high statistical dependence internally and comparatively low statistical

dependence with elements outside the subset: A functional cluster ‘speaks mainly

to itself’ [29]. Conceiving of the dynamic core as a functional cluster implies that
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the boundaries of the neural substrates of consciousness are continually shifting, with

neuronal groups exiting and entering the core according to the flow of conscious contents

and the corresponding discriminations being made. Reentry refers to the recursive

exchange of signals among neural areas across massively parallel reciprocal connections

and which in the context of the DCH serve to bind the core together. It is important

to distinguish reentry from ‘feedback’ which refers to the recycling of an error signal

from an output to an input [30, 31]. The interpretation of complexity in the context of

the DCH is the subject of Section 4; for now we remark that it provides a quantitative

measure of neural dynamics that is maximized by simultaneous high differentiation and

high integration.

3.2. The theory of neuronal group selection

The DCH emerged from the theoretical framework provided by the ‘theory of neural

group selection’ (TNGS), otherwise known as ‘neural Darwinism’ [32, 33, 18]. This

section summarizes some of this essential background.

The TNGS is a biological perspective on brain processes with roots in evolutionary

theory and immunology. It suggests that brain development and dynamics are

selectionist in nature, and not instructionist, in contrast to computers which carry out

explicit symbolic instructions. Four aspects of selectionist processes are emphasized:

diversity, amplification/reproduction, selection, and degeneracy. Diversity in the brain

is reflected in highly variant populations of neuronal groups where each group consists

of hundreds to thousands of neurons of various types. This variation arises as a

result of developmental and epigenetic processes such as cell division, migration, and

axonal growth; subsequent strengthening and weakening of connections among cells

(synapses) via experience and behavior generates further diversity. Amplification and

selection in the brain are constrained by value, which reflects the salience of an

event and which can be positive or negative as determined by evolution and learning.

Value is mediated by diffuse ascending neural pathways originating, for example, in

dopaminergic, catecholaminergic, and cholinergic brainstem nuclei [34]. As a result of

value-dependent synaptic plasticity, connections among neuronal groups that support

adaptive outcomes are strengthened, and those that do not are weakened. Finally,

degeneracy emphasizes that in adaptive neural systems many structurally different

combinations can perform the same function and yield the same output. Degeneracy

is a key feature of many biological systems that endows them with adaptive flexibility

[35, 36]. It is conspicuously absent in artificial systems which are correspondingly fragile

(some artificial systems make use of ‘redundancy’ which differs from degeneracy in that

specific functional units are explicitly duplicated; redundancy provides the robustness

but not the flexibility of degeneracy).

According to the TNGS, primary consciousness arises when brain areas involved in

ongoing perception are linked via reentry to brain areas responsible for a value-based

memory of previous perceptual categorizations. On this view, primary consciousness
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manifests as a ‘remembered present’ (akin to William James’ ‘specious present’) by

which an animal is able to exploit adaptive links between immediate or imagined

circumstances and that animal’s previous history of value driven behavior (figure 4).

Figure 4. Primary consciousness and HOC in the TNGS. Signals related to
value and signals from the world are correlated and produce value-category
memories. These memories are linked by reentry to current perceptual
categorization, resulting in primary consciousness. Higher-order consciousness
depends on further reentry between value-category memory and current
categorization via areas involved in language production and comprehension.
Reprinted from [17].

The TNGS and the dynamic core hypothesis are closely related [18, 17]. They

share the general claim that the neural mechanisms underlying consciousness arose in

evolution for their ability to support multimodal discriminations in a high-dimensional

space. In addition, the reentrant interactions linking immediate perception to value-

category memory are precisely those that are suggested to bind together the dynamic

core. Finally, the vast diversity of neural groups is central both to the original TNGS in

providing a substrate for selection and to the DCH, in providing an essential component

of neural complexity.

3.3. Consciousness and the dynamic core

We can now summarize the DCH and its origin in the TNGS. Consciousness is entailed

by extensive reentrant interactions among neuronal populations in the thalamocortical

system, the so-called dynamic core. These interactions, which support high-dimensional

discriminations among states of the dynamic core, confer selective advantages on the

organisms possessing them by linking current perceptual categorizations to value-
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dependent memory. The high dimensionality of these discriminations is proposed to

be a direct consequence of the rich complexity of the participating neural repertoires.

Just as conscious scenes are both differentiated and integrated at the phenomenal level

to yield high-dimensional discriminations, so too are the reentrant dynamics of their

underlying neural mechanisms differentiated and integrated. Critically according to

the TNGS, conscious qualia are the high-dimensional discriminations entailed by this

balance of differentiation and integration as reflected in high complexity.

Any theory of consciousness must confront the question of whether conscious

experiences have causal effects in the physical world [37]. Responding positively reflects

common sense but it seems contrary to science to suggest non-physical causes for physical

events. Responding negatively respects the causal closure of the physical world but

appears to suggest that conscious experiences are ‘epiphenomenal’ and could in principle

be done without (an implication that may be particularly troubling for experiences

of ‘free will’ [38]). The TNGS addresses this quandary via the notion of entailment.

According to the TNGS, dynamic core processes entail particular conscious experiences

in the same way that the molecular structure of hemoglobin entails its particular

spectroscopic properties: it simply could not be otherwise [18]. Therefore, although

consciousness does not cause physical events, there exist particular physical causal chains

(the neural mechanisms underlying consciousness) that by necessity entail corresponding

conscious experiences: The conscious experience cannot be ‘done without’.

3.4. Measuring consciousness and complexity

Having covered basic elements of the DCH and its origin in the TNGS, we turn now to

the issue of measuring complexity in neural dynamics. To be useful in this context,

candidate measures should satisfy several constraints. We have already mentioned

that a suitable measure should reflect the fact that consciousness is a dynamic process

[5], not a thing or a capacity. This point is particularly important in light of the

observation that conscious scenes arise ultimately from transactions between organisms

and environments, and these transactions are fundamentally processes [39]. (This

characterization does not, however, exclude ‘off-line’ conscious scenes, for example

those experienced during dreaming, reverie, abstract thought, planning, or imagery). A

suitable measure should also take account of causal interactions within a neural system,

and between a neural system and its surroundings - i.e., bodies and environments.

Finally, to be of practical use, a suitable measure should also be computable for systems

composed of large numbers of neuronal elements.

Obviously, the quantitative characterization of complexity can constitute only one

aspect of a scientific theory of consciousness. This is true at both the neural level and

at the level of phenomenal experience. At the neural level, no single measure could

adequately describe the complexity of the underlying brain system (this would be akin,

for example, to claiming that the complex state of the economy could be described

by the gross domestic product alone). At the phenomenal level, conscious scenes have
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many diverse features [18, 19], several of which do not appear to be readily quantifiable

(see Table 1). These include subjectivity, the attribution of conscious experience to a

self, and intentionality, which reflects the observation that consciousness is largely about

events and objects. A critical issue nevertheless remains: how can measurable aspects

of the neural underpinnings of consciousness be characterized?

4. Neural complexity

A fundamental intuition about complexity is that a complex system is neither fully

ordered (e.g., a crystal) nor fully disordered (e.g., an ideal gas). This intuition is

compatible with the central theme of the DCH, namely that the neural dynamics within

the dynamic core should be both integrated and differentiated. The following definition

of neural complexity (CN), first proposed in 1994 [40], satisfies these intuitions and

provides a practical means for assessing the complexity of neural and other systems.

4.1. Mathematical definition

Consider a neural system X composed of N elements (these may be neurons, neuronal

groups, brain regions, etc.). A useful description of the dynamical connectivity of X is

given by the joint probability distribution of the activities of its elements. Assuming

that this function is Gaussian, this is equivalent to the covariance matrix of the

system’s dynamics COV(X). Importantly, COV(X) captures the total effect of all

(structural) connections within a system upon deviation from statistical independence

of the activities of a pair of elements, and not just the effect of any direct anatomical

connection linking them [41]. Given COV(X) and assuming that the dynamics of X are

covariance stationary (i.e., having unchanging mean and variance over time) the entropy

of the system H(X) is given by:

H(X) = 0.5ln((2πe)N |COV(X)|)

where |.| denotes the matrix determinant [42]. H(X) measures the overall degree of

statistical independence exhibited by the system; i.e., its degree of differentiation.

Knowing the entropy of a system allows calculation of the mutual information (MI)

between two systems, or between two subsets of a single system. The MI between

systems (or subsets) A and B measures the uncertainty about A that is accounted for

by the state of B and is defined as MI(A; B) = H(A) + H(B)−H(AB) [43].

The integration of X, I(X), measures the system’s overall deviation from statistical

independence. All elements in a highly integrated system are tightly coupled in their

activity. With xi denoting the i’th element of X, I(X) can be calculated as:

I(X) =
N∑

i=1

H(xi)−H(X).

I(X) is equivalent to the measure ‘multi-information’ which was introduced several

decades ago [44]. Having expressions for MI, H(X), and I(X) allows CN(X) to be
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expressed in two equivalent ways. First, CN(X) can be calculated by summing the

average MI between subsets of various sizes, for all possible bipartitions of the system:

CN(X) =
∑
k

〈MI(Xk
j ; X− Xk

j )〉, (1)

where Xk
j is the j’th bipartition of size k, and 〈.〉 is the average across index j (figure 5A).

CN(X) can also be expressed in terms of integration:

CN(X) =
∑
k

(
(k/n)I(X)− 〈I(Xk

j )〉
)
. (2)

where 〈I(Xk
j )〉 is the average integration of all subsets of size k. CN(X) will be high if

small subsets of the system show high statistical independence, but large subsets show

low statistical independence. In other words, CN(X) will be high if each of its subsets

can take on many different states and if these states make a difference to the rest of the

system.

Because the full CN(X) can be computationally expensive to calculate for large

systems, it is useful to have an approximation that considers only bipartitions consisting

of a single element and the rest of the system. There are three mathematically equivalent

ways of expressing this approximation, which is denoted C(X):

C(X) = H(X)−
N∑

k=1

H(xi|X− xi)

=
∑

i

MI(xi; X − xi)− I(X)

= (n− 1)I(X)− n〈I(X − xi)〉, (3)

where H(xi|X−xi) denotes the conditional entropy of each element xi given the entropy

of the rest of the system X − Xi. These three expressions are equivalent for all X,

whether they are linear or nonlinear, and neither CN(X) nor C(X) can adopt negative

values.

Recently, De Lucia et al [45] have developed a different approximation to CN(X)

which is calculated directly from topological network properties (i.e., without needing

covariance information). Their measure of ‘topological CN(X)’ is based on the eigenvalue

spectrum of the connectivity matrix of a network. While topological CN(X) offers

substantial savings in computational expense it carries the assumption that the network

is activated by independent Gaussian noise and therefore cannot be used to measure

neural complexity in conditions in which a network is coupled to inputs and outputs

(see Section 4.3 below).

4.2. Connectivity and complexity

There is a growing consensus that features of neuroanatomical organization impose

important constraints on the functional dynamics underlying cognition [47, 48].
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Figure 5. Measuring integration and differentiation in neural dynamics. A.
Neural complexity CN is calculated as the ensemble average mutual information
(MI) between subsets of a given size and their complement, summed over all
subset sizes (k) (adapted from Fig. 2 in [46]). Small circles represent neuronal
elements and red arrows indicate MI between subsets and the remainder of the
system. B. Information integration Φ is calculated as the effective information
(EI) across the ‘minimum information bipartition’ (MIB). To calculate EI for
a given bipartition (j), one subset is injected with maximally entropic activity
(orange stars) and MI across the partition is measured. C. Causal density cd is
calculated as the fraction of interactions that are causally significant according
to a mutlivariate Granger casuality analysis. A weighted (and unbounded)
version of causal density (cdw) can be calculated as the summed magnitudes of
all significant causal interactions (depicted schematically by arrow width).

Accordingly, several studies have addressed the relationship between structural

connectivity and neural complexity [49, 50, 51, 52, 53].

One useful approach employs evolutionary search procedures (genetic algorithms

[54]) to specify the connection structure of simple networks under various fitness (cost)

functions. A population of networks X1 . . . XN is initialized (‘generation zero’) with

each member having random connectivity. Each network Xi is then evaluated according

to a fitness function (for example, maximize C(X)) and those that score highly, as

compared to the other networks in the population, are subjected to a small amount

of random ‘mutation’ (i.e., small random changes in connectivity) and proceed to

the next ‘generation’. This procedure is repeated for many generations until the

population contains networks that score near-optimally on the fitness function, or until

the experimenter is satisfied that no further improvement is likely.

Sporns and colleagues applied a version of evolutionary search to find distinctive

structural motifs associated with H(X), I(X), and C(X) [49]. In this study, the initial

population consisted of 10 networks each with N = 32 nodes and K = 256 connections

and with fixed identical positive weights wij. The fitness function was determined by the
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value of H(X), I(X), or C(X) calculated from the covariance matrix of each network,

assuming activation by covariance-stationary Gaussian noise. In each case they found

that the resulting networks had distinctive structural features, as revealed both by

simple visual inspection and by analysis using a variety of graph-theoretic measures.

Networks optimized for H(X) contained mostly reciprocal connections without any

apparent local clustering. Networks optimized for I(X) were highly clustered (i.e.,

neighboring nodes connect mainly to each other [55]) and had a long characteristic

path length (i.e., a high mean separation between any two nodes in terms of number

of intervening nodes). Finally, networks optimized for C(X) had high clustering (and

high reciprocal connectivity) coupled with a short characteristic path length. Strikingly,

these networks were very similar to the so-called ‘small world’ class of network in which

dense groups of nodes are connected by a relatively small number of reciprocal ‘bridges’

[55]. These networks also had a high proportion of ‘cycles’ (routes through the network

that return to their starting point) and very low wiring lengths [49].

Sporns et al extended the above findings by calculating C(X) for networks reflecting

the known cortical connectivity of both the macaque visual cortex and the entire cat

cortex. In both cases covariance matrices were obtained by assuming linear dynamics,

equal connection strengths, and activation by covariance-stationary Gaussian noise.

They found that both networks gave rise to high C(X) as compared to random networks

with equivalent distributions of nodes and connections. Indeed, the networks seemed

to be near-optimal for C(X) because random rewiring of connections led in almost all

cases to a reduction in C(X) [49].

In a separate study using a nonlinear neuronal network model including excitatory

and inhibitory units, Sporns showed that regimes of high C(X) coincided with ‘mixed’

connection patterns consisting of both local and long-range connections [56]. This

result lines up with the previous study [49] in suggesting an association between small-

world properties and complex dynamics. In addition, Sporns and Kötter found that

networks optimized for the number of functional ‘motifs’ (small repeating patterns)

had high C(X) but those optimized for structural motifs did not [57] suggesting that

high complexity reflects the presence of large functional repertoires. Finally, C(X)

seems to associate with fractal patterning, but not in a simple sense that fractal

networks are optimal for complexity [58, 53]. Rather, fractality seems to be one

among several structural attributes that contribute to the emergence of small-world

features and complex dynamics. Together, these results indicate that only certain

classes of network are able to support dynamics that combine functional integration

with functional segregation and that these networks resemble in several ways those

found in neuroanatomical systems.

4.3. Complexity and behavior

An important claim within the DCH is that complex dynamics provide adaptive

advantages during behavior. To test this claim, Seth and Edelman examined examined
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the relationship between behavior and neural complexity in a simple agent-based

computational model [59]. They evolved networks similar to those in [49] (N=32,

K=256) by selecting for their ability to guide target fixation behavior in a simulation

model requiring coordination of ‘head’ and ‘eye’ movements (figure 6). Networks were

evolved in both ‘simple’ and ‘complex’ environments where environmental complexity

was reflected by unpredictable target movement and by variation in parameters affecting

head and eye movement. Consistent with the DCH, networks supporting target fixation

in rich environments showed higher C(X) than their counterparts adapted to simple

environments. This was true both for dynamics exhibited during behavior in the

corresponding environments (‘interactive’ complexity), and for dynamics evoked with

Gaussian noise (‘intrinsic’ complexity).

Figure 6. Target fixation model. A. The agent controls head-direction (H) and
eye-direction (not shown) in order to move a gaze point (G) towards a target
(T). B. Neural network controller. The 6 input neurons are shown on the left
and the 4 output neurons on the right. Each pair of inputs (v,e,h) responds to
x, y displacements: ‘v’ neurons to displacements of G from T, ‘h’ neurons to
displacements of H from an arbitrary origin (‘straight ahead’), and ‘e’ neurons
to displacements of H from the eye-direction. The four output neurons control
head direction (H) and eye-direction relative to the head (H). For clarity only
4 of the 22 interneurons are shown. Thin grey lines show synaptic connections.
Only a subset of the 256 connections are shown. Adapted from [59].

Sporns and Lungarella explored the relationship between C(X) and behavior in a

different way [60]. As in [59], networks acted as neural controllers during performance

of a task (in this case, control of a simulated arm to reach for a target). However,

instead of evolving for successful behavior, networks were evolved directly for high

C(X). Strikingly, selecting for high C(X) led to networks that were able to perform

the task, even though performance on the task had not been explicitly selected for.

Finally, Lungarella and Sporns asked how C(X) depends on sensorimotor coupling by

comparing neural dynamics of a robotic sensory array in two conditions: (i) unperturbed

foveation behavior, and (ii) decoupling of sensory input and motor output via ‘playing

back’ previously recorded motor activity [61]. They found significantly higher C(X)

when sensorimotor coupling was maintained.

Taken together, the above results suggest a strong link between high neural
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complexity and flexible, adaptive behavior. Of course, in none of these studies is any

claim made that the corresponding networks are in any sense conscious.

4.4. Extensions and limitations

The concept of neural complexity has been extended to characterize the selectional

responses of neural systems to inputs in terms of ‘matching’ complexity CM [62]. CM

measures how well the intrinsic correlations within a neural system fit the statistical

structure of a sensory stimulus. Simulations show that CM is high when intrinsic

connectivity is modified so as to differentially amplify those intrinsic correlations that

are enhanced by sensory input, possibly reflecting the capacity of a neurally complex

system to ‘go beyond the information given’ in a stimulus [62]. Despite this possibility

CM has not been investigated as thoroughly as has CN .

CN has several limitations. In its full form it is computationally prohibitive to

calculate for large networks, but in approximation it is less satisfying as a measure. Also,

CN does not reflect complexity in the temporal domain since functional connections are

analyzed at zero-lag [23]. Finally, CN does not take into account directed (causal)

dynamical interactions for the simple reason that MI is a symmetric measure. This last

point is addressed by the alternative measures described below.

5. Information integration

The most prominent alternative to CN is ‘information integration’ (Φ) [63, 24]. Unlike

CN , Φ reflects causal interactions because it is based on ‘effective information’ (EI), a

directed version of MI that relies on the replacement of the outputs of different subsets

of the studied system with maximum entropy signals.

5.1. Mathematical definition

Φ is defined as the effective information across the informational ‘weakest-link’ of a

system, the so-called minimum information bipartition (MIB; figure 5B). It is calculated

by the following procedure [63].

Given a system of N elements, identify all possible bipartitions of the system. For

each bipartition A|B, replace the outputs from A by uncorrelated noise (i.e., maximally

entropic activity), and measure how differentiated are the responses of its complement

(B). This is the effective information (EI) between A and B:

EI(A→B) = MI(AHmax; B),

where MI(AHmax; B) is the mutual information between A and B when the outputs

from A have maximal entropy. EI(A→B) measures the capacity for causal influence

of partition A on its complement B (i.e., all possible effects of A on B). Given that

EI(A→B) and EI(B→A) are not necessarily equal, one can define:

EI(A↔B) = EI(A→B) + EI(B→A).
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The minimum information bipartition (MIB) is the bipartition for which the normalized

EI(A↔B) is lowest. Normalization is accomplished by dividing EI(A↔B) by

min {Hmax(A); Hmax(B)}, so that effective information is bounded by the maximum

entropy available. The resulting MIB corresponds to the informational ‘weakest link’ of

the system, and the Φ value of the system is the non-normalized EI(A↔B) across the

MIB.

A further stage of analysis has been described [63] in which a system can be

decomposed into ‘complexes’ by calculating Φ for different subsets of elements; a complex

is a subset having Φ > 0 that is not included in a larger subset with higher Φ. For a

given system, the complex with the maximum value of Φ is called the ‘main complex’.

5.2. Information integration, connectivity, and complexity

As with neural complexity it is useful to explore what kinds of network structure lead

to high values of Φ. Because of computational constraints only comparatively small

networks have been investigated for their ability to generate high Φ (i.e., N = 8, K = 16

as opposed to N = 32, K = 256 as in [49]). In an initial study, networks optimized for

Φ had highly heterogenous connectivity patterns with no two elements having the same

sets of inputs and outputs [63]. At the same time, all nodes tended to emit and receive

the same number of connections. These two properties arguably subserve functional

segregation and integration respectively [63].

Although both Φ and CN depend on a combination of functional integration

and segregation, they are sensitive to different aspects of network dynamics. CN

reflects an average measure of integration that, unlike Φ, does not require heterogenous

connectivity. On the other hand, unlike CN , Φ is determined by the value of an

informational meausure (EI) across only a single bipartition (the MIB) and is not

modified by dynamical transactions across the remainder of the network. Finally, as

mentioned above, Φ but not CN is sensitive to causality.

5.3. Limitations and extensions

As with CN , Φ does not measure complexity in the temporal domain [23]. There are

also substantial limitations attending measurement of Φ for nontrivial systems. First,

it is not possible in general to replace the outputs of arbitrary subsets of neural systems

with uncorrelated noise. An alternative version of Φ can be envisaged in which ‘transfer

entropy’ (TE) [64], a directed version of MI, is substituted for EI. TE can be calculated

from the dynamics generated by a neural system during behavior and therefore does not

require arbitrary perturbation of a system; it measures the actual causal influence across

partitions whereas EI measures the capacity for causal influence. However, a version

of Φ based on TE does not in general find the informational ‘weakest link’ (MIB) of a

system since the MIB depends on capacity and not on transient dynamics.

Second, unlike CN there is presently no well-defined approximation for Φ that

removes the need to examine all possible bipartitions of a system. However, it may be
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possible to make use of some informal heuristics. For example, bipartitions for which

the normalized value of EI will be at a minimum will be most often those that cut the

system in two halves, i.e., midpartitions [63]. Similarly, a representative rather than

exhaustive number of perturbations may be sufficient to obtain at least an estimated

value of Φ [63].

5.4. The information integration theory of consciousness

Φ occupies a central place in the ‘information integration theory of consciousness’ (IITC,

[24]). According to this theory, consciousness is information integration as measured

by Φ. The nature of the conscious content in a system with high Φ is determined by

the particular informational relationships within the main complex (the complex with

the highest Φ). While there are many similarities between the DCH and the IITC,

most obviously that both make strong appeal to a measure of complexity, there are also

important differences of which we emphasize two:

(i) Because Φ measures the capacity for information integration, it does not depend on

neural activity per se. The IITC predicts that a brain where no neurons were active,

but in which they were potentially able to react, would be conscious (perhaps of

nothing). Similarly, a brain in which each neuron were stimulated to fire as an

exact replica of your brain, but in which synaptic interactions had been blocked,

would not be conscious [24]. The DCH has neither of these implications.

(ii) On the IITC Φ is an adequate measure of the ‘quantity’ of consciousness, therefore

any system (biological or artificial) with sufficiently high Φ would necessarily be

conscious. According to the DCH, high CN is necessary but not sufficient for

consciousness.

Point (ii) is particularly important in view of the finding that an arbitrarily high Φ

can be obtained by a system as simple as a Hopfield network, which is a fully connected

network with simple binary neuronal elements [23]. By choosing the synaptic strengths

according to an exponential rule it can be shown that the corresponding Φ value scales

linearly with network size, such that Φ(X) = N bits for a network X of size N nodes.

On the IITC this result leads to the counterintuitive conclusion that a sufficiently large

Hopfield network will be conscious. Another challenge for the IITC in this context is

the fact that the probability distributions determining entropy values (and therefore by

extension Φ values) depend on subjective decisions regarding the spatial and temporal

granularity with which the variables in a system are measured [[23, 65] but see [24]].

6. Causal density

A balance between dynamical integration and differentiation is likely to involve dense

networks of causal interactions among neuronal elements. Causal density (cd) is a

measure of causal interactivity that captures both differentiated and integrated aspects
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of these interactions [66, 23]. It differs from CN by detecting causal interactions, differs

from Φ by being sensitive to dynamical interactions across the whole network, and

differs from both by being based not on information theory but instead on multivariate

autoregressive modelling.

6.1. Mathematical definition

Causal density (cd) measures the fraction of interactions among neuronal elements in

a network that are causally significant (figure 5C). It can be calculated by applying

‘Granger causality’ [67, 68], a statistical concept of causality that is based on prediction:

If a signal x1 causes a signal x2, then past values of x1 should contain information that

helps predict x2 above and beyond the information contained in past values of x2 alone

[67]. In practice, Granger causality can be tested using multivariate regression modelling

[69]. For example, suppose that the temporal dynamics of two time series, x1(t) and

x2(t) (both of length T ), can be described by a bivariate autoregressive model:

x1(t) =
p∑

j=1

A11,jx1(t− j) +
p∑

j=1

A12,jx2(t− j) + ξ1(t)

x2(t) =
p∑

j=1

A21,jx1(t− j) +
p∑

j=1

A22,jx2(t− j) + ξ2(t) (4)

where p is the maximum number of lagged observations included in the model (the

model order, p < T ), A contains the coefficients of the model, and ξ1, ξ2 are the residuals

(prediction errors) for each time series. If the variance of ξ1 (or ξ2) is reduced by the

inclusion of the x2 (or x1) terms in the first (or second) equation, then it is said that x2

(or x1) G-causes x1 (or x2). In other words, x1 G-causes x2 if the coefficients in A12 are

jointly significantly different from zero. This relationship can be tested by performing an

F-test on the null hypothesis that A12,j = 0, given assumptions of covariance stationarity

on x1 and x2. The magnitude of a significant interaction can be measured either by the

logarithm of the F-statistic [70] or, more simply, by the log ratio of the prediction error

variances for the restricted (R) and unrestricted (U) models:

gc2→1 = log
var(ξ1R(12))

var(ξ1U)
if gc2→1 is significant,

= 0 otherwise,

where ξ1R(12) is derived from the model omitting the A12,j (for all j) coefficients in

equation (4) and ξ1U is derived from the full model.

Importantly, G-causality is easy to generalize to the multivariate case in which

the G-causality of x1 is tested in the context of multiple variables x2 . . . xN . In this

case, x2 G-causes x1 if knowing x2 reduces the variance in x1’s prediction error when

the activities of all other variables x3 . . . xn are also included in the regression model.
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Both bivariate and multivariate G-causality have been usefully applied to characterizing

causal interactions in simulated [71, 72] and biological [73] neural systems.

Following a Granger causality analysis, both normalized (cd) and non-normalized

(cdw) versions of causal density of a network X with N nodes can be calculated as:

cd(X) =
α

N(N − 1)
, cdw(X) =

1

N(N − 1)

N∑
i=1

N∑
j=1

gcj→i

where α is the total number of significant causal interactions and N(N − 1). While

normalized causal density is bounded to the range [0,1] the non-normalized version is

unbounded.

High causal density indicates that elements within a system are both globally

coordinated in their activity (in order to be useful for predicting each other’s activity)

and at the same time dynamically distinct (reflecting the fact that different elements

contribute in different ways to these predictions). Therefore, as with both CN and Φ,

cd reflects both functional integration and functional segregation in network dynamics.

6.2. Conditions leading to high causal density

In terms of connectivity, computational models show that both fully connected networks

(having near-identical dynamics at each node) and a fully disconnected networks (having

independent dynamics at each node) have low cd and cdw; by contrast, randomly

connected networks have much higher values [71]. More detailed connectivity studies

remain to be conducted.

An initial attempt to analyze behavioral conditions leading to high causal density

was made by [66] revisiting the model of target fixation described previously [59].

To recapitulate, in this model networks were evolved in both ‘simple’ and ‘complex’

environments where environmental complexity was reflected by unpredictable target

movement and by variation in parameters affecting head and eye movement (Figure 6).

Causal density in this model was calculated from first-order differenced time series of

the ten sensorimotor neurons and it was found that highest values of causal density

occurred for networks evolved and tested in the ‘complex’ environments. These results

mirrored those obtained with CN , indicating an association between a high value of a

complexity measure and adaptive behavior in a richly structured environment.

6.3. Extensions and limitations of causal density

A practical problem for calculating causal density is that multivariate regression models

become difficult to estimate accurately as the number of variables (i.e., network

elements) increases. For a network of N elements, the total number of parameters in

the corresponding multivariate model grows as pN2, and the number of parameters

to be estimated for any single time series grows linearly (as pN), where p is the

model order (equation 4). We note that these dependencies are much lower than the

factorial dependency associated with Φ and CN , and may therefore may be more readily
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circumvented. One possible approach may involve the use of Bayesian methods for

limiting the number of model parameters via the introduction of prior constraints on

significant interactions [74]. In neural systems, such prior constraints may be derived,

for example, on the basis of known neuroanatomy or by anatomically-based clustering

procedures.

Several other extensions to causal density are suggested by enhancements to the

statistical implementation of Granger causality:

• Nonlinear G-causality methods based, for example, on radial-basis-function kernels

allow causal density to detect both linear and nonlinear causal interactions [75, 76].

• Partial G-causality (based on partial coherence) enhances robustness to common

input from unobserved variables, supporting more accurate estimates of causal

density in systems which cannot be fully observed [77].

• G-causality has a frequency-dependent interpretation [70, 73] allowing causal

density to be assessed in specific frequency bands.

6.4. Causal density and consciousness

Although causal density is not attached to any particular theory of consciousness, it

aligns closely with the DCH because it is inherently a measure of process rather than

capacity. Causal density cannot be inferred from network anatomy alone, but must

be calculated on the basis of explicit time series representing the dynamic activities of

network elements during behavior. It also depends on all causal interactions within the

system, and not just on those interactions across a single bipartition, as is the case for Φ.

Finally, causal density incorporates the temporal dimension more naturally than is the

case for either CN or Φ; while the latter measure functional interactions at zero-lag only,

causal density incorporates multiple time lags as determined by the order parameter p

(equation 4).

The foregoing descriptions make clear that although existing formal measures may

have heuristic value in identifying functional integration and functional segregation in

neural dynamics, they remain inadequate in varying degrees. CN can reflect process,

can be computed for large systems in approximation, but does not capture causal

interactions. Φ captures causal interactions, is infeasible to compute for large neural

systems, and can be shown to grow without bound even for certain simple networks.

Also, Φ is a measure of capacity rather than process but this is a deliberate feature of

the IITC. cd reflects all causal interactions within a system and is explicitly a measure

of process, but it also is difficult to compute for large systems. An additional and

important practical limitation of CN , Φ, and cd is that they apply only to statistically

stationary dynamics.
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7. Empirical evidence

We turn now to empirical evidence relevant to the DCH. Much of this evidence

comes from patients with focal brain lesions and neuroimaging of healthy subjects

using functional magnetic resonance imaging (fMRI), electroencephelography (EEG)

and magnetoencephalography (MEG). Although current experimental methods are not

sufficiently powerful to confirm or refute the DCH, their application, separately and in

combination, yields much useful information. A detailed review appears in [17]; below

we select some pertinent features.

7.1. Involvement of the thalamocortical system

A wealth of experimental evidence attests to thalamocortical involvement in

consciousness, as demonstrated by both clinical studies and by experiments using

normal subjects. Clinical studies show that damage to non-specific (intralaminar)

thalamic nuclei can abolish consciousness in toto [78], whereas damage to cortical regions

often deletes specific conscious features such as color vision, visual motion, conscious

experiences of objects and faces, and the like [79]. No other brain structures show these

distinctive effects when damaged.

Conscious functions in normal subjects are usefully studied by comparison with

closely matched controls who perform the function unconsciously, an approach known

as ‘contrastive analysis’ [80, 81, 82]. An emerging consensus among contrastive studies

is that conscious contents correspond to widespread thalamocortical activation as

compared to unconscious controls [81]. For example, Dehaene and colleagues have shown

widespread fMRI activation peaks in parietal, prefrontal, and other cortical regions

for conscious perception of visual words, as compared to unconscious inputs which

activated mainly primary visual cortex [83]. Along similar lines, a recent fMRI study of

motor sequence learning showed a shift from widespread cortical involvement during

early learning (when conscious attention is required) to predominantly subcortical

involvement during later learning phases (when skill production is comparatively

‘automatic’) [84].

7.2. Dynamical correlates: Binocular rivalry

A classical example of contrastive analysis makes use of the phenomenon of binocular

rivalry, in which different images are projected to each eye [85]. Because of the

integrative nature of consciousness these images, if sufficiently different, are not

combined into a single composite; rather, conscious experience alternates between

them. Srinivasan and colleagues used magnetoencephalography (MEG) to measure

brain responses to flickering visual stimuli under rivalrous conditions [86, 87]. A vertical

grating flickering at one frequency was presented to one eye and a horizontal grating

flickering at another frequency was presented to the other; these different frequencies

allowed stimulus-specific brain responses to be isolated in the neuromagnetic signal, a
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technique known as ‘frequency tagging’ [88]. As expected for such stimuli, subjects

perceived only one grating at any given time. It was found that the power of the

frequency-tag of a stimulus was higher by 30-60% across much of the cortical surface

when that stimulus was perceptually dominant compared to when it was perceptually

suppressed. Moreover, there was a large increase in coherence among distant brain

regions, consistent with the idea that conscious perception is associated with widespread

integration of neural dynamics mediated by reentry. Although this coherence increase is

not a direct test of the DCH it is consistent with the theory and underscores the value

of looking for dynamical correlates of consciousness.

Cosmelli and colleagues have used a similar paradigm to show that development

of a perceptual dominance period arises in neural terms as an extended dynamical

process involving the propagation of activity throughout a distributed brain network

beginning in occipital regions and extending into more frontal regions [89]. Such a

‘wave of consciousness’ might reflect underlying integrative processes that lead to the

formation of a dynamic core [90]. Chen and colleagues modified the rivalry paradigm so

that subjects saw both gratings with both eyes but had to differentially pay attention

to one or the other [91]. Power increases but not coherence increases were found for the

attended stimulus, suggesting that attention may not involve the same global integrative

processes implicated in consciousness. Finally, Srinivasan has shown that coherence

increases during dominance are due partly to increased phase locking to the external

stimulus and partly to increased synchrony among intrinsic network elements, again in

line with the idea that consciousness involves coalescence of a distributed functional

cluster within the brain [92].

7.3. Sleeping, waking, and anesthesia

Binocular rivalry involves constant conscious level and changing conscious content.

Experimental evidence relevant to conscious level comes from studies involving

transitions between sleeping and waking, anesthesia, epileptic absence seizures and

the like. Many studies have tracked changes in endogenous activity across these

various transitions but direct assessments of specific complexity measures are mostly

lacking. Nonetheless, current findings are broadly consistent with the DCH. As noted

in Section 2.2, absence seizures and slow-wave sleep (but not rapid-eye-movement

sleep) are characterized by hypersynchronous neural activity that may correspond to

reduced functional segregation [22]. Anesthesia has particular promise for further

experimental study because global anesthetic states can be induced via a wide variety

of pharamacological agents having diverse physiological effects. Moreover, proposed

unifying frameworks, such as Mashour’s ‘cognitive unbinding’ theory [93], share with the

DCH the idea that loss of consciousness can arise from diminished functional integration.

In line with Mashour’s proposal, John and colleagues have observed at anesthetic loss-

of-consciousness (i) functional disconnection along the rostrocaudal (front-to-back) axis

and across hemispheres (measured by coherence changes), and (ii) domination of the
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EEG power spectrum by strongly anteriorized low frequencies [94].

The development of transcranial magnetic stimulation (TMS) has opened the

possibility of studying effective (causal) connectivity in the brain. TMS noninvasively

disrupts specific cortical regions by localized electromagnetic induction. Massimini and

colleagues combined high-density EEG with TMS to test whether effective connectivity

among distant brain regions is diminished during sleep [95]. Applying a TMS pulse

to premotor cortex during quiet wakefulness led to a sequence of waves propagating

throughout cortex, but this widespread propagation was mostly absent during non-

rapid eye movement (slow wave) sleep. While these results do not allow calculation of

any specific complexity measure they are consistent with both the IITC and the DCH.

In summary, it is clear that enhanced experimental and analytical methods are

needed in order to test adequately whether CN (or other specific measures) are

modulated as predicted by the DCH. Initial attempts to calculate CN directly from

neural dynamics have not been successful (see [96] for a review) although a link to

complexity is suggested by the discovery of ‘small-world’ networks in functional brain

dynamics [97, 96].

8. Related theoretical proposals

8.1. Dynamical systems theory and metastability

We have already mentioned that the measures of complexity discussed in this article

apply only to statistically stationary dynamics (Section 6.4). This restriction contrasts

sharply with an alternative tradition in theoretical neuroscience which focuses on non-

stationary brain dynamics and which emphasizes the tools of dynamical systems theory.

This alternative tradition can be traced back to early suggestions of Turing [98] and

Ashby [99] and was concisely expressed by Katchalsky in 1974: “ . . . waves, oscillations,

macrostates emerging out of cooperative processes, sudden transitions, patterning, etc.,

seem made to order to assist in the understanding of integrative processes in the nervous

system” [100]. More recently the dynamical systems approach has been championed in

neuroscience by, among others, Haken [101] under the rubric ‘coordination dynamics’

and Freeman who has produced a steady stream of papers exploring dynamical principles

in brain activity [102, 103]. Valuable reviews of work in this tradition can be found in

[104, 105, 106].

A key concept in the dynamical systems approach is ‘metastability’ which describes

dynamics that are “distinguished by a balanced interplay of integrating and segregating

influences” [107] (p.26). While this definition is obviously similar to the intuition driving

neural complexity, metastability has been fleshed out, not in the concepts of information

theory or time-series analysis, but instead in the language of attractor dynamics. A

dynamical system inhabits a metastable regime when there are no stable fixed points

but only partial attraction to certain phase relationships among the system variables.

At the level of neural dynamics metastability may reflect the ongoing creation and
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dissolution of neuronal assemblies across distributed brain regions [107, 105, 108]. A now

classical experimental example of metastability comes from a study in which subjects

were asked to flex a finger in response to a periodic tone, initially in a syncopated manner

[107]. As the frequency of the tone increases the syncopated response becomes harder to

maintain until a critical point is reached at which the subject switches to a synchronous

mode of response. Strikingly, this behavioral phase transition is accompanied by a

corresponding transition in the patterning of neuromagnetic cortical signals. At the

critical point, where there is partial attraction to both syncopated and synchronous

response modes, both behavioral and neural dynamics are dominated by metastability.

For other evidence of metastability in the brain see [109].

Metastability characterizes an important aspect of conscious experience, namely

that conscious events are rapidly adaptive and fleeting [17]. Consciousness is remarkable

for its present-centeredness [6, 5]. Immediate experience of the sensory world may last

at most a few seconds and our fleeting cognitive present is surely less than half a minute

in duration. This present-centeredness has adaptive value for an organism by allowing

time enough to recruit a broad network of task-related neural resources while permitting

neural dynamics to evolve responses to subsequent events. Thus, conscious experience

can be described by an interplay of segregating and integrating influences in both the

temporal (metastability) and spatial (complexity) domains. A key theoretical challenge

is to work out in greater detail the relationship between these two concepts.

8.2. Global workspace theory

Beginning in 1988 [80] Baars has developed a cognitive theory of consciousness under

the rubric ‘global workspace (GW) theory’ [80, 81, 110]. The cornerstone of GW theory

is the idea that consciousness involves a central resource (the GW) which enables

distribution of signals among numerous otherwise informationally encapsulated and

functionally independent specialized processors. GW theory states that mental content

becomes conscious mental content when it gains access to the GW such that it can

influence a large part of the brain and a correspondingly wide range of behaviors. A

key aspect of GW theory is that conscious contents unfold in an integrated, serial

manner but are the product of massively parallel processing among the specialized

processors. The integrated states of the GW follow each other in a meaningful but

complex progression that depends on multiple separate processes, each of which might

have something of value to add to the ongoing constitution of the GW. Although these

notions are compatible the DCH, they do not by themselves specify dynamical properties

to the same level of detail.

A dynamical approach to GW theory has been pursued by Wallace [112] and

separately by Dehaene, Changeux and colleagues [113, 111, 114]. Wallace adopts a

graph-theoretic perspective proposing that the GW emerges as a ‘giant component’

among transient collections of otherwise unconscious processors. The formation of a

giant component in graph theory denotes a phase transition at which multiple sub-
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Figure 7. A schematic of the neuronal global workspace. A central global
workspace, constituted by long-range cortico-cortical connections, assimilates
other processes according to their salience. Other automatically activated
processors do not enter the global workspace. Adapted from [111].

networks coalesce to form a large network including the majority of network nodes

[115]. Dehaene and colleagues have built a series of computational models inspired by

GW theory, to account for a variety of psychological phenomena including ‘attentional

blink’ [111], ‘inattentional blindness’ [114], and effortful cognitive tasks [113]. These

models are based on the concept of a ‘neuronal global workspace’ in which sensory

stimuli mobilize excitatory neurons with long-range cortico-cortical axons, leading to the

genesis of global activity patterns among so-called ‘workspace neurons’ (Figure 7). This

model, and that of Wallace, predicts that consciousness is ‘all or nothing’ - i.e., a gradual

increase in stimulus visibility should be accompanied by a sudden transition (ignition)

of the neuronal GW into a corresponding activity pattern. As with Wallace, although

some dynamic properties of the neuronal GW have been worked out and are compatible

with the DCH, a rigorous account of how the model relates to neural complexity has

not been attempted.

8.3. Neuronal synchrony and neuronal coalitions

The association of neural synchrony with consciousness arose from its proposed role

as a mechanism for solving the so-called ‘binding problem’, which in general terms

refers to problem of coordinating functionally segregated brain regions. The binding

problem is most salient in visual perception for which the functional and anatomical

segregation of visual cortex contrasts sharply with the unity of a visual scene. Since

the 1980s a succession of authors have proposed that the binding problem is solved

via neuronal synchronization [116, 117] and both experimental evidence [118, 119] and

computational models have borne out the plausibility of this mechanism [31]. In the

1990s, starting with an early paper by Crick and Koch [7], this proposal grew into the
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hypothesis that consciousness itself is generated by transient synchronization among

widely distributed neuronal assemblies, with particular emphasis on oscillations in the

gamma band (∼40 Hz) [120, 39]. In support of this idea we have already seen that

conscious perception correlates with increased synchrony of a (non-gamma-band) visual

‘frequency tag’ [87], and several studies have reported associations between gamma-

band synchrony and consciousness [121, 122, 123]. However, synchrony-based theories

of binding (and by extension consciousness) remain controversial [124] and there is not

yet evidence that disruptions of gamma-band synchrony lead to disruptions of conscious

contents [12].

From the perspective of the DCH a deeper concern with the synchrony hypothesis

is that it accounts only for integration, and not for the combination of integration

and differentiation that yields the discriminatory power of consciousness. In a recent

position paper [125], Crick and Koch reversed their previous support for gamma-band

synchrony as a sufficient mechanism for consciousness, favoring instead the notion of

competition among ‘coalitions’ of neurons in which winning coalitions determine the

contents of consciousness at a given time. Such neuronal coalitions bear similarities

to the decades-old notion of Hebbian assemblies [126] on a very large and dynamic

scale. They also suggest that unconscious processing may consist largely in feed-forward

processing whereas consciousness may involve standing waves created by bidirectional

signal propagation, a proposal advanced as well by Lamme [127]. Crick and Koch note

that the ‘coalition’ concept is similar to the dynamic core concept [125] although lacking

in the detailed formal specification of the latter.

A possible role for gamma-band synchrony in both the DCH and in Crick and

Koch’s framework is that it may facilitate the formation but not the ongoing activity

of the core (or a coalition) [125]. In this light it is suggestive that correlations between

gamma-band synchrony and consciousness tend to occur at early stages of conscious

perception [121, 122].

9. Outlook

Scientific accounts of consciousness continue to confront the so-called ‘hard problem’

of how subjective, phenomenal experiences can arise from ‘mere’ physical interactions

in brains, bodies, and environments [128, 129]. It is possible that new concepts

will be required to overcome this apparent conceptual gap [130]. It is equally likely

that increasing knowledge of the mechanisms underlying consciousness will lead these

philosophical conundrums to fade away, unless they have empirical consequences

[81, 125]. In short, to expect a scientific resolution to the ‘hard problem’ as it is

presently conceived may be to misunderstand the role of science in explaining nature. A

scientific theory cannot presume to replicate the experience that it describes or explains;

a theory of a hurricane is not a hurricane [18]. If the phenomenal aspect of experience is

irreducible, so is the fact that physics has not explained why there is something rather

than nothing, and this ontological limit has not prevented physics from laying bare many
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mysteries of the universe.

The approach described in this article is one of developing explanatory correlates

of consciousness, namely properties of neural dynamics that are experimentally testable

and that account for key properties of conscious experience. Thanks to accelerating

progress in experimental techniques and increased attention to theory, the outlook for

this approach is healthy. We close by suggesting some key areas for further study:

• Development of a large-scale model of a dynamic core. Although progress

in large scale neural network modelling has been rapid [131], we currently lack a

sufficiently detailed model of environmentally-coupled thalamocortical interactions

needed to test the mechanistic plausibility of the DCH. Having such a model should

also allow substantive connections to be drawn between the DCH and GW theory.

• Development of new experimental methods. New methods are needed

to track neuronal responses at sufficient spatio-temporal resolutions to support

accurate estimation of CN and other complexity measures during different conscious

and unconscious conditions. Among current methods fMRI has poor time resolution

and measures neural activity indirectly, while MEG/EEG lacks spatial acuity and

is unable to record details of thalamic responses.

• Complexity and metastability. New theory is needed to relate the class of

complexity measures described in this article to metastability, which analyzes

functional segregation and integration in the temporal domain.

• Emergence and ‘downward causality’. New theory is also needed to better

understand how global dynamical states arise from their basal interactions and

how these global states can constrain, enslave, or otherwise affect properties at the

basal level [39]. Applied to consciousness and to cognitive states in general, such

‘downward causality’ can suggest functional roles and may even help reconcile the

phenomenology of free-will with physiological fact.
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