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Abstract
The brain is a vastly complex dynamical system. Cognitive functions such as memory, learning, volition,
and consciousness seem to emerge as high level properties from the activity of billions of neurons sparsely
connected into complex networks. What is it about networks that allows such emergence to happen?

I will argue that the basic level of emergence is a network’s ability to categorise its space of possible
patterns of distributed activation. Categorisation occurs far from equilibrium as well as at attractors,
giving a role to chaotic dynamics. A network self-organises its state-space into a basin of attraction field,
a space-time abstraction representing the network's latent distributed memory. When networks link up
with other networks, the system is able to use memory in individual fields to provide the components for
the emergence of higher level cognitive states. This paper examines the idea of basins of attraction in the
context of a simple yet powerful neural model - random Boolean networks.
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Introduction
How does memory emerge in a simple artificial neural network? I will try to provide an answer in the
context of a network model first proposed by Ross Ashby (1952) in his classic book Design for a Brain.
This network is a discrete dynamical system of sparsely connected cells updating in parallel according to
each cell's Boolean function. Usually known as a random Boolean network following Stuart Kauffman
(1969, 1993), the system can also be described as a disordered cellular automaton, with arbitrary non-
local connections and different rules at each site.

Any artificial network model is necessarily a huge oversimplification compared to biological
networks. However, Boolean functions, in contrast to threshold functions, arguably capture some essence
of the logic implicit in the complex topology of each neuron's dendritic tree and synaptic microcircuitry.
A Boolean function could be implemented in hardware by a combinatorial circuit, a sort of artificial
dendritic tree. If the emergence of memory can be demonstrated in such simple networks, perhaps insights
may be gained by analogy to the vastly more powerful processes that occur in animal brains. Memory is a
relative concept, meaning the creation of useful categories for an organism's adaptive behaviour out of the
plethors of sensory inputs arriving at neural sub-networks, and the even greater internal traffic between
sub-networks. The idea of networks of sub-networks in a sort a sort of nested hierarchy is of course
another necessary oversimplification, because the boundaries of sub-networks are unclear.

To be useful for adaptive behaviour memory-categories should fall naturally into hierarchies of
categories of sub-categories; they should be highly reliable yet easily changed to permit learning and
access should be extremely fast.

Recent work in unravelling the global dynamics of cellular automata (Wuensche and Lesser 1992),



and more generally of random Boolean networks (Wuensche 1994a) puts into sharp focus 8 known
intrinsic property of these networks. They organise state-space, the space of all possible patterns of
network activation, into specific maps of connected states, the basin of attraction field. Directed graphs
representing these objects can be calculated, and drawn by computer graphics. Separate assemblies of
connected states are basins of attraction; typically, the connection topology is branching trees rooted on
attractor cycles. Basins of attraction partition state-space into categories. Subtrees within individual
basins, formed by merging trajectories leading to attractor cycles, produce hierarchies of sub-categories.
The basin topology is characterised by long transients, verging on dynamics analogous to chaos in
continuous systems.

The idea that state-space is partitioned by attractors is the generally accepted paradigm for "content-
addressable” memory in artificial neural networks, following Hopfield (1982) and others. In large
recurrent networks, especially biological networks, a very large (perhaps astronomical) number of steps
through state-space would typically be required for the system to settle at one of its attractors. Explaining
memory just by attractors thus poses the difficulty of the long time needed to reach attractors in large
networks, whereas reaction times in biology are extremely fast. This problem is overcome by the
realisation that categories occur in subtrees, far from equilibrium.

Random Boolean networks have a vast parameter space, and a correspondingly vast space of possible
basin of attraction fields. Perhaps any basin field structure is possible given the appropriate parameters.
Leamning salgorithms for random Boolean networks have been developed for changing the basin of
attraction field (Wuensche 1994a). States at any location can be re-assigned as predecessors of other
states in a single step by adjusting either connections or Boolean functions. Adding states implies
learning, removing states implies forgetting This might allow the sculpting of the basin of attraction field
to approach any desired configuration. The process of learning and its side effects is made visible if the
resulting basin of attraction field or fragment is reconstructed.

The detailed structure of a biological neural sub-network has found its form, and thus its basin of
attraction field, by evolution, development and leaming in the context of networks of sub-network which
maintain each other far from equilibrium. Within this vastly complex dynamical system higher level
cognitive properties based on lower level memory categories are able to emerge.

Random Boolean Networks

Random Boolean networks may be viewed as disordered cellular sutomata. A homogeneous rule and
coupling template, giving 8 regular space, make cellular sutomats appropriate models in physics.
Deviating from either or both of these constraints by degrees progressively degrades coherent space-time
patterns and emergent complex structures such as gliders, characteristic of cellular automata (Wuensche
1994a, 1994b). Different arbitrary couplings and rules at each cell give a vastly greater parameter space,
and thus behaviour space, than cellular automata. The various symmetries and hierarchies that constrain
cellular sutomata dynamics, such as shift invariance and the conservation of rotational symmetry
(Wuensche and Lesser 1992) no longer apply. It might be conjectured that any arbitrary basin of attraction
field configuration is possible given the right set of parameters.
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Figure 1. The basin of attraction field a random Boolean network (N=9, K =4). The 29=512 states in
state space, shown as pattems on a 3x3 grid, are organised into 6 basins, with attractor periods
ranging from 1 to 12. The number of states in each basin is: 39, 191, 234, 24, 16, 8 The network's
wiring/rule scheme is shown in figure 3. The length of transition arcs has no significance; it follows a
graphic convention for clarity. Time proceeds inward from garden-of-Eden states, then clockwise

around the attractor cycle, the only closed loop in the basin. The computer diagrams were generated
with the author's software.
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Figure 2. Random Boolean network architecture. Each cell in the network synchronously updates its
value according to the values in a pseudo neighbourhood, set by single wire couplings to arbitrarily
located cells at the previous time-step. Each cell may have a different wiring/rule scheme. The system is
iterated. Cells are arranged in a row for convenience only; their positions may be arbitrary.

Figure 2 illustrates the architecture of a random Boolean network. A cell's value can be just O or 1,
though in principle this could be extended to more values. A global state of a network of N cells is its
pattern of Os and 1s at a given moment. Each cell synchronously updates its value in discrete time steps.
The value of a cell at time ¢ depends on its particular Boolean function applied to a notional or pseudo
neighbourhood, size K. Values in the neighbourhood are set according to single wire couplings to
arbitrarily located cells in the network at time ty. The system is iterated. The system's parameters consist
of a list specifying the function and pseudo neighbourhood wiring for each cell. To maintain a given basin
of attraction field the parameters remain fixed. Changes to parameters would change the field.

There are 2% permutations of values in a neighbourhood of size K. The Boolean function (equivalent
to a cellular automata rule) can be written as a rule table, or look up table, with 2¥ entries, specifying the
output of all neighbourhood permutations. By convention (Wolfram, 1983) this is arranged in descending
order of the values of neighbourhoods. For example, the rule table for rule 30 (K=3)1s,

111 110 101 100 011 010 001 000 ... neighbourhoods
ruletable ... 0 0 0 1 1 1 1 0 ... outputs (Oor 1)

The total number of distinct rule tables, the size of rule space = 22X The number of alternative wiring
schemes for one cell = NK. The number of alternative wiring/rule schemes, S, that can be assigned to a
given network turns out to be vast even for small networks, and is given by,

N N
s=(N¥) x(22‘)
for example, for a network where N=16 and X =5, S=2%

Random Boolean network architecture is in many ways similar to weightless neural networks
(Alexander, Thomas, and Bowden 1984). Classical neural network architecture uses weighted connection
and threshold functions. A random Boolean network may be regarded as a discrete generalisation of a
sparsely connected classical neural network. Connections with higher weights may simply be replaced by
multiple couplings, and the threshold function applied. However, a threshold function is a tiny sub-class
of the 22X possible Boolean functions.

Basins of attraction

Cellular sutomata and random Boolean networks are both examples of discrete deterministic dynamical
systems made up from many simple components acting in parallel. The pattern of network activation at a
given time is the network's state. State-space is the space of all 2V possible patterns. Each state has just
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Figure 3. The wiring/rule scheme of a random Boolean network (N=9, K=4); its basin of attraction
JSield is shown in figure 1. The wiring specifies couplings from the pseudo neighbourhood of each cell
(at time t,) to cells at the previous time-step, ty Different heights of cells at t, indicate their number
of output wires. Each cell’s rule is shown in hex. The parameters were chosen at random.



one successor, though it may have any number of predecessors (known as pre-images), including none.
Any state imposed on the network will seed a determined sequence of states, known as a trajectory.
Though determined it is usually unpredictable.

In a finite network any trajectory inevitably encounters a repeat. When this occurs the system has
entered and is locked into a state cycle known as the attractor. The portion of a trajectory outside an
attractor is a transient. Many transients typically lead to the same attractor. Because states can have
multiple pre-images transients can merge, and will typically have a topology of branching trees rooted on
the attractor cycle (though this may be a stable point - an attractor cycle with a period of 1). The set of all
transient trees plus their attractor make up a basin of attraction. The separate basins that make up state
space (though there may be just one) is the basin of attraction field , a mathematical object in space-time
constituting the dynamical flow imposed on state space by the network.

Computing transient trees or sub-trees, and basins of attraction, poses the problem of finding the
complete set of pre-images of any global state. The trivial solution, exhaustive testing of the entire state
space, rapidly becomes intractable in terms of computer time as the network's size increases beyond
modest values. Algorithms have recently been devised, however, for directly generating pre-images, giving
an average computational performance many orders of magnitude faster than exhaustive testing, A reverse
algorithm for one-dimensional cellular automata was introduced in (Wuensche and Lesser 1992). and a
general direct reverse algorithm for random Boolean networks in (Wuensche 1994a).

Basins of sattraction are portrayed as computer diagrams in the same graphic format as presented in
(Wuensche and Lesser 1992). States are represented by nodes, or by the state's binary, decimal or hex
expression at the node position. Nodes are linked by directed arcs with zero or more incoming arcs but
exactly one outgoing arc (one out degree). Nodes with no pre-images, thus no incoming arcs, represent so
called garden-of-Eden states. Typically, the vast majority of nodes in a basin of attraction lie on transient
trees outside the attractor cycle, and the vast majority of these states are garden-of-Eden states. Figure 1
shows a typical basin of attraction field of a random Boolean network (N=9, K=4). The 29=512 states in
state space are shown as patterns on a 3x3 grid. The network's wiring/rule scheme is shown in figure 3.

Memory, far from equilibrium
Memory far from equilibrium along merging transients may answer a basic difficulty in explaining
memory by attractors in biological neural networks. A view of the brain as a complex dynamical system
made up of many inter-linked specialised neural sub-networks is perhaps the most powerful paradigm
currently available. Sub-networks may consist of further sub-categories of semi-autonomous networks,
and so on, which contribute to re-setting or perturbing each other's dynamics. A biological neural sub-
network is nevertheless likely to be extremely large; the time required to reach an attractor from some
arbitrary global state will probably be astronomical. This has been demonstrated with a simple K=5
random Boolean network with 150 cells (Wuensche 1994a). Even when an attractor is reached, it may
well turn out to be a long cycle or a quasi-infinite chaotic attractor. The notion of memory simply as
attractors seems to be inadequate to account for the extremely fast reaction times in biology.

A discrete dynamical system with synchronous updating categorises its state space reliably along
transient trees, far from equilibrium, as well as at the attractors. A network that has evolved or leamnt a
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particular global dynamics may be able to reach useful memory categories in a few steps, possibly just
one. Moreover, the complex transient tree topology in the basin of attraction field, makes for a much
richer substrate for memory than attractors alone, allowing hierarchies of memory sub-categories.

A biological model

A random Boolean network may serve as a model of a semi-autonomous patch of neurons in the brain
whose activity is synchronised. A cell's wiring scheme models that sub-set of neurons connected to a
given neuron. Applying the Boolean function to a cell's pseudo neighbourhood models the non-linear
computation that a neuron is said to apply to these inputs to determine whether or not it will fire at the
next time-step. This is far more complex than a threshold function (Shepherd 1990). The biological
computation may depend on the precise topology of the dendritic tree, its microcircuitry of synaptic
placements and intrinsic membrane properties. Networks within cells based on the cytoskeleton of
microtubules and associated protein polymers may be involved, suggested by Stuart Hameroff (1987) as
the neuron's "internal nervous system”. There appears to be no shortage of biological mechanisms that
could perform the role of a Boolean function.

A network’s basin of attraction field is implicit in its wiring rule/scheme. In a sub-network of
biological neurons it would be implicit in the wetware. If sub-networks are linked as components in a
super-network, indirect feedback could maintain each sub-network’s dynamics in the outer branches of
transient trees, far from equilibrium. Suppose a new state is imposed on sub-network n, by another sub-
network or sensory input. This seeds a determined trajectory in n;, which opens up a sequence of
categories to which the seed state belongs. Recognition of these categories would involve another sub-
network, n,, activated by the axons of neurons in n;. Recognition of categories in n, would involve a third
sub-network n5. After just a few steps, n,'s dynamics might be reset to a new seed, shifting the start point
in its basin of attraction, by the axons of another sub-network belonging to this hypothetical super-
network. Recognition in this system is automatic because all trajectories in n), n,, n, etc are inevitable
given unchanged neuronal architecture. Recall is more difficult because a seed with the right association
needs to be supplied. Folk psychology bears this out. I may know "Humphrey Bogart", but "its on the tip
of my tongue". Recalling the name to say it may be hard. If I hear "Humphrey Bogart” mentioned, 1 will
recognise it instantly, effortlessly and sutomatically.

Learning new behaviour implies amending the basin of attraction field by adjusting the wiring/rule
scheme, analogous to some physical change to the wetware's neural architecture and synaptic function.
Leamt behaviour often requires no mental effort; take driving a car. Such well rehearsed semi-conscious
behaviour is delegated to a sort of "automatic pilot”. The network's dynamics acts in the same way as for
recognition, effortlessly and automatically. Leamning to drive, on the other hand, requires mental
concentration. After all, physical changes in the brain must somehow be induced. By this argument, the
state of consciousness coincides with the desire to learn or behave creatively, or the actual process of
making the changes. The mechanism for this is unknown. A sub-network may be able to alter the
parameters of another. Hameroff suggests that cytoskeletal functions may provide retrograde signalling
(analogous to back propagation) which may reconfigure intra-neuronal architecture (Hameroff et all, in

press).



Figure 4. States Py,P,Ps,.. etc may be
learnt as pre-images of the state A. Distant
pre-images of A may also be leamnt, for
instance as pre-images of Py. Learming A
as a pre-image of itself creates a point
attractor. Learning A as a distant pre-
image of itself creates a cyclic attractor. If
A is learnt as the pre-image of some other
state in the basin of attraction field, the

pre-images

states flowing into A, its transient sub-tree, N ~— .
may be fully or partially transplanted along ~ \_/v— PTe-images
with A. - -

Learning Algorithms

Learning and its side effects in random Boolean networks show up as changes to the detailed structure
of the basin of attraction field, and its computer graphic representation. In networks too large to allow
basins, or even fragments of basins, to be computed, the principles would still apply.

Leamning algorithms that enable a random Boolean network to leam new transitions from
experience (and also to forget) are set out in detail in (Wuensche 1994a). Before learning starts, a
wiring/rule scheme must already be in place. If the relevant transitions in the basin of attraction field are
already close to the desired behaviour, the side effects of leaming will be minimised. The initial
wiring/rule scheme would ideally be pre-evolved from a population of wiring/rule schemes with a
genetic algorithm.

Suppose we want to make the state Py in figure 4 the pre-image of state 4. This entails correcting the
mismatches between P;'s actual successor state and 4. This can be done in one step by either of two
methods, adjusting the network's wiring or rule scheme. The two methods have very different
consequences. Correcting a mismatch by adjusting the rule scheme is achieved by changing a specific bit
in each Boolean function at mismatched cells. The procedure is bound to succeed, and it turns out that
there is no limit to the number of pre-images of 8 given state that can be leamnt by this method with no risk
of forgetting previously leamt pre-images of the state. There will be side effects elsewhere in the basin of
attraction field. On the other hand, in correcting a mismatch by rewiring, success is not certain, though
there are many alternative wire move options. Previously learnt pre-images of the state may be forgotten,
besides other side effects. Side effects may be positive because similar pre-images are likely be leamnt by
default, so the network is able to generalise.

Re-wiring has a much grester effect on basin structure than mutating the rul’e scheme, but in either
case the stability of basin structure is noteworthy. Using these methods, point attractors, cyclic attractors
and transient sub-trees can be can be created. Transient sub-trees are sometimes transplanted along with
the repositioned state, indicating how leamt behaviour can be re-applied in a new context. Forgetting
involves pruning pre-images and transient sub-trees, and is achieved by the inverse of the method for
learning. Since it is sufficient to create just one mismatch in order to forget, the side effects are minimal
as compared with learning,



Conclusions

The emergence of novel structures by the interaction of many low level components underlies complex
adaptive systems, in particular the emergence of life by the self-organisation of matter. Can this spproach
extend to the emergence of cognition and consciousness, and if so what are the low level components
from which cognition emerges? I have suggested that these components are the hierarchical categories
implicit in the dynamics of neural sub-networks, and that memory emerges when sub-networks combine
and maintain each other far from equilibrium. Memory may in turn provide the substrate for unconstrained
emergence producing higher level cognitive states.

The basin of attraction diagrams of random Boolean networks capture 8 simple network's capacity for
distributed memory. The diagrams demonstrate that a complex hierarchy of categorisation exists within
transient trees, far from equilibrium, providing a vastly richer substrate for memory than attractors alone.
In the context of many semi-autonomous weakly coupled networks, the basin field/network relationship
may provide a8 fruitful metaphor for the mind/brain.
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