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Exploring Discrete Dynamics is a very extended computational and analytic
exploration of discrete dynamical systems. The book makes a summary of more
than 19 years of results, programming, and research by Andrew Wuensche.

In 1992, at the Santa Fe Institute, Wuensche together with Mike Lesser pub-
lished the celebrated book in cellular automata theory The Global Dynamics of
Cellular Automata [26]. This book introduced a reverse algorithm for cellular
automata, and presented an Atlas of basin of attraction fields computed by
means of the algorithm. Motivated by these results and Kauffman’s model of
genetic regulatory networks [12], Wuensche subsequently developed new algo-
rithms for random Boolean networks and discrete dynamical networks in gen-
eral. His achievements have had a great influence on outstanding researchers
such as Stuart Kauffman [12], Harold V. McIntosh [18], Andrew Adamatzky [1],
and Christopher Langton [26], among many others; and hundreds of references
in books and research papers.

These results have been obtained mainly making use of his popular open
source software DDLab (Discrete Dynamics Lab, http://www.ddlab.org/),
which is widely used in the scientific community and with free access to soft-
ware, code, and manual. Wuensche’s latest book, Exploring Discrete Dynamics,
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presents a very extensive description of the current features of DDLab. Succes-
sive chapters describe, in detail and depth, every function of this tool, illustrated
with numerous examples from his research.

Analyses concentrate mainly on four systems of increasing generality: cellu-
lar automata (CA), random Boolean networks (RBN), discrete dynamical net-
works (DDN), and random maps. Consequently, in this book we have a ram-
ification that connects and relates concepts naturally derived from these main
subjects: reverse algorithms, rule-space, state-space, basins of attraction, sta-
bility, order, chaos, complexity, networks, emergent structures, classes, filters,
self-reproduction, reaction-diffusion, cryptography, and beyond [30, 32, 33, 35,
31, 36, 37, 4, 7, 9, 21, 11, 24, 28].

Without doubt, the DDLab software is unique in its ability to study and
classify discrete dynamical systems, analyse and unravel networks with the
“network-graph,” create flexible simulations where parameters can be changed
on-the-fly, and generate basins of attraction and sub-trees. In DDLab we can
experiment with mutations, calculate pre-images (or ancestors [10, 23]), and
analyse state-space configurations iterating for unlimited spans of time, includ-
ing simulations in one, two, and three dimensions. In the state-space implemen-
tation, we can calculate the changing input-entropy and pattern-density, which
helps us to understand the properties of dynamical systems—applied in partic-
ular to automatically categorise CA rule-space between order, complexity, and
chaos. The static Z-parameter, based on just the rule-table, also categorises
CA rule-space by predicting the in-degree in sub-trees to identify “maximum”
chaos—this is applied for a method of encryption [34].

An interesting point in the book is the incorporation of a jump-graph of the
basin of attraction field (see page 207). Thinking in terms of Edward Fredkin’s
work Finite Nature hypothesis [13], the most important implication of this hy-
pothesis is “that every volume of space-time has a finite amount of information
in it. Every small region of space-time (a cell) must be in one of the small num-
ber of states.” Fredkin focuses this implication precisely in CA models because
they relate naturally his idea. A CA is a discrete dynamical system with a finite
alphabet evolving on an infinite or finite regular lattice. Its dynamics are simple;
basically each (central) cell is affected by the values of its close neighbours and
itself; thus, depending on this combination of values, each cell is tranformed
at the next time-step. All the cells in the lattice are updated synchronously
at each time-step, though DDLab also provides asynchronous and partial-order
updating, as well as probabilistic (noisy) updating. In this way, the CA (or dis-
crete dynamical network) evolves from some initial lattice configuration along
a deterministic trajectory. Hence, its space-time dynamics corresponds to the
system’s “local” behaviour. These artificial universes are able to yield a num-
ber of different classes of behaviour: trivial evolutions, periodic, quasi-periodic,
chaotic, and complex. All possible trajectories combined make up the basin of
attraction field with a topology of trees rooted on attractor cycles – the global
dynamics. This is represented by a diagram, (know as, state transition graph)
which provides a global perspective on the dynamics. A specific initial condition
now defines one path through the graph.
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Therefore, we have basin of attraction fields, where nodes (representing
strings) are connected by directed arcs. In CA, these also display equivalen-
cies and symmetries. In natural phenomena and other complex processes, the
paradigm of the basin of attraction field could be extended. With the “jump-
graph”, we can have sets of basin fields connected deterministically or prob-
abilistically to others. As a consequence, other kinds of dynamics could be
analysed in a more complete and realistic way, in the sense of Fredkin’s hy-
pothesis. Thus, as an Ackermann function [5], we could think about sets of
jump-graphs interconnecting other jump-graphs and so on.

Filters in DDLab are another powerful characteristic to recognize informa-
tion inside the noise or chaos of discrete dynamical systems. Some CA evolutions
present dominant periodic backgrounds, some times called “ethers,” as in the
famous universal elementary CA (ECA) rule 110 [8, 29]. Other more exotic CA
(by alphabet, neighbourhood, and dimensions) can be studied in DDLab; they
may evolve with two, three, four or more periodic or choatic backgrounds at
the same time, with gliders and other complex patterns emerging during their
histories [30, 6, 22, 16]. Filters have been demonstrated to be useful to explore
and clarify particles (gliders or mobile self-localizations) and collisions between
them in unconventional computing models [15, 14, 16]. DDLab can easily ma-
nipulate filters in such systems (see pages 410–416) because it can identify the
frequencies of sub-patterns (blocks of cells) and separate the higher frequency
blocks on-the-fly in order to reveal just the important information by changing
the colours of cells.

An improvement to DDLab would be to extend the maximum lattice size
beyond the current limits of 65,025 cells. An update to do this is in the pipeline,
and I have personally tested the advance version (ddlabX07), where the new
maximum is 159,072,862 cells, allowing 2D lattices with sides of 12,612 cells,
and a 3D cubes with sides of 541 cells. Large evolution sizes will permit a
better view of the macroscopic world of such systems, and consequently facilitate
the construction of large initial configuration, which will be useful to develop
enhanced kinds of experiments. For example, to handle combinations of gliders
and collisions to implement computable systems (see [1, 25, 4, 15, 17, 20, 27, 19]),
periodic sequences, regular expressions, or tiles.

Exploring Discrete Dynamics provides an essential and detailed description
of how to operate the DDLab software, which together make an important con-
tribution to understand, construct, and play with networks, CA, RBN, and
discrete dynamical systems in general. If you have no experience using DD-
Lab or are unfamiliar with these kinds of concepts, I would suggest a quick
introduction to play with some interesting and attractive simulations by check-
ing http://www.ddlab.org and links, for example for a fast and short intro-
duction look http://www.cogs.susx.ac.uk/users/andywu/multi_value/dd_

life.html; you can also view a short tutorial video illustrating the basic DDLab
functions in http://www.youtube.com/watch?v=N2hEiKOYsKo.

Finally, Wuensche has explored a huge number of complex evolution rules
and architectures in CA, RBN, and discrete dynamical systems; with muta-
tions, totalistic functions, majority rules, chain-rules, reaction-diffusion, Post-
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functions, canalizing, small-world and hybrid networks, and many others func-
tions that actually offer a vast number of unexplored universes to research in
several scientific fields. There will always be extra functions in any wish list
(and users can themselves revise the open source code). My suggestion is to
consider another variation of CA, the CA with memory (see [2, 3]). This could
be easily done by including information from historical time-steps (which DD-
Lab already records for other functions) when calculating the next time-step.
CA with memory have been demonstrated to be simple, interesting, and pow-
erful to explore other new domains of complex evolution rules and computable
systems [14, 16, 17].
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