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Abstract

We consider the problem of learning with privi-
leged information where the goal is to learn a clas-
sifier that uses features not available at test time
to learn a better model at training time. While
the earlier approaches under this formalism focused
mainly on SVMs, we extend the setting to tree-
based learners—decision trees and boosting for
learning with privileged information. Our methods
use privileged features to create additional labels
for each example and use these privileged labels to
guide the learning algorithms. We derive the the-
ory and empirically validate the effectiveness of our
learning approach both in the case of decision-trees
and boosting. Our methods outperform the SVM
based learner with privileged information.

1 Introduction

Machine learning methods that consider learning from
sources beyond just a single set of labeled data have long
been explored under several paradigms - learning with ad-
vice [Towell and Shavlik, 1994; Fung ef al., 2002; Maclin
et al., 2005; Kunapuli et al., 2013], learning from prefer-
ences [Boutilier, 2002; Boutilier ef al., 2010; Drummond and
Boutilier, 2014], learning from qualitative constraints [Al-
tendorf et al., 2005; Yang er al., 2013], active learning [Set-
tles, 20121, and transductive learning [Joachims, 1999] etc.
Recently, Vapnik and Vashist [Vapnik and Vashist, 2009]
introduced the problem of learning from privileged informa-
tion where more information in the form of features are pro-
vided during training. During testing, this information is not
available and hence the classifier cannot use these features in
the model but can use them to learn a more accurate model.
Vapnik and Vashist learned an SVM in the privileged space
and used this SVM to control the margin in the full training
space. This approach was later adapted by Sharmanska et
al. [Sharmanska et al., 2013] where an interesting observa-
tion was made in that even random but informative privileged
features helped improve the performance of the classifier.
While interesting, most of the original work and its adap-
tations were based on SVMs. In this work, we aim for learn-
ing more interpretable models, precisely decision-trees and
their ensembles. To this effect, we develop the first set of tree
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based algorithms that can learn in the presence of privileged
information. The key idea is to use the privileged features to
group the examples into clusters such that examples within a
cluster are more similar according to the privileged features.
This is to say that the privileged features “prefer” that the ex-
amples be labeled accordingly when learning the final model.
Consequently, these privileged labels are used along with the
original labels to obtain a score that is a combination of these
two labels given the training/test features.

The intuition is that while the privileged features provide
some extra information, they are not being fully relied on
when building the model. The resulting model, in essence, is
a trade-off between the privileged information and the fully
observed features - as is typically done in advice-based meth-
ods where the data and the expert knowledge are explic-
itly considered when learning the model. We evaluate the
decision-tree algorithm and the ensemble learning method
based on functional-gradient boosting on several benchmark
data sets and a new imaging data set, that of predicting the
shape of galaxies given astronomical features. Our results
show that the learners generally benefit from privileged infor-
mation, are never worse than just using the original data and
the ensemble method typically outperform the SVM based
classifier on most data sets.

We make a few key contributions in this work: First, as
far as we are aware, this is the first work on learning tree
based models in the presence of privileged information. Sec-
ond, we present the algorithm for learning decision-trees that
includes a principled way of trading-off between the privi-
leged information and the observed data. Third, we consider
the functional-gradient boosting extension of trees where we
present the gradient updates and position the work in context
to the existing work on SVMs. Finally, we perform exhaus-
tive empirical evaluation that demonstrates the effectiveness
of the proposed approaches on several benchmark test beds.

The rest of the paper is organized as follows: we next
present the background and related work. Then, we consider
the decision-trees with privileged information and present the
learning algorithm. We next extend these ideas to learn en-
sembles of trees using gradient-boosting. Finally, we present
extensive experiments before concluding by outlining areas
of future work.
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2 Background

We discuss the previous work on learning with privileged in-
formation followed by the related work in gradient-boosting.

2.1 Learning with Privileged Data

Human-machine interaction has been widely studied in arti-
ficial intelligence and machine learning through many differ-
ent frameworks [Towell and Shavlik, 1994; Fung e al., 2002;
Maclin e al., 2005; Boutilier, 2002]. One particular frame-
work, learning with privileged information, is inspired by
richer forms of interactions between human teachers and stu-
dents [Vapnik and Vashist, 2009]. Particular (labeled) exam-
ples are given to the student along with explanations and in-
tuitions that are able to speed up the comprehension of novel
concepts. While privileged information is often used in class-
rooms and lecture halls, it is completely ignored by standard
machine learning algorithms.

More formally, learning with privileged information as-
sumes that more information is known about the training ex-
amples. However, as the expert is not available for testing,
this additional information is not available at test time. Thus,
training examples have the form < xCF xPF 4, > while
testing examples have the form < xCF y; >. CF refers to
the classifier features available during testing and PF to de-
note privileged features. Refer to section 3 for more details
on notations.

Learning algorithms for privileged information have
previously mainly focused on support vector machines
(SVMs) [Vapnik and Vashist, 2009; Sharmanska er al.,
2013].  The original formulation—SVM+ [Vapnik and
Vashist, 2009]—learned the difficulty of each training exam-
ple. The key idea was to learn an SVM in the privileged
space (using [< xFF y; >]) and find the margin with re-
spect to this SVM for each training example. Training ex-
amples closer to the margin are considered “more difficult”
as they are closer to the decision boundary while examples
farther from the margin are considered “less difficult”. This
information is similar to the intuition or explanation given by
a human teacher. Vapnik and Vashist [Vapnik and Vashist,
2009] showed how this information can be used when learn-
ing an SVM over the standard features.

Since the introduction of the new learning paradigm and
the corresponding SVM+ approach there is a growing body
of work on it. Pechyony and Vapnik [Pechyony and Vap-
nik, 2010] started to develop a theoretical justification of
the learning setting. Liang et al. [Liang et al., 2009] es-
tablished links between the SVM+ and multi-task learning.
Recently, Herndndez-Lobato et al. [Herndndez-Lobato et al.,
2014] showed that privileged information can naturally be
treated as noise in the latent function of a Gaussian Process
classifier (GPC). That is, in contrast to the standard GPC set-
ting, the latent function becomes a natural measure of con-
fidence about the training data by modulating the slope of
the GPC sigmoid likelihood function. Most closely related
to our work, Chen et al. [Chen et al., 2012] extend the set-
ting to AdaBoost, and Lapin er al. [Lapin er al., 2014] re-
lated privileged information to importance weighting within
SVMs. Also, learning with privileged information has been

proven beneficial in computer vision domains [Sharmanska
et al., 2013]. Decision tree learners, however, have not been
considered yet. Moreover, instead of example weighting we
establish a novel connection to advice-based machine learn-
ing, see Section 3 for explanation. We show that the prior
knowledge expressible with privileged features can also be
encoded by labels associated with every training example that
in turn guide the learning algorithms. Moreover, boosting is
realized by regularizing the log-likelihood via the KL diver-
gence between the distribution using all features and the dis-
tribution using the features available at test time only.

2.2 Functional Gradient Boosting

Many probabilistic learning methods learn the conditional
distribution P(y;|x;) using standard techniques such as
gradient-descent performed on the log-likelihood w.r.t. pa-
rameters to find the best set of parameters that model
the training data. Functional Gradient Boosting methods
(GB) [Friedman, 2001; Dietterich et al., 2008; Natarajan et
al., 2012; 2015] on the other hand represent the likelihood in
a functional form (typically using the sigmoid function)

e¥(yi=1i|x:)

Plyilxi) = L=

)

where 1) is a regression function defined over the examples.
Given this representation, GB methods obtain the gradient of
the log-likelihood w.r.t. to ¢ (x;) for each example, x; as:

Aly:) = I(yi = 1) = P(y; = 1|x;), (2)

where [ is an indicator function which returns 1 for positive
examples and O for negative examples in a binary classifica-
tion task. The GB approach starts with an initial regression
function, ¥y to compute the probabilities of the training ex-
amples and thereby the gradients Ag. A regression function
(typically a tree), hg is fit on the training examples with the
gradients as the target regression values. This learned func-
tion is now added to 1)y and the process is repeated with
1 = g + hg. Given that the stage-wise growth of trees
resembles boosting, and the process involves computing gra-
dients of functions, this method is called Gradient Boosting.

3 Learning Privileged Trees

Our problem is formally defined as:
Given: A set of training examples [(y;, xCF, xFPF)] and a
set of test examples [(y;, xEF)], where

F=CFUPF & CFNnPF=1

To do: Learn a classifier that employs only the classifier
features CF for classifying the test data and can utilize the
privileged features PF effectively in learning a better model.

F is the set of all features, CF is the set of features that
are available at both training and test time (and we call them
classifier features), PF are the privileged features that are ac-
cessible only during training and not during testing, y; is the
label of the i*" example and x; are the features of that exam-
ple. We use [] to denote sets. For example, the input to the
algorithm is the set of all examples [< y;, xCF xPF >]. We



consider two different approaches to leverage PF: Advice-
based and Margin-based. While our approaches are designed
with tree-based classifiers, they can easily be extended to
other clustering/classification techniques.

3.1 Adyvice-based

Following advice-based machine learning methods [Fung et
al., 2002; Kunapuli et al., 2013; Towell and Shavlik, 1994],
one can view privileged information as “advice” that guides
the learning algorithm to a better model. The key idea in ad-
vice framework is that a human can provide preferences over
labels given some feature combinations and this is explicitly
weighted against data to learn a model [Odom ez al., 2015].
Similarly, we use the information from privileged features to
specify “preferences” over labels for every example by group-
ing the examples according to a learned model, for example, a
tree. Every example that reaches a particular leaf of the tree is
assigned a privileged label. The intuition is that the examples
that reach a particular leaf of a privileged tree (that is learned
only with PF) share the same characteristics (feature combi-
nations) and hence are grouped together. Once these clusters
are obtained, the examples inside a cluster are provided with
the same privileged label. Note that while we employ trees to
group the examples based on the privileged information, any
clustering method can be used to group these examples. Now
when learning the model using CF, the scores based on the
privileged labels are combined with the scores from the true
labels. This will make it likely that examples within the same
cluster due to the PF model be grouped together in the CF
model as well.

We now describe our learning algorithm, DTree+ in more
detail. The first step is to assign privileged label to each ex-
ample by learning a decision-tree using only PF and the true
labels in the data (refer to Algorithm 1). We denote the privi-
leged label as y? for each z; obtained using Algorithm 2.

We then learn a decision tree using only CF to build the
model that will be used for prediction. To learn the decision
tree, we score each split of the decision-tree using entropy
gain (G) [MacKay, 2003]. For splitting in any node, we con-
sider two different gains — G due to the true labels denoted as
Gpr, and G due to privileged labels denoted as Gpy,.

While, in principle, a single combination function could be
used to combine these gains, the range of these values can
be significantly different due to the different number of true
labels (used by G'pr,) and privileged labels (used by Gpy,).
Hence, we propose to use the following measure:

2GpL % GpL
If GpL < GpL th S 1=—"7——
f DL pL then core Gor 1 Gor
G%; + G2
else Score2 = —RL ~ "PL (3
Gpr + Gp1, ©)

We want the gain from the labeled data to dominate the score
as much as possible compared to the gain from the privileged
labels. This combination function always ensures that the fi-
nal score weighs the true labels more (this is shown in Fig-
ure 1). We also use a scaling factor « to scale the privileged
gain Gpr, up or down based on the quality of PF. The choice
of o is determined using line search. Finally, it is worth not-
ing that the mean of Scorel and Score2 is also the mean of

Algorithm 1 D-Tree+
CF

Input: [< y;, xCF xPF >
Output: Tree T that uses only CF.
Begin
[y?] = PTreeLearn([< y;,xFF >])
Create [< y,xCF >] as privileged label data
while Tree Depth not reached do
for all f; € CF do
Compute Gpy, using y and Gpy, using yP with the
current set of examples
Combine Gpy, and Gpy, using Eqn 3
end for
Choose f = argmaxy, (Score(fi)) for the current split
and split examples
end while

return Tree

the two gains, i.e.,
Scorel + Score2 = Gpr, + GpL

Hence, once each feature is scored using the gain, we simply
choose the feature from CF with the maximum score for the
current split, split the examples accordingly and continue the
process till the tree is completely learned. Note that our tree
construction is the standard decision tree learning algorithm
with the modified scoring function.
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Figure 1: Combination of the classifier and privileged fea-
tures. The goal is to keep the final score closer to the classifier
gain as much as possible.

Algorithm 2 PTreeLearn

Input: [< y;, xFF >]

Output: [y?] where 7 is privileged label for i*" example
PTree=DTLearn(< v;, xf LSS
for j=1 to numLeafs(PTree) do
E; - set of examples in leaf j
Assign j as privileged label (y}) Ve, € E;
end for
return [y’

3.2 Margin-based boosting

While the previous approach used the privileged information
tree to influence the final model learned over CF, it did not
leverage this learned model to further tune the privileged tree
labels. By attempting to reduce the margin between the two



models, we can potentially find a consistent labeling based on
both the privileged and classifier features. We use gradient
boosting (GB) to iteratively learn models using PF and CF
features while simultaneously reducing the margin between
two models.

In Vapnik’s SVM+ model, he used the PF features to de-
fine an oracle function that can predict the slack on each ex-
ample. In our probabilistic framework, we use the PF fea-
tures to build an oracle model that can predict the true prob-
ability distribution of each example which is not captured by
the discrete class labels. We learn a model that minimizes
the error of the model over the training labels and the margin
between the true distribution Pp (y|x*F) and P(y|x€F),

min — Y [~log(P(yilxF))+a- K L(Pp (yilxi ™)1 P(yi|xEF))]

i

where — ", log(P(y;|xEF),the negative log-likelihood of
the training data is used to model the error and KL de-
notes the KL divergence between Pp and P and is equal

to Y, Pp(i)log I;D(g;). We use « to model the trade-off be-

tween fitting to the labeled data versus fitting to the distri-
bution learned over PF. We can now use gradient boosting
with respect to 1)(x©¥) to minimize this objective function.
The first term of our objective function is the standard log-
likelihood function which has the gradient:'?

93 log(P(yi|xF™)
OP(xFF)
For the second term, we derive the gradients below:
OKL(Pp(yi|x{™), P(yi|xFT))
O(xLF)
9 (By,=10,13 P (yilxTF)log(Pp (yilx7*)/ P(yilxFF, 4)))

=1I(y; =1)— P(y; = 1x{F)

I (xFF)
=Pp(yi = O F) Py = 1x{F)
— Pp(ys = 11x; ¥)(1 = P(y; = 1x7F))
=P(y; = 1xT*) — Pp(yi = 11x; 7)

We combine the gradient terms to get the final gradient for
each example:

AxSF) =1I(y; = 1) — P(y; = 1)x°F)
—a- (P(y; = 1xEF) — Pp(y; = 1xFF)) @)

Intuitively, if the learned distribution has a higher probability
of an example belonging to the positive class compared to the
true distribution, P(y; = 1|x€¥) — Pp(y; = 1|xFF) would
be positive and the gradient would be pushed lower. Hence
the additional term would push the gradient (weighted by «)
towards the true distribution as predicted by PF.

The parameter, « controls the influence of the privileged
data on the learned distribution. In the extreme case of a = 0,
PF are completely ignored and we end up with the standard
functional gradient. Similar gradients can be computed for

'We use 1(xET) to denote the potential function given CF.
2For both the cases of y; = land y; = 0.

Algorithm 3 GB+: Boosting with privileged information

Input: < y;, x¥ xPF >

Output: Model over classifier features, P(y|x©¥)
PF
=0
0
for m=1 to M do
< xCF A(xFF) > = Create examples using Eqn 4
h., = FitRegressionTree(xCF, A(xE¥))
Um = Vm—1 + Ty,
< xPF Ap(xFF) > = Create examples using Eqn 5
hPF = FitRegressionTree(xF¥, Ap(xFF))
¢PF - ¢PF1 + hPF
m m— m
end for
return sigmoid(vas)

learning the true distribution using PF by switching P and
Pp.

Ap(xPF)=1I(y; =1)— Pp(y; = 1|x; 7)
—a- (Po(ys =1x; %) = P(y: = 1|x5°F)) (5)

Given these gradients, we can now describe our approach
called GB+ to perform gradient boosting using privileged in-
formation. Similar to standard GB, we iteratively learn re-
gression functions (trees in our case) to fit to these gradients.
We perform co-ordinate gradient descent, i.e. we alternate
between taking a gradient step along ¢/ and along v¥)p. Algo-
rithmically, we learn one regression tree using the gradients
based on CF, compute the gradients for PF, learn a tree for
the PF and repeat this M times, as shown in Algorithm 3.

Summary: While the specific updates and methodology
of the two algorithms differ, the intuition in both is the same
in that the privileged information is used to guide the learn-
ing algorithm by preferring some examples to be grouped to-
gether. We now present our experimental evaluation.

4 Experiments
We aim to answer the following questions:

Q1: How effective is privileged information in decision
trees?

Q2: Can iteratively updating the privileged model improve
boosting decision tree algorithms?

Q3: Are the algorithms robust to low-quality privileged in-
formation?

We present empirical evaluations of our proposed ap-
proaches for decision tree learning with privileged informa-
tion (DT+), and for gradient boosted privileged decision tree
learning (GB+). Across all domains, we report accuracy of
the learned model on the test set. All our experimental results
are obtained by 5-fold cross-validation.

In order to answer these questions, we compare our algo-
rithm against several different baselines. To show the effec-
tiveness of DT+, we compare against standard decision trees
(DT). Likewise, we show a similar result for GB+ by compar-
ing against function gradient-boosting (GB). Finally, we also
compare with SVM+ which also uses privileged information.



Table 1: An explanation of the various datasets that we use for empirical evaluation.

DOMAIN TARGET ATTRIBUTE #Exs #OFPF #0FCF
HEART DISEASE DIAGNOSIS OF HEART DISEASE 297 7 6
GLASS IDENTIFICATION FLOAT/NON FLOAT(WINDOWS) 214 4 5
CAR EVALUATION ACCEPTABLE OR NOT 1728 1 5
EcoL1 PROTEIN LOCALIZATION 336 3 4
FERTILITY DIAGNOSIS NORMAL OR ALTERED 100 3 6
PIMA INDIANS DIABETES DIABETES STATUS 768 4 4
SEEDS LENGTH OF KERNEL GROOVE >2 199 4 3
GALAXY SPIRAL GALAXY OR NOT 505 21 128
Heart Disease Glass Identification Car Evaluation Ecoli
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Figure 2: Comparison of the accuracy of our proposed privileged classifiers (DT+,GB+) and each of the baseline methods
including the privileged method of SVM+ as well as the standard methods (DT,GB).

We compare against 7 standard classification datasets
found in the UCI repository * as well as a novel dataset that
aims to predict the types of galaxies from features derived
from telescope images of those galaxies. A broad overview
of the different datasets, their prediction problem, dataset size
information, and size of PF and CF is shown in Table 1.

The galaxy dataset features are derived from the Sky Sur-
vey Database [Willett et al., 2013] which contains images
of galaxies. We use features derived from these images to
classify galaxy images into spiral/non-spiral shapes [Dhami,
2015]. CF includes all of the color coherence values (128 to-
tal features), and PF includes shape features like circulatiy,
convexity, etc. and color features including color intensity
ratios, max color channel values, etc.

4.1 Privileged Decision Trees (DT+)

First, we compare our privileged decision tree learner to stan-
dard decision trees. As described previously, we use cross

*http://archive.ics.uci.edu/ml/

validation and line search in each dataset to set the trade-off
between the classifier label entropy gain and the entropy gain
of the privileged label (denoted as « in section 3.1) . This
means that our algorithm will reduce the impact of the priv-
ileged information if it is not useful. A comparison between
DT+ and DT can be seen in Figure 2. Note that our approach
never performs worse than DT.

Figure 2 shows the comparison across all methods. In
many datasets DT+ performs slightly better while in the heart
dataset they perform significantly better. It is important to
note that previous privileged learning algorithms often fail to
significantly outperform the standard approach [Sharmanska
et al., 2013] as privileged information may not always be use-
ful. DT+ is effective in using privileged information to learn
a better model as shown by DT+ outperforming DT (Q1).

4.2 Gradient Boosted Trees (GB+)

Similarly, we compare our gradient boosted trees (GB+) to
standard gradient boosting (GB) in Figure 2. Notice that our
method, GB+, outperforms GB in most of the domains. How-
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Figure 3: We show the quality of the privileged information (when used to build a classifier), and compare the privileged learner

DT+ and the previous privileged approach SVM+.

ever, this improvement is statistically significant only in the
diabetes and seeds datasets. Similar to DT+ and DT, GB+
never performs (statistically significantly) worse than GB.

Again, Figure 2 shows the comparisons across all meth-
ods. As expected, the boosted methods typically outperform
the standard approaches with the notable exception of the car
dataset. Thus, iteratively updating the privileged model and
learning an ensemble can further improve the learning pro-
cess (Q2). Next, we focus on how our privileged approaches
compare with another privileged classifier.

4.3 Privileged Information and SVM+

We now discuss the quality of the privileged information and
compare our approach against the previous privileged frame-
work of SVM+. The performance of our algorithm (DT+)
is compared to SVM+ and learning only in the privileged
space (DTPF) in Figure 3. Notice that across all domains
except the heart disease domain, our algorithm outperforms
SVM+. Previous results with SVM+ show that the algorithm
performs well with high-quality privileged information [Shar-
manska et al., 2013] as well as a large number of features.
However, many of our experimental domains do not have a
large number of features (Table 1) and the performance of
PF is often lackluster (Figure 3).

Even when PF is not informative, our proposed approach
is not hindered. Often, DT+ is still able to utilize the privi-
leged information to learn a better model. DT+ is robust to
low-quality privileged information because of 1) use of the
combination function (Eqn 3) that tends toward the gain of
the classifier features and 2) o parameter that weighs the gain
of the privileged information. These factors make our algo-
rithm robust to the quality of privileged information (Q3).

5 Conclusion

We presented the first set of approaches to exploit privileged
information while learning trees. The key idea in our ap-
proaches to view privileged information as preferential ad-
vice - one that allows us to prefer some examples to share
the same label. Consequently, these labels were used in guid-
ing the learning algorithms (in our case tree-based learners),
to learn better models. We derive the theory and empirically
validate the effectiveness of the resulting learning approach
both in the case of decision-trees and boosting. Our extensive
experimental results demonstrate that the resulting methods
outperform the SVM+.

Adapting this algorithm to more real-world data sets such
as Electronic Health Records where a physician could provide
privileged information for learning is a possible next step. Ex-
ploring the deeper connections to the other advice-based and
non-traditional learning settings is an interesting theoretical
research direction. Employing such approaches to other ma-
chine learning methods could be potentially interesting. Fi-
nally, extending this work to relational data where one could
learn more powerful statistical relational learning models is
an exciting direction of future research.
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