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Abstract

Tactile sensing is increasingly vital in robotics, especially for tasks like object manipulation
and texture classification. Among tactile technologies, optical and electrical sensors
are widely used, yet no rigorous direct comparison of their performance has been
conducted. This paper addresses that gap by presenting a comparative study between a
high-resolution optical tactile sensor (a modified TacTip) and a low-resolution electrical
sensor combining accelerometers and piezoelectric elements. We evaluate both sensor
types on two tasks: texture classification and coefficient of dynamic friction prediction.
Various configurations and resolutions were explored, along with multiple machine
learning classifiers to determine optimal performance. The optical sensor achieved 99.9%
accuracy on a challenging texture dataset, significantly outperforming the electrical sensor,
which reached 82%. However, for dynamic friction prediction, both sensors performed
comparably, with only a 5̃% accuracy difference. We also found that the optical sensor
retained high classification accuracy even when image resolution was reduced to 25% of
its original size, suggesting that ultra-high resolution is not essential. In conclusion, the
optical sensor is the better choice when high accuracy is required. However, for low-cost or
computationally efficient systems, the electrical sensor provides a practical alternative with
competitive performance in some tasks.

Keywords: optical tactile sensing; electrical tactile sensing; texture classification; sensor
resolution

1. Introduction
Tactile sensing is an essential capability for both animals and robots, enabling tasks

such as object manipulation, navigation, texture classification, and force estimation [1–3].
In nature there are numerous forms of tactile sensing. For instance, some nocturnal
animals, such as whip spiders, utilise specialised low-resolution tactile sensors—antennae
or antenniform legs—to effectively scan their environments so as to navigate without
relying on vision [4]. Other species, including insects and small mammals, employ hairs to
detect vibrations, which assist in navigation and surface manipulation and recognition [5].
In contrast, humans primarily rely on high-resolution tactile sensing via a very large number
of receptors distributed throughout the skin, enabling sophisticated object manipulation
and texture classification [6]. This diversity in tactile sensing mechanisms in nature is
mirrored in the field of robotics, where tactile sensing is divided into four main categories:
thermal, inductive, capacitive/electrical, and optical [7,8]. However, unlike in nature
where we assume that natural selection has favoured the most appropriate sensor given
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constraints on brain size, energy, and the demands of the tasks, to understand the relative
strengths and weaknesses of different sensor types for a robotic task we must compare them.
To this end, this paper presents a comparison of sensors for tactile texture classification
and friction prediction, focusing on optical and capacitive/electrical sensors as they are the
most prominent approaches [3,9–12].

In recent years, optical tactile sensors, such as TacTips, have gained significant attention
for their high-resolution, contact-based sensing capabilities [1]. These sensors utilise
camera images to track the deformation of optical markers embedded in soft materials
such as silicone gels, translating mechanical interactions into changes in visual features
that can be processed using computer vision techniques for a variety of applications,
including texture classification [13,14]. In contrast, electrical sensors typically have a
relatively small number of input channels—often one for piezoelectric sensors and three
for accelerometers. Such low-resolution electrical sensors—which have been shown to be
highly versatile [2,15]—tend to require less processing and be much more cost-effective
than optical tactile sensors, where the primary expenses are cameras and manufacturing
costs. Thus, these two sensor types have contrasting characteristics. However, to date,
there has been no extensive comparison of optical tactile sensors and low-resolution
electrical tactile sensors on the texture classification problem. Although comparisons
exist between various optical sensors [1] and between different electrical sensors [2], a
rigorous comparison between capacitive/electrical and optical sensors is missing. Even
in comprehensive papers such as [2], where the physical properties and typical energy
consumption of different types of sensors are defined, the dataset and the task used to
measure accuracy differed between sensor types. Inevitably, reviews of multiple studies
analyse one type of sensor separately from another, using different datasets, making direct
comparisons challenging [16]. This paper provides a detailed comparison of these two
sensor types on the texture classification task.

Another related question, which has also been neglected until now, concerns the
resolution of the optical sensor when used for the texture classification task. It is usually
assumed that the highest resolution that the sensor is capable of should be used. There has
been no examination of whether it is possible to scale down the image resolution without
having any significant impact on the classification accuracy. Comparison of optical and
electrical sensors across varying resolutions is essential to establish when and if optical
sensing provides a tangible advantage. This question is directly addressed in this paper.

Within the field of tactile sensing, although texture classification has been established
as a benchmark task, a standardised set of textures for comparison remains elusive. Much
existing literature focuses on optimising individual tactile sensors to perform well on tactile
datasets [10–12,17], which can vary greatly between different studies. These datasets often
include diverse textures selected for convenience rather than consistency. In the research
reported in this paper, we therefore created a new set of textures based on commonalities
between previous datasets in order to improve comparability.

While rigorous comparative studies between optical and electrical tactile sensors
on texture classification are lacking, there has been extensive individual testing of
various sensor types. Accelerometers, for example, have been shown to classify multiple
textures quite well with varying accelerations applied to the sensor [18]. Comparisons
between accelerometers and piezoelectric sensors have been made, with arguments that
accelerometers may be more effective for certain texture classification tasks [19]. However,
these studies are often specific to particular applications; for instance, piezoelectric sensors
[20] and capacitive sensors [21] have been explored for texture classification in dynamic
environments, often yielding varying degrees of accuracy depending on the surface
interaction, as well as the area of surface being tested.
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Our main interest in tactile sensors is in relation to robot locomotion. Such applications
demand sensors capable of adapting to continuous surface contact rather than discrete
insertions (such as inserting a sensor into a fruit for classification [19]). Hence our sensors
are dragged across the surface to be classified, mimicking the way an animal might stroke
a surface with its foot to detect ground texture. This is also consistent with the most
commonly used technique for artificial finger tactile texture classification [9].

This paper aims to fill the gaps identified above by rigorously comparing and exploring
both optical (modified TacTips at varying resolutions) and electrical (piezoelectric and
accelerometer-based) tactile sensing methods, using a dataset designed to encompass a
diverse range of textures. In keeping with previous studies [9], we also assessed these
sensors on a coefficient of friction identification task to evaluate their performance in
broader applications of relevance to robotic locomotion. In addition, we evaluated the
physical resolution of both types of sensing. Our findings indicate that while both methods
demonstrate strong performance, optical sensors significantly outperform their electrical
counterparts overall.

2. Methods and Materials
2.1. TacTip Construction

In the original TacTip design [22,23], RTV27905 silicone gel (Figure 1a) was used.
However, we found that it can break easily—not a welcome property for a robot’s feet,
which may be subject to considerable wear and tear. Therefore we selected SORTA-CLEAR
silicone gel (in Figure 1b,c) as, although it is not as soft and sensitive as RTV27905 gel, it is
significantly more robust.

(a) Gel (b) SORTA clear (c) New Morphology

Figure 1. The different soft bodies for the skin of the TacTip. (a) The RTV27905 Gel in the original
TacTip; the cloudier adaptations in (b,c) use the cheaper clear silicone, with (c) being the lower
resolution design.

To remove bubbles we placed the clear silicone in a vacuum tube and left it there for
10 min under contact force. The silicone was then poured into the TacTip skin over the
painted markers. This assembly was placed in a small resin oven at 50 ◦C for two hours
and left overnight to set. The resulting soft silicone tip was then glued onto the end of the
TacTip 3D-printed casing. Internally there is a ring of LEDs, and at the opposite end a 2MP
50 fps USB Arducam webcam with a fisheye lens is mounted. The diameter of the TacTip
is 42 mm, with an outer skin thickness of 2 mm. More detailed information on the sensor
manufacture, and its general properties, can be found in the Supplementary Material.

A second TacTip version was created with fewer, larger optical markers in a different
layout to investigate the previously unexplored impact of reduced marker resolution on
performance. The marker layout was similar to that in the original but considerably less
dense. Specifically, we were interested in whether or not fewer, larger markers—which thus
produced lower resolution visual information on sensor deformations—were capable of
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producing high performance on the texture classification task. This question is of relevance
because the new morphology (Figure 1c) is simpler and cheaper to manufacture than the
original morphology, with its smaller optical markers, which requires more expensive
equipment, such as high-resolution printers. The optical sensor read frequency was 10 Hz
for both TacTip versions.

The total component costs of our TacTip sensor was approximately USD 100. However,
cheaper 2MP cameras have now become available and could be used, which would reduce
the cost to about USD 40–50. The setup costs for the standard TacTip will always be
greater than for the new morphology version as more expensive filament is needed for
high-resolution 3D printers. Hence, making TacTips with larger optical markers and
cheaper 2MP cameras would be the lowest cost approach to making this kind of sensor.

2.2. PressTip Construction

The PressTip is a novel sensor we developed to compare and combine multiple aspects
of electrical tactile sensing. By using different combinations of the PressTip’s sensor, we
can effectively provide different kinds of electrical sensors in our comparative study. The
PressTip has a vibration-sensitive piezoelectric sensor (MEAS Flexible PVDF Piezo Polymer
Film), 3-axis accelerometer (ADXl335), and an array of force sensors on the bottom side of
the PCB. The force sensors were constructed using a conductive material (velostat), which
changes resistance based on force; these are the black squares seen in Figures 2 and 3. We
previously showed that these force sensors are useful for a range of classification tasks [15],
including under-foot edge detection. However, after performing preliminary experiments,
we discovered that the information from the force sensor array was not suited to the
texture classification task addressed in this paper. Hence, only vibration sensing from the
piezoelectric sensor and the accelerometer were used in the work described here. Thus
three modes of electrical sensing were used in the comparative studies: accelerometers
only, piezoelectric only, and accelerometers plus piezoelectric.

Figure 2. CAD design for the PressTip PCB. The tactile pads are shown in blue, and the top layer
is shown in red. The main electronics such as the i2c bus ADC multiplexers, vibration sensors, and
resistors are located in the top layer. The contact with the surface occurs underneath the sensor.

Figure 3. PCB showing both layers of the PressTip design. The sensor diameter is 42 mm, and each
tactile pad covers a surface area of 10 × 10 mm2.
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The hybrid sensor makes use of 27 Ω resistors between each analogue reading input.
The input voltage used is 3.3 V. The capacitors between the analogue read and accelerometer
are 10 nF. The sensor has an average read frequency of 10.2 Hz. More detailed information
on sensor construction can be found in the Supplementary Material.

These sensors were much cheaper to manufacture than the TacTip, costing around
USD 4 each as PCBs and another USD 6 for silicone pads, velostat, and a piezoelectric
sensor to be soldered, a total of USD 10.

2.3. Data Gathering and Dataset

A 3-degrees-of-freedom rig (x-axis, y-axis, z-axis), of dimensions 300 mm by 300 mm
by 150 mm, was constructed to move a sensor around a 3D environment. This rig was used
to gather texture data by stroking the sensor along 1.5 mm straight lines in 100 different
directions along evenly spaced radii of a semicircle centred on the original touching point.
The sensor moved across fixed-down samples from the texture set, as shown in Figure 4b.
This is the most common way of gathering textural datasets; however, we additionally
gathered a non-linear stroke dataset, which is discussed in Section 3.5.

Figure 4. (a) The TacTip and PressTip sensors were lowered to the point of touch and dragged across
the surface. (b) The rig with the TacTip attached to the z-axis. On the rig table is the cotton texture
that has been bolted down. Further specifications can be found in the Supplementary Material.
(c) Appearance of the optical sensor, different fillings, and designs after the Sobel filter is applied.
The gel is much clearer, but the markers are still visible with the silicone.

Textural classification is often best approached as a temporal problem [24]. Recording
data throughout the stroking motion captured the temporal aspects of the task. Recordings
were gathered at various contact forces, using touching point forces of 0.0785–0.0824 N,
1.9031–1.9228 N, 3.0039–3.0235 N, and 4.336–4.367 N. The dataset consists of 3000 items
gathered over 15 textures (pictured in Figure 5). Each dataset item contains multiple
sensor readings concatenated over the time that the sensor is in contact with the surface
(approximately 10 s).

Perhaps understandably, most papers on tactile sensing for texture classification
have used textured materials that are easily accessible [10–12], and to date no standard
texture set has been created. Past texture sets are often of different sizes, which hampers
comparability because, as shown later in this paper, some texture classifiers perform
well when distinguishing between small numbers of textures but degrade sharply as the
number of classes increase. Established current datasets tend to use items that appear in
the labs of the researchers. Often these include some form of carpet, hard materials, and
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fabrics. Our texture dataset [25,26] was designed to try and include commonalities between
previous sets and to represent a range of material properties that a walking robot may come
into contact with, such as indoor or flat outdoor surfaces (see Figure 5). These included
soft/hard bodies, coarse/smooth surfaces, and surfaces with raised aspects.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 5. The 15 textures used in this study are shown in the figure; they were as follows:
(a)—Interlaced mat. (b)—Denim Jeans. (c)—Cotton. (d)—Wool. (e)—Foam with small grooves
(which we will refer to as Efoam). (f)—Foam with a smooth surface (which we will refer to as
Ffoam). (g)—Foam with large grooves (which we will refer to as Gfoam). (h)—Bubble wrap.
(i)—Felt. (j)—Cork. (k)—Flat Plastic. (l)—Concentrated rubber. (m)—Short carpet. (n)—Long carpet.
(o)—Leather. The measured coefficients of dynamic friction for these textures are shown in Table 1.

Table 1. Friction coefficients for each material in Figure 5.

Texture Friction Texture Friction

FFoam 0.396798 Cork 0.344905
Flat 0.343766 Long Carpet 0.128852
Plastic 0.101801 Short Carpet 0.197868
Leather 0.255904 GFoam 0.191812
Felt 0.116275 EFoam 0.073127
Wool 0.198984 LacedMatt 0.124083
Bubble 0.217116 Cotton 0.129354

Unlike many papers, we measured the dynamic coefficient of friction for each surface
against a rubber tape, both as additional defining information for the dataset and to allow
for more general applications (see Table 1). This tape does not match the textural properties
of silicone tips exactly, but it does provide a good heuristic for surface roughness. The
classification of the coefficient of friction can be very useful for gait control; for instance, in
enabling slower careful movements on a slippery surface or faster, forceful movements on
a surface with high grip.
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2.4. Classification
2.4.1. Texture Classification

As with much previous work in this area [9,10], texture classification was achieved
by feeding readings from the tactile sensor into (pre-trained) machine-learning-based
classifiers. The efficacy of four widely used machine learning classifier techniques were
tested to determine which was most suited to the texture classification task for the TacTip
and the PressTip. These were a random forest classifier (RFC) [27], which is an ensemble
decision-tree method; a support vector machine (SVM) [28], which is a statistical learning
method; a convolutional neural network (CNN) [29]; and a long short-term memory neural
network (LSTM) [30]. These methods were chosen because they can all handle complex,
noisy, high-dimension data. For the low-resolution electrical sensors, RFC, an SVM, LSTM,
and a feedforward artificial neural network (ANN) were investigated. (The CNN was not
suited to the much lower resolution of the data).

For the optical sensor (TacTip) dataset [25], the camera image was flattened into a
vector of size h × w, where h is the height and w the width of the image. In order to
incorporate the important temporal element discussed earlier into the classifier input, the
image vectors over T read cycles (frames) were concatenated, giving a classifier input vector
of size h × w × T. Similarly, for the electrical sensor dataset, concatenated classifier input
vectors of size s × T were used, where s is the number of electrical sensors. In preliminary
experiments, a systematic search of T values ranging from 1 to 20 was performed. A value
of 10 was generally found to be good, but for CNN classifiers for the TacTip, a value as low
as 4 still provided high accuracy.

After preliminary experiments with the TacTip, we found that for the CNN classifier, a
hidden layer of 128 nodes, along with 15 output nodes (one for each possible texture class),
was sufficient to achieve high accuracy. For the LSTM, a hidden layer of 50 units, with
15 output nodes, was optimal. See Table 2 for details of other classifier parameters used;
they were all determined from preliminary experiments. After training for only 100 epochs,
the neural classifiers gave very high accuracy with the TacTip.

The LSTM classifiers for the PressTip electrical sensors made use of the same parameters
as for the optical data (except for the number of inputs). These classifiers took longer to train
on the electrical dataset to find maximum accuracy—up to 60,000 epochs. An investigation of
hidden layer sizes for the PressTip revealed that accuracy drops with less than 25–30 hidden
nodes, and loss minimizes quicker with 40–50 nodes. Hence we also used 50 nodes in the
hidden layer for the PressTip to allow quicker convergence. The feedforward ANNs levelled
out at a lower accuracy during training, though with fewer epochs (1000). All classifiers were
trained on data from all 15 textures.

Table 2. The parameters of the classifiers used across experiments, as determined by preliminary
investigations. The total input size for the CNN, RFC, and SVM classifiers includes concatenated
data over T sensor cycles as explained in the main text. The electrical sensor data format is separated
by commas showing the piezoelectric sensor, accelerometer, and both.

Parameter Description

LSTM
Optical input image size 110 × 120 = 13,200
Num electrical sensors 1, 3, 4
Num nodes (hidden, output) (50, 15)
Sequence length (T) optical = 4; electrical = 10
Activation none
Learning rate 0.005
Loss function Cross Entropy Loss
Optimizer Stochastic Gradient Descent
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Table 2. Cont.

Parameter Description

CNN
Optical input image size 13,200
Num nodes (hidden, output) (128, 15)
Kernel size 3
Stride 1
Pooling type Max
Activation ReLU
Learning rate 0.005
Loss function Cross Entropy Loss
Optimizer Stochastic Gradient Descent
Sequence length (T) 4

RFC
N estimators 100
Criterion Gini
Min depth 8
Random state 0

SVM
C 1.0
Kernel RBF
Decision function OVO

ANN
Num electrical sensors 1, 3, 4
Num nodes (hidden, output) (128, 15)
Activation ReLU
Learning rate 0.005
Sequence length (T) 10
Loss function Cross Entropy Loss
Optimizer Stochastic Gradient Descent

2.4.2. Friction Classification

For friction detection, we employed regression models (random forest regression [27])
to capture complex relationships between the temporal data and friction acting on the
sensor. We used a range of regression models (Linear [31], Ridge [32], Logistic [33]) to
begin with but discovered in preliminary experiments that the random forest classifier
significantly outperformed the other regression models, as it did the neural classifiers—see
the Supplementary Material for further details. The random forest regression model used
100 estimators, a maximum depth of 25 (there was no benefit in going above this), and the
squared error criterion. The initial random state was set to zero.

2.4.3. Data Preprocessing

The optical data was converted to greyscale and passed through a Sobel filter [34]
using a kernel of 3 × 3. In later experiments the optical image was re-scaled using area
interpolation. This allowed us to investigate the role of resolution in the optical sensors.
In these experiments the image was resized to to the following percentages of the original
size: 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and the original
size. Data from the PressTip (piezoelectric and accelerometer) was preprocessed using a
Butterworth filter to reduce noise and remove spikes. The Butterworth filter was chosen
after preliminary experiments with many types of filter to ascertain which gave the best
accuracy (see Supplementary Material for details of these experiments).
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All data was scaled using min-max scaling to convert values into the range 0–1. 80% of
the dataset (2400 samples of T frames) was used for training, and 20% (600 samples) was
used for testing. See the Supplementary Material for further hyperparameter experiments
and detailed justification of the methods used.

3. Results
3.1. Textural Classification

The results of the comparative texture classification experiments are shown in Table 3
for the various sensor–classifier combinations. It is clear from the table that the optical
sensors have a much higher accuracy across all classifier types compared to the electrical
sensors. This is confirmed by the statistical analysis shown in Table 4. However, the
electrical sensor combining the accelerometers and piezoelectric sensor offers good accuracy
when using a LSTM classifier or a RFC classifier. The TacTip employing the new marker
morphology performs slightly worse than with the original marker morphology but is
still very accurate. Overall, the best performing sensor is the standard-silicone-filled
TacTip, particularly in combination with CNN or LSTM classifiers. While SVM classifiers
performed well, they took much longer to train than the other methods.

Table 3. Results of the comparative texture classification experiments using the TacTip (TT),
with standard silicone tip (Sil), and the new morphology (NM), and the various PressTip (PT)
configurations—piezoelectric denoted by P and accelerometer by A. The table shows the average (X̄)
accuracy for training and unseen test data across 20 trials, along with the best and standard deviation
(std) of the results. The results for the optical sensors are for the full image resolution.

Sensor Classifier X̄test X̄train Std Test Max Test

TT Sil SVM 99.96% 100% 0.0005 100%
TT Sil RFC 99.9% 99.98% 0.025 100%
TT Sil CNN 99.97% 99.99% 0 99.99%
TT Sil LSTM 98.1% 99.1% 0.018 99.9%
TT NM CNN 89.25% 90.31% 2.7 94.2%
TT NM LSTM 95.71% 96.28% 0.027 99.2%
PT P SVM 70% 70.4% 0.01 71.6%
PT A SVM 44.75% 51.1% 0.025 49.1%
PT A & P SVM 55.45% 57.8% 0.03 63.8%
PT P RFC 78.7% 99.96% 0.014 76.6%
PT A RFC 62.31% 100% 0.02 65.6%
PT A & P RFC 89.6% 100% 0.01 99.2%
PT P ANN 66.5% 66.5% 0.768 67.5%
PT A ANN 39.57% 43.94% 0.759 41%
PT A & P ANN 65.59% 64.84% 1.101 66.5%
PT P LSTM 77.37% 85.03% 0.67 78.6%
PT A LSTM 38.53% 42.1% 2.6 42%
PT A & P LSTM 85.5% 90% 0.67 86.5%

The number of classes in a dataset can impact classification accuracy. A binary
classification between two textures is much simpler than accurately distinguishing between
thirty textures. Hence we investigated classification performance in relation to the number
of texture classes. Because some textures might be easier to distinguish than others, we
measured average performance across five trials for each number of classes in the dataset,
with a random set of classes chosen on each trial. By evaluating the trend, we can estimate
how robust the sensors are to increasing dataset sizes. The results are shown in Figure 6. In
this set of experiments, the best optical and electrical sensor–classifier combinations from
the main comparative experiments (see Table 3) were used. As seen in Figure 6, only the
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electrical PressTip accuracy reduces as the number of classes increases, suggesting that its
low resolution makes it difficult to find relationships between larger numbers of classes.

Table 4. Statistical analysis of texture classification relative performance of the best optical and
electrical sensor–classifier combinations on unseen test data using pairwise Wilcoxon rank sum
tests with Bonferroni correction for multiple comparisons. Optical1 denotes the use of the standard
TacTip, Optical2 denotes the use of the new Morphology. A total of 20 trials on each sensor–classifier
combination were used.

Model 1 Model 2 p_Value Significant

Optical1 LSTM Piezo & Acc LSTM 6.14 × 10−8 Yes
Optical1 CNN Piezo & Acc ANN 6.30 × 10−8 Yes
Piezo & Acc LSTM Piezo LSTM 6.38 × 10−8 Yes
Optical1 CNN Optical1 LSTM 0.02 No
Optical1 CNN Optical2 CNN 7.92 × 10−9 Yes

2 3 4 5 6 7 8 9 10 11 12 13
Number of Classes
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How dataset size influences classifier performance

Train CNN TacTip
Test CNN TacTip
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Test LSTM TacTip

Figure 6. The influence of the number of texture classes in the dataset on classifier accuracy. It is
worth noting that it took significantly fewer epochs of training for the smaller number of classes with
the electrical classifiers. The results show an average across 5 trials.

The statistical analysis shown in Table 4 confirms that optical sensors outperform
electrical sensors in texture classification. Note that there was no significant difference in
the performance of the two best classifiers, CNNs and LSTM, for the TacTip. Additionally,
the original TacTip design significantly outperforms the newer morphology, suggesting
that a higher resolution of temporal movements is important for this task.

3.2. Friction Coefficient Detection

Friction detection model performance was calculated using the mean squared error
(MSE) between predicted and true values with the mean calculated over all textures in
the dataset. Although there is significant noise in the voltage readings of the electrical
sensors, the random forest regression model dealt well with this. Table 5 displays the
results of the coefficient of friction detection experiments, showing a smaller error from
the optical sensor. However, the relative performance of the electrical sensors is good and
better than for the texture classification task. Figure 7 shows lines of best fit on a graph
plotting the actual friction against the predicted friction from our regression models. The
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TacTip values are more closely clustered around the line of best fit. Although the electrical
sensor readings are noisier and wider spread, their regression model produced a close
match to the actual values. The results shown in Table 5 are for the clear-silicone TacTip,
and for various configurations of the electrical sensor (which also has a silicone tip).
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Figure 7. Friction prediction lines of best fit from the regression models for unseen test data across
the various sensors.

Table 5. Friction prediction results showing mean squared error (MSE) between actual values and
random forest regression model (RFR) predictions on the test data. We refer to piezoelectric sensors
as piez and accelerometers as acc. The results for the TacTip were all gathered using the original
image size. We trialled each model 10 times.

Sensor Regression Model Min MSE Train MSE Average

Piez RFR 0.022 0.024
Acc RFR 0.019 0.021
Acc & Piez RFR 0.018 0.021
TacTip RFR 0.0043 0.0049

3.3. Texture Classification Contact Force Generalisation

In order to test the influence of the applied contact force to texture classification, we
gathered data for our texture set at contact forces unseen during classifier training. We
tested the best trained classifiers from the original texture classification task on these unseen
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contact forces. The results for the optical TacTip and electrical PressTip (piezoelectric plus
accelerometers) sensors are shown in the top and bottom parts of Table 6, respectively.
Though the main dataset was gathered on the three contact force ranges 0.0785–0.0824 N,
1.9031–1.9228 N, and 3.0039–3.0235 N, for the generalisation experiments we removed the
contact force that was being tested from the dataset. For example, to test 0.0785–0.0824 N
as the unseen contact force (first and fifth rows of Table 6), the classifiers were tested at this
contact force having been trained on 1.9031–1.9228 N and 3.0039–3.0235 N only. To evaluate
robustness, we selected the top-performing neural classifier and the best-performing
non-neural method for each sensor. The tables demonstrate the robustness of the optical
classifiers, highlighting their ability to generalize to unseen contact force conditions.
The electrical sensor struggled to generalise to unseen contact forces, likely due to
movement-related noise—slower movements produced different readings. In contrast, the
optical sensor’s high dimensionality retained useful information despite noise.

Table 6. Texture classification accuracy at unseen contact forces for the silicone TacTip sensor (first
4 rows) and the PressTip sensor (following 3 rows). The results are averaged over 10 trials for
each texture.

Force (Newtons) Sensor LSTM SVM RFC

0.0785–0.0824 TacTip 100% 100% 100%
1.9031–1.9228 TacTip 100% 100% 100%
3.0039–3.0235 TacTip 100% 100% 100%

4.336–4.367 TacTip 100% 100% 100%
0.0785–0.0824 PressTip 4% 6.4% 12.5%
3.0039–3.0235 PressTip 15% 10.9% 10 %

4.336–4.367 PressTip 16% 7.13% 11 %

In order to investigate the issues faced by the electrical sensors in generalising to
unseen contact forces, further experiments and analysis were carried out. When we
averaged the sensor readings across trials at various contact forces using the PressTip, we
observed a clear trend as contact force increased. Figure 8 shows these averaged readings.
One of the most noticeable changes is the initial value of the piezoelectric signal, which
tends to decrease as contact force increases. This is likely due to reduced vibration at higher
contact forces, where the sensor is more firmly in contact with the surface. The initial
movement often reflects the sensor overcoming static friction. Another notable change
is the smoothness of the accelerometer signal. Analysis of the variance in the averaged
accelerometer readings across 200 trials showed a decrease in variance as contact force
increases, indicating more consistent readings under higher loads.

The very low resolution and noisy nature of the electrical sensor makes the classifier
learning task significantly harder, which helps to explain why the PressTip classifiers took
longer to train than the TacTip classifiers. While the PressTip classifiers were able to extract
features from the data to give good performance in conditions similar to those during
training, they were not able to generalise to unseen contact forces because the properties
of the sensor signals are partly determined by contact force, as indicated by the analysis
shown in Figure 8.
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Figure 8. Various contact forces applied on the PressTip sensor as it was stroked across the Plastic
surface only. We averaged 200 trials in various directions to elucidate any trends with readings and
contact force.

3.4. Effect of Resolution on TacTip

Texture classification experiments were repeated for the TacTip over a number of
different image resolutions. At each resolution the classifiers were trained and then tested
on the unseen data. The results shown in Figure 9 reveal that higher resolution generally
leads to higher accuracy. However, we discovered that for CNN classifiers with the original
marker morphology, the image resolution could be reduced to 25–30% while maintaining
accuracy above 90%. At 50%, resolution accuracy was above 99%. Other classifiers did
not perform as well as this, but most had high accuracy at significantly reduced image
resolution. This experiment shows that high resolution is unnecessary for optical tactile
sensing for texture classification.
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Figure 9. Accuracies of best TacTip classifiers (from the main texture classification experiment) when
trained on data at different spatial resolutions. The results are averaged over 5 trials per resolution.

3.5. Non-Linearity Study

In the experiments discussed so far, in keeping with all previous work on texture
classification, the sensors performed linear stroking movements (as described in Section 2).
While very good texture classification was demonstrated with this kind of movement, in
applications such as robotics, non-linear movements often occur. Hence we investigated
how the sensor–classifier pairs performed on sensations they were not trained on, induced
by non-linear movements. To do this, we collected a non-linear movement dataset by
moving the sensor in circular movements of increasing radii (1 cm, 1.75 cm, and 2.5 cm)
while increasing the contact force by approximately 0.167 newtons on each iteration. This
dataset was preprocessed using the same techniques as employed for the main experiments,
as described earlier in Section 2. The sensor–classifier pairs trained on the linear movement
dataset, as detailed in Section 3, did not generalise to non-linear motion. While the
main focus of this paper is on developing a model that can classify texture, in order
to better understand the potential for a wider range of applications, including in robotics,
further investigations were carried out into how to deal with non-linear movement, as
detailed below.

One approach to allowing generalisation to non-linear movement is to train classifiers
on enough variations in direction and contact force that they become robust to non-linear
movement. We investigated this approach by training classifiers for texture classification
on a hybrid dataset comprising the non-linear dataset described above and the original
linear dataset described in Section 2 for both the TacTip and the PressTip. The approach
was successful, achieving results comparable with those for the linear dataset results as
described in Section 3.1. Classifiers were able to generalise over both unseen linear and
non-linear movement; see Table 7 below for the results.
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Table 7. Comparison of PressTip and TACTIP texture classification performance trained on linear and
non-linear data from 20 trials. The best performing classifier types from the previous linear dataset
experiments were used.

Sensor Classifier Test Accuracy Train Accuracy Std

PressTip RFC 77.3% 100% 0.00%
TACTIP RFC 97.58% 98% 0.00%
PressTip LSTM 57.8% 85.3% 0.011%
TACTIP LSTM 83.71 % 84.9% 0.00%

Future work could involve incorporating SO(3) rotations to make the model invariant
to orientation, thereby improving robustness to unseen sensory inputs, or converting the
images to a latent space using an autoencoder to train models on a more compressed feature
space. Making a fully generalisable model is a significant paper in its own right and is
outside the scope of the research described here. However, the preliminary results shown
in Table 7 are very promising.

4. Conclusions
Across experiments, the optical sensor consistently outperformed the electrical sensors,

likely due to its higher spatial resolution, which provides richer detail for classifier training.
In contrast, the lower resolution of the electrical sensors made it more susceptible to noise.
However, the electrical sensor was able to classify texture at a good accuracy (>80%), and
when predicting friction, the performance gap between the two sensors was reduced to just
5%, suggesting that the electrical sensors can still offer competitive accuracy in this context.
Given the significantly lower cost of electrical sensors, users must weigh the trade-off
between cost and accuracy. Additionally, the lower data and processing requirements of
electrical sensors make them more suitable for some embedded robotic applications, where
memory constraints can make optical sensors less practical due to the higher data storage
and processing needs associated with their cameras. Future work will include further
studies of the role of TacTip optical marker resolution, and an investigation into whether
or not performance on the tasks described in this paper is affected by marker patterns.
An investigation into the reduction in image size while using larger markers could be an
interesting avenue. In addition, the fusion of electrical and optical components into a hybrid
sensor would provide richer sensory information, which might further improve robustness
to non-linear data. This is a potentially fruitful direction for future investigations of texture
and friction classification in robotic applications involving complex sensor movements.
Other kinds of sensor fusion, including the incorporation of barometric-style pressure
sensors [35], may also be useful in future wider robotic applications. If memory or cost is
not an issue, then optical sensors have a higher accuracy and will perform more robustly.
However, this study has shown that optical tactile sensors can operate at significantly
reduced image resolution without losing accuracy. This reduces processing requirements,
which might be a consideration in some applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s25164971/s1, File S1: document with extended details of
experimental design and sensor development.
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