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Designing controllers for autonomous robots is not an exact science, and there are few guiding princi-
ples on what properties of control systems are useful for what kinds of task. In this article we analyze

the functional operation of robot controllers developed using evolutionary computation methods, to

elucidate the strengths and weaknesses of the underlying control system class. By comparing and
contrasting robot controllers based on two different classes of artificial neural network, the GasNet

and NoGas networks, we show that the increased evolvability of the GasNet class on a visual shape

discrimination task is due to the temporally adaptive nature of the GasNet, where neuronal plasticity
mediated through the concentration of virtual neuromodulatory “gases” occurs over a wide range of

time courses. We argue that the availability of mechanisms operating over a wide range of potential

time courses is a crucial property for controllers used to generate adaptive behavior over time, and

that the design process should easily be able to adapt those time courses to the natural time scales in
the environment.

Keywords evolutionary robotics · artificial neural networks · GasNets · neuromodulation · neuronal
plasticity

A good performance, like a human life, is a temporal affair: a process in time.

 – Mortimer J. Adler

1 Introduction

If we are to see evolutionary computation and other
artificial evolution methodologies applied regularly in
real-world robotics problems, it is crucial that we under-
stand the strengths and weaknesses of the underlying
control classes used. In a number of recent articles we
have investigated the search spaces underlying two
neural network control classes used in evolutionary
robotics experiments, in an attempt to relate the prop-

erties of the fitness landscape to the ease of finding
successful controllers (Smith, Husbands, Layzell, &
O’Shea, 2002; Smith, Husbands, & O’Shea, 2001a, b,
in press). In this article we use functional analysis of
evolved robot control solutions to relate properties of
the two underlying network classes to the ease of find-
ing good solutions. Such understanding can give us an
insight into properties of control classes that may be
useful in a wider range of problems than simply the
task at hand.
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We analyze robot controllers based on two differ-
ent classes of artificial neural network, the GasNet and
NoGas networks. We show that the increased evolva-
bility1 of the GasNet class on a shape discrimination
task is due to the temporally adaptive nature of the
GasNet, where neuronal plasticity mediated through
the concentration of virtual neuromodulatory “gases”
occurs over a wide range of modifiable time courses.
We argue that the availability of processes operating
over a wide range of potential time courses is a crucial
property for controllers used to generate adaptive
behavior over time, and that the ease with which agent
controllers can be tuned to the particular temporal
characteristics of the environment is a principal deter-
minant of the suitability of the underlying solution
class to the problem at hand. Finally, we propose that
if we are to develop further evolvable artificial neural
network classes for adaptive control, the starting point
must be from within the class of temporally adaptive
networks of which the GasNet is a member.

It is clear that allowing agents access to temporal
information is necessary for a range of complex cog-
nitive behaviors, not least because they can then exploit
the temporal structure inherent in the interaction between
agent and environment. For example, Gallagher & Beer
(1999) argue that “nontrivial behavior requires the
integration of experiences across time and the ability
to initiate actions independent of an agent’s immediate
circumstances” (p. 1277). Here we argue that agents
performing simpler tasks, such as the visual shape dis-
crimination investigated here, can also benefit from
such temporally adaptive control classes. In particular,
we see that agents based on such control classes dis-
play a range of rich temporal dynamics such as pattern
generation and active perception, and furthermore these
complex dynamics are exploitable by artificial evolu-
tionary processes. In other words, temporally adaptive
control systems are more evolvable.

Section 2 describes the GasNet and NoGas robot
control classes, the evolutionary computation algorithm
used, the robot control task used, and rate of evolution
results. The task is a visual shape discrimination exper-
iment; starting from an arbitrary position and orienta-
tion in a black arena, robot controllers must navigate
to a white triangle while ignoring a white square. Suc-
cessful GasNet controllers consistently evolve faster
than NoGas controllers, and a central theme of the arti-
cle is that we can use analysis of evolved controllers to
understand the reasons for this faster evolution.

Section 3 addresses the question of what might
lead to differences in evolutionary search time, outlin-
ing a number of possibilities. In Section 4 we introduce
the methods of dynamical systems analysis, illustrat-
ing the techniques through analysis of the operation of
a GasNet controller pattern generation subnetwork.
We then go on to use the dynamical systems analysis
to identify possible reasons for this increased evolu-
tionary rate, with Section 5 using the analysis of a sin-
gle GasNet robot controller to frame a number of
hypotheses for the suitability of the GasNet class to
robot control. In particular, we show how the proper-
ties of gas diffusion can be used to filter out sensor
input noise, produce simple pattern generation net-
works, and switch networks from one stable state to
another. We hypothesize that these properties lead to
GasNet solution spaces in which it is easier to find
good controllers than in the corresponding NoGas
solution spaces.

In Section 6 we go on to compare the operation of
two controllers, one GasNet solution and one NoGas
solution, which utilize the same visual shape discrimi-
nation strategy. We argue that the GasNet controller is
easier to tune to the particular characteristics of the
environment than the functionally equivalent NoGas
controller, and in Section 7 we find evidence to sup-
port such an argument through re-evolution of the
functionally equivalent controllers in environments with
modified characteristics. We then extend the re-evolu-
tion analysis to a larger sample of previously evolved
GasNet and NoGas controllers, showing that GasNet
controllers are faster to re-evolve in modified environ-
ments, backing up the hypothesis that GasNet control-
lers are easier to tune to the particular characteristics
of the environment. The article closes with summary
and discussion.

2 GasNet and NoGas Robot Control 
Networks

The GasNet class of artificial neural networks (ANNs)
incorporates an abstract model of a gaseous diffusing
neuromodulator into a more standard ANN (Husbands,
1998; Husbands, Smith, Jakobi, & O’Shea, 1998). In
previous work the networks have been used in a vari-
ety of evolutionary robotics tasks, comparing the rates
of evolution for networks with and without (the NoGas)
the gas signaling mechanism active. In a variety of
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robotics tasks, GasNet controllers evolve significantly
faster than NoGas controllers (see, for example, Hus-
bands, 1998; Husbands et al., 1998). Initial work aimed
at identifying the reasons for this faster search has
focused on the search spaces underlying the GasNet
control class, investigating the ruggedness and modal-
ity of the spaces (Smith et al., 2001b), nonadaptive
phases of evolution (Smith et al., 2001a), and the local
landscape evolvability surrounding solutions (Smith et
al., in press). In this article we analyze successfully
evolved controllers to highlight the properties of Gas-
Nets leading to faster evolutionary search.

2.1 The GasNet Architecture

The GasNet is an arbitrarily recurrent ANN augmented
with a model of diffusing gaseous modulation, in which
the instantaneous activation of a node is a function of
both the inputs from connected nodes and the current
concentration of gas(es) at the node. Thus in addition
to the standard electrical activity “flowing” between
nodes, an abstract process analogous to the diffusion
of gaseous modulators such as nitric oxide is at work
(Philippides, Husbands, & O’Shea, 2000). In this proc-
ess, the virtual gases do not alter the electrical activity
in the network directly but rather act by changing the
gain of transfer function mapping between node input
and output in a concentration-dependent manner.

The network underlying the GasNet model is a
discrete time step, recurrent neural network with a
variable number of sigmoid transfer function nodes.
These nodes are connected by either excitatory (with a
weight of +1) or inhibitory (with a weight of –1) links
with the output Ot

i, of node i at time step t determined
by a continuous mapping from the sum of its inputs,
as described by the following equation:

(1)

where Ci is the set of nodes with connections to node i
with connection weights wji,  the output of node j
on the previous time step, I t

i the external (sensory)
input to node i at time t, and bi a genetically set node
bias (ranging from –1 to +1). Each node has a geneti-
cally set default transfer function parameter K 0

i (see
Section 2.3), and for the NoGas class this transfer

parameter is fixed over the operation of the network:
.

2.2 Gas Diffusion in the Networks

To incorporate the gas concentration model, the net-
work is placed in a two-dimensional plane, with node
{x, y} positions specified genetically. The GasNet dif-
fusion model is controlled by two genetically speci-
fied parameters, namely the radius of influence r around
the emitting node (ranging from 10% to 50% of the
two dimensional plane dimensions), and the rate of
build up and decay s (ranging from 1 to 11 time steps).
Spatially, the gas concentration varies as an inverse
Gaussian of the distance from the emitting node with a
spread governed by r, and the concentration set to zero
for all distances greater than r (Equation 2). This is
loosely analogous to the length constant of the natural
diffusion of nitric oxide, related to its rate of decay
through chemical interaction (Philippides et al., 2000).
The maximum concentration at the emitting node is
one, and the concentration builds up and decays line-
arly with time at a rate determined by s, shown in
Equations 3 and 4. For an emitting node, the concen-
tration of gas C (d, t) at distance d from the node and
time t is given by Equations 2 to 4:

(2)

(3)

(4)

where C(d, t) is the concentration at a distance d from
the emitting node at time t, te is the time at which emis-
sion was last turned on, ts is the time at which emis-
sion was last turned off, and s (controlling the slope of
the function T ) is genetically determined for each node.
To summarize, within a radius of r from the node, gas
builds up (and decays) linearly to a maximum of
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 in s time steps. The total concentration at a
node is then determined by summing the concentra-
tions from all other emitting nodes (nodes are not
affected by their own concentration, to avoid runaway
positive feedback).

2.3 Modulation by the Gases

There are two virtual gases in the network, gas 1 and
gas 2, which increase and decrease K t

i (see Equation 1)
respectively in a concentration-dependent fashion. Both
the type of gas emitted by a node and the conditions
under which it emits are specified genetically. Nodes
emit either (a) gas 1, (b) gas 2, or (c) no gas, and emis-
sion occurs when either (a) the node activity increases
beyond the electrical threshold 0.5, or (b) the local
concentration of gas 1 increases beyond the threshold
0.1, or (c) the local concentration of gas 2 increases
beyond the threshold 0.1. The concentration-depend-
ent modulation is described by Equations 5 to 8, with
transfer parameters updated on every time step as the
network runs. Thus we have:

(5)

(6)

(7)

(8)

where P[ j] refers to the jth element of set P, Dt
i is the

node i’s pointer into the set P of possible discrete val-
ues that Kt

i can assume, N is the number of elements in
P (13 are shown in Equation 6), D0

i is the genetically
set default value for Dt

i (ranging from 1 to 13) , Ct
i1 is

the concentration of gas 1 at node i on time step t, Ct
i2

is the concentration of gas 2 at node i on time step t,
and C0 and K are global constants (both set to 1 in the
experiments reported in this article).

Thus, the concentration of each gas is directly
proportional to any change in Dt

i, with a corresponding
change in Kt

i. Although the change in Kt
i is nonlinear

these values represent a smooth change in the slope of
the transfer function. Since the transfer functions can
change throughout the lifetime of the network, this

system provides a form of neuronal plasticity not seen
in most other neural network classes.

2.4 Visual Shape Discrimination

The evolutionary task at hand is a visual shape dis-
crimination task; starting from an arbitrary position
and orientation in a black-walled arena, the robot must
navigate under extremely variable lighting conditions
to one shape (a white triangle) while ignoring the sec-
ond shape (a white square). Fitness over a single trial
was taken as the fraction of the starting distance moved
toward the triangle by the end of the trial period, and
the evaluated fitness was returned as the weighted aver-
age over N trials of the controller from different initial
conditions:

(9)

where DF
i is the distance to the triangle at the end of

the ith trial, and DS
i the distance to the triangle at the

start of the trial, and the i trials are sorted in descend-
ing order of . Thus good trials, in which the con-
troller moves some way toward the triangle, receive a
smaller weighting than bad trials, encouraging robust
behavior on all trials. In practice we use 16 trials, chang-
ing the relative positions of the triangle and square,
and the starting orientation and position of the robot,
on each trial.

Success in the task was taken when an evaluated
fitness of 1.0 was obtained over 30 successive genera-
tions of the evolutionary algorithm. In the work reported
here, fitness evaluations are carried out in a verified
minimal simulation (Jakobi, 1998); see Figure 1 for a
screen-shot of a fitness evaluation in simulation.
Evolved controllers have been successfully transferred
to the real robot (Husbands, 1998). As in many prob-
lems requiring controllers to provide sensor-to-motor
mappings over time, fitnesses are extremely time con-
suming to evaluate (in the work presented here, evalu-
ating a sample of 106 fitnesses takes around 24 hours
on a Pentium II 700 MHz machine) and inherently
very noisy.

Figure 2 shows the distribution of fitnesses from a
single controller over 10,000 evaluations. It should be
emphasized that the environmental noise for the robot
controllers is not simply variation in the received fit-
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ness score but is a crucial feature of the robot minimal
simulation model. Controllers must evolve to be robust
to such noise, so as to transfer successfully to the real
world; two controllers may be of equal fitness when
evaluated in a noiseless environment but may be of
very different fitnesses in the full noise model. The
level of noise in the model is higher than that found in
the real world, to evolve robot controllers successfully
in simulation able to operate successfully in the real
world (Jakobi, 1998).

2.5 The Solution Representation

The neural network robot controllers were encoded as
variable length strings of integers, with each integer
allowed to lie in the range [0, 99]. Each node in the
network was coded for by 19 parameters, controlling
such properties as node connections, sensor input,
node bias, and all the variables controlling gas diffu-
sion as described in Sections 2.2 and 2.3. Both the
robot control network, an arbitrarily recurrent ANN,
and the robot sensor input morphology, that is, the
position of the input pixels on the visual array, were
also under evolutionary control. Thus mutation of par-
ent solutions (Section 2.6) is able to produce offspring
solutions with varying network architecture, network
node properties, and sensor morphology. In all experi-

ments, the evolutionary population was initially seeded
with randomly generated genotypes coding for net-
works of 10 neurons. For further details see Husbands
et al. (1998) and Smith (2002).

2.6 The Evolutionary Algorithm and Mutation 
Operator

A distributed asynchronously updating evolutionary
algorithm was used, with a population of 100 solu-
tions arranged on a 10 ×10 grid. Fitness was awarded
on the fraction of the distance moved toward the trian-
gle over a series of 16 trials with different initial con-
ditions (see Equation 9). Parents were selected with
probability proportional to their fitness ranked in ascend-
ing order over the mating “pool” consisting of a ran-
domly chosen grid point plus its eight nearest neighbors.
The parent solution was mutated to create the off-
spring solution that was placed back in the mating
pool, replacing a solution chosen with probability pro-
portional to their fitness ranked in descending order
over the mating pool. One generation was specified as
100 such breeding events. Figure 3 shows the pseudo-
code for the evolutionary algorithm.

In each breeding event, three mutation operators
were applied to solutions with mutation rate µ (for the
experiments detailed here, µ = 0.04). The creep opera-
tor was applied to each integer in the string, with
mutation in a Gaussian distribution N(0, 10) centered

Figure 1 Screen shot of the simulated arena and robot.
The bottom-right view shows the robot position in the
arena with the triangle and square. Fitness is evaluated
on how close the robot approaches the triangle. The top-
right view shows what the robot “sees,” along with the
pixel positions selected by evolution for visual input. The
top-left view shows the instantaneous activity of all nodes
in the neural network. The bottom-left view shows the
robot control neural network.

Figure 2 The fitness distribution of a single genotype
evaluated 10,000 times in the minimal simulation evalua-
tion environment, where 95% of the fitnesses lie in the
range [0.1343, 0.2856], with possible controller fitness ∈
[0, 1].



166 Adaptive Behavior 10(3–4)

on its current value (20% of these mutations com-
pletely randomized the integer). The addition operator
was applied to the whole genotype, adding one neuron
to the network, that is, increasing the genotype length
by 19 parameters. Finally, the deletion operator deleted
one randomly chosen neuron from the network, that
is, decreasing the genotype length by 19. It should be
noted that the mutation rate µ = 0.04 used in these
experiments is a much larger level of mutation than
typically used in artificial evolution optimization (and
certainly much larger than in biological evolution).
However, lower levels of mutation lead to extremely
slow evolution of successful solutions (Smith, 2002).

2.7 Rates of Evolution: Previous Results

The evolution of solutions based on the GasNet class
consistently produces successful robot control solu-
tions in significantly fewer evaluations required for
the evolution of solutions based on the NoGas class.

This result holds over a number of different evolution-
ary algorithms, with a number of different mutation
and recombination rates used, including fixed length
genotypes, uniform and one-point crossover recombi-
nation, and mutation rates affecting from 1% to 62%
of the genotype loci. Two different network connectiv-
ity schemes were also investigated, with both seen to
show faster GasNet evolution. For full results, see
Smith (2002). Figures 4 and 5 show example results.
In the next section, we outline possible reasons for
this evolutionary rate difference.

3 Why are GasNets More Evolvable?

What are the reasons for the rate of evolution differ-
ences seen between the GasNet and NoGas spaces,
shown in Figures 4 and 5? We can frame many of the
possible reasons as properties of the underlying fitness
landscapes. There may simply be many more success-
ful GasNet than NoGas solutions, simplifying the search
problem. The underlying search spaces may differ in
their ruggedness, local modality, degree of neutrality,
or some other property, making it easier for search proc-
esses to find solutions of increasing fitness. More sub-
tle effects may also be important, as properties of the
fitness landscapes may not be homogenous across the
space; for example, the GasNet space may contain
smaller regions that are easier to search in some way.

In previous work, Smith et al. (2001b) have shown
no evidence for increased numbers of GasNet solu-
tions in the search space; massive random sampling

Figure 3 Pseudo-code for the asynchronously updating
evolutionary algorithm.

Figure 4 The mean number of evaluations required for (a) uniform, one-point, and no recombination, and (b) no
recombination, varying mutation rate µ ∈{0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64}. Data averaged over 20 runs of the dis-
tributed evolutionary algorithm. The error bars represent 95% confidence limits for the mean; the number above the bar
gives the percentage of runs failing to finish in 1,000,000 evaluations.
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shows very few solutions of either class above 50%
fitness, even though this fitness is relatively easy to
find using evolutionary computation methods. It is
entirely possible that the number of high-fitness Gas-
Net solutions is significantly larger than the number of
NoGas solutions, but this is extremely difficult to show
without exhaustive sampling of the space, which is
clearly impractical. Similarly, it was seen that the spaces
do not measurably differ in ruggedness and modality
at different fitness levels. Smith et al. (2002) develop
the technique of fitness evolvability portraits, using
the fitness distribution of the search space surrounding
solutions to build up a description of the fitness land-
scape. However, applying such measures to the Gas-
Net and NoGas search spaces shows no measurable
differences in ruggedness, modality and neutrality
between the landscapes underlying the two classes
(Smith et al., in press).

The control classes are also of similar robustness
to mutation; Figure 6 shows the fitness distribution of
all one-point mutations from the sample of successfully
evolved controllers used in Section 7. The robustness
of the GasNet and NoGas controllers are extremely
similar; in both cases roughly 80% of mutations are
neutral, with 10% catastrophic (it should be noted that
the mutation operators used during optimization typi-
cally mutate more than one loci value, so the observed
degree of neutrality will be significantly smaller than
this 80%).

However, the understanding of search difficulty in
terms of the fitness landscape properties is not simple
in such a complex search space. The differences

between the spaces may be small enough to be obscured
by variation; it may be the case that search processes
only “recognize” these differences when iterated over
large numbers of fitness evaluations. It is also possible
that the distinctions between the spaces are not meas-
urable by the techniques at hand; some other property
of high-dimensional search spaces may be involved.
In this article we develop a different approach, through
analysis of successfully evolved controllers, allowing
us to identify general properties of the GasNet and
NoGas classes that may hold in a wider class of prob-
lems than just the visual shape discrimination task

Figure 5 The mean number of evaluations required for (a) variable and fixed-length genotypes, and (b) arcs and points
node connectivity schemes. Data averaged over 20 runs of the distributed evolutionary algorithm. The error bars repre-
sent 95% confidence limits for the mean; the number above the bar gives the percentage of runs failing to finish in
1,000,000 evaluations.

Figure 6 Robustness of GasNet and NoGas solutions;
fitness of the one-point mutations from sample of suc-
cessfully evolved controllers. Fitness evaluated in non-
noisy simulation.
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used here. In the next section we apply dynamical sys-
tems analysis to the operation of evolved robot control
networks.

4 Dynamical Systems Analysis

The dynamical systems approach analyzes how a sys-
tem behaves over time, in particular investigating the
future behavior of the system given the current state of
the system. A full description of dynamical systems
theory and analysis is well beyond the scope of this
article; there is an extremely large body of literature
dealing with a variety of dynamical systems, including
physical (see, for example, Goldstein, 1980), biologi-
cal (see, for example, Rosen, 1970; Rubinow, 1975)
and chemical systems (see, for example, Gavalas, 1968).

Previous work on evolving robot controllers has
also used dynamical systems analysis to examine the
behavior of evolved controllers, most especially in the
work by Beer and coworkers (see, for example, Beer,
1990, 1995; Beer & Gallagher, 1992; Chiel, Beer, &
Gallagher, 1999; Calvatti & Beer, 2001), typically to
give insight into design principles from controllers
evolved on different evolutionary runs. However, here
we use the analysis to identify potential reasons for
the faster evolutionary search seen in Section 2.7. In
the next section we apply the basic methods to an

example subnetwork from the GasNet controller ana-
lyzed more fully in Section 5.

4.1 A Discrete Dynamical Pattern Generation 
Network

In this section we consider a two-node pattern genera-
tion network, part of the evolved robot controller ana-
lyzed more fully in Section 5, and shown in Figure 7.
In particular, we want to see how the properties of
both the individual nodes and the gas diffusion mecha-
nism lead to pattern generation.

In the robot controller shown in Figure 7, the two-
node subnetwork in the top-right of the node plane
acts as a pattern generator, in which the output of the
right-back motor node “spikes” once every 8 time steps.
Figure 8 gives the behavior of the two nodes over 100
time steps, showing node output (the bottom two graphs
Y2, Y5), node transfer parameter (Graphs K2, K5), and
the concentrations of the two gases (graphs C1Y2,
C1Y5, C2Y2, C2Y5). Note the spiking behavior shown in
the motor node Y2 graph; once in every 8 time steps,
the output of this motor node is positive.

As we shall see in Section 5.2, this spiking behav-
ior is crucial to the final fitness of the solution; with
both motors on, the robot would move straight forward.
However, the right-back motor node turning on once
in every eight time steps produces a slow clockwise

Figure 7 Open-loop GasNet visual discrimination network. Gas diffusion radii are shown only where diffusion occurs.
The node plane is shown with {x, y} positions of each node, the connections between each node (indicating whether
excitatory/inhibitory) including recurrent connections, and the position in the visual field of any external inputs.
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turn in the robot, which results in the robot arcing back
toward the triangle. So, how is this spiking behavior
generated?

The two systems are described by the dynamical
equations for the nodes, governed by the input–output
transfer function (Equation 1). For our two-node sys-
tem, the right-back motor node (Y2) receives an inhibi-
tory recurrent input, and an excitatory input from the
second node in the network (Y5). The second node does
not receive any input, and neither node receives exter-
nal sensor input. Both nodes are potential gas diffu-
sion emitters, with the motor node emitting gas 1 (thus
increasing K on nearby nodes) when output activity is
high, and node 5 emitting gas 2 (decreasing K on nearby
nodes) when the concentration of gas 1 at node 5 is
high. Thus we can write down our dynamical equa-
tions for the nodes:

(10)

(11)

Note that because node 5 receives no input, recurrent
or otherwise, it has a constant output over time of
approximately 0.44 for all values of the transfer param-
eter K5.

The transfer parameter K is dependent on the cur-
rent concentrations of gas at the node (Section 2.3),

and as shown in Figure 8, it changes during the opera-
tion of the network. To consider the dynamical system
as autonomous, we would need to incorporate the
change of K over time into the equations. However,
we can instead regard the dynamical equations as non-
autonomous, changing over time through responding
to external input, and solve for the values of K that the
system is likely to encounter. By default (the geneti-
cally determined value) K2 = 4, thus our motor node
system is simply the one-dimensional:

(12)

with Yt
2 rewritten as y, and Yt–1

2  rewritten as x. We find
the fixed point(s) by setting y = x and solving, obtain-
ing a single fixed point for the motor node at y = x = a
= Y2 ≈ –0.48. Now we want to know the stability of
this point a. For the one-dimensional case we can use
the first differential directly (Sandefur, 1990):

(13)

Now, for the tanh transfer function used in this article:

(14)

(15)

which gives us the fixed point at Y2 ≈ –0.48 as unsta-
ble. Intuitively, we can understand this instability as a
result of the high level of inhibitory feedback on the
motor node. The output over time of the node, in the
absence of high gas concentrations, will thus be an
oscillating ±1 2-cycle. In other words the node behav-
ior is a limit cycle of period 2, in which node output
alternates between +1 and –1 (see Figure 9a).

However, when the activity of the motor node is
high, which will happen on every other time step once
transients have died down, the motor node will emit
gas 1. The distance between the nodes in the subnet-
work is such that the concentration of gas 1 near node
5 will cause node 5 in turn to emit negative gas 2. Con-
sideration of the concentration of this negative gas in
the region of the motor node shows that K2 will
decrease from 4 to 0.25, seen in Figure 8. Application
of fixed point stability analysis shows that the new

Figure 8 For nodes 2 (the right-back motor node) and
5, involved in the “spiking” subnetwork, the figure shows
data over a run of 100 time steps for node output Y ∈ [–1,
1], node transfer parameter K ∈ [–4, 4], positive and neg-
ative gas concentrations C1, C2 ∈ [0, 1] at the node site.
Area between the output and time axis is shaded for clar-
ity.
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one-dimensional system for the motor node possesses
a stable equilibrium point at Y2 ≈ –0.56, understood
intuitively through the much smaller inhibitory recur-
rency on the motor node. Figure 9 shows the output
over time of the motor node under the two gas concen-
trations.

Now, this stable fixed point will result in the
motor node ceasing to emit gas due to low output
activity, which in turn results in node 5 ceasing to emit
gas, as emission was stimulated by the presence of gas
1. The fall in gas concentration will then increase K2,
destabilizing the fixed point. The motor node will
return to the ±1 2-cycle, and the pattern repeats.

Thus we have explained the pattern generation
subnetwork. The base behavior of the motor node is a
±1 2-cycle oscillation, providing the single spike seen
in Figure 8. This spike stimulates gas emission from
both nodes, resulting in the creation of a stable fixed
point to which the motor node returns. This equilib-
rium state is destabilized by the subsequent decay of
gas concentration, and the pattern repeats. Thus it is the
interaction between the gas and electrical mechanisms
in the network that produces the fixed limit cycle spik-
ing behavior; high electrical activity of node 2 stimu-
lates gas emission, which in turn inhibits node 2, in
turn stopping the emission of gas which in turn finally
allows node 2 to return to high electrical activity.

In a number of other successfully evolved GasNet
controllers we have observed similar subnetworks. It
appears that the properties of the GasNet class lend
themselves readily to pattern generation. In the next
section, we describe the operation of an entire robot

control network used for visual discrimination in a
noisy environment, using the techniques developed in
this section.

5 Open-Loop GasNet Controller 
Analysis

In this section we analyze in detail the operation of the
GasNet controller shown in Figure 7. It is seen that the
mechanism underlying successful triangle discrimina-
tion is a permanent open-loop switch from one dynam-
ical system to another, regulated by gas modulation of
node properties. The open-loop nature of the switch
ignores further external input. We show that the dynam-
ical systems approach can be used to identify a number
of possible reasons for the evolvability of the GasNet
class, and we also analyze the failure modes of the
controller.

Figure 7 shows the network layout for the open-loop
GasNet controller, and Figure 10 shows two evalua-
tions of the controller. In both evaluations, the robot
rotates counter-clockwise until after it has rotated past
the triangle, at which point it moves forward with a
slow clockwise arcing turn that brings it back to the
triangle.

The controller behavior is based on the two sub-
networks in the right-hand corners of the node plane
(Figure 7); both are required for accurate triangle find-
ing behavior despite the lack of explicit interaction
between the two networks. The first pattern genera-
tion subnetwork (consisting of nodes 2 and 5) was

Figure 9 Yt
2 = tanh(–Kt

2(2Yt–1
2  + 0.44) –0.66) behavior over time for different Kt

2 values (modulated by the concentra-
tion of gas 2 at the node). The gas-concentration-mediated switch between these two dynamical states is the basis for
pattern generation. (a) Kt

2 = 4 has an unstable fixed point at Y2 ≈ –0.48. When gas concentration is low, the behavior is
a ±1 2-cycle. (b) Kt

2 = 0.25 has a stable fixed point at Y2 ≈ –0.56 when gas concentration is high.
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described fully in Section 4.1. This subnetwork pro-
duces a periodic output of the right-back motor node,
in which the motor node is on for one time step in
every eight, producing the slow clockwise turn once
the triangle has been rotated past. The second subnet-
work (consisting of nodes 3, 6, and 7) is described in
Section 5.1 and produces a fixed behavior in which the
subnetwork permanently switches from one stable state
to another, again once the triangle has been rotated past.
Both networks rely heavily on gas diffusion effects
(disabling gas diffusion results in the failure of both
networks), and both are required for the overall trian-
gle discrimination behavior.

The network is described by the node transfer func-
tions:

(16)
(17)

(18)

(19)

(20)
(21)

(22)

(23)

where fixed values for the transfer function parame-
ters Kt

i are shown only for nodes where no increase in
gas concentration occurs during evaluation.

None of the three nodes not involved in the sub-
networks receive any external input; nodes 0 and 1
(respectively the right- and left-forward motor nodes)
stabilize at constant positive values given by Y0 = tanh
(–0.5Y0 + 0.48) and Y1 = tanh (0.16), respectively, while
node 4 stabilizes at a constant negative value, Y4 =
tanh (0.25Y4 – 0.28) but is unused by the network. Thus
both forward motor nodes are continually on, and behav-
ior is governed by the two subnetworks acting on the
back motor nodes. In the next section we analyze the
switching subnetwork.

5.1 Stable-State Switching

In the open-loop controller, the only nodes receiving
external visual input are in the subnetwork involved in
the triangle discrimination network, consisting of the
left-back motor node 3, and nodes 6 and 7. The sub-
network, shown in the bottom-right corner of the node
plane (Figure 7), regulates the left-back motor node
through electrical synapse and gas diffusion effects.
Both nodes 6 and 7 receive recurrent and visual input,
while the motor node 3 receives recurrent input, plus
an input from node 7. Figure 11 shows the output Y,
transfer function parameter K, and gas concentrations
C1, C2 for the three nodes. The three node subnetwork
produces a dynamic system that can produce a perma-
nent switch from one stable state to another, when a
specific combination of high external sensory input is
received. Note that we are treating the subnetwork as

Figure 10 Two evaluations of the open-loop controller analysed in Section 5, showing the arena with the triangle and
square shapes on the wall. The robot is represented by the black circle, with the line showing the forward direction. Note
how the robot curves back in toward the triangle once it starts moving forwards, due to the pattern generation subnet-
work analyzed in Section 4.1.
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a nonautonomous dynamical system, receiving exter-
nal input from the environment. External visual input
is received by nodes 6 and 7, but only when the visual
input level is above the genetically specified node
input thresholds. We analyze the subnetwork behavior
for the cases when inputs are below threshold, and
when inputs are above visual input threshold levels.

5.1.1 Inputs Below Threshold Both nodes 6 and 7
have the same high visual input threshold, with only
intensities above 0.84 having any effect. So we can
investigate the case when input is below this, where
the equations simplify to Yt

6 = tanh(Yt–1
6 – 0.38) and Yt

7

= tanh(2Yt–1
7  – 0.32) (in the absence of gas, Kt

3 = –1,
Kt

6 = 1, and Kt
7 = 2). The stable solution to these equa-

tions is Y3 ≈ 1.0; Y6 ≈ –0.8; Y7 ≈ –1.0. Note that Y7

has 3 stable fixed points (with values Y7 ∈{–1.0, 0.3,
0.9}), but applying fixed point stability analysis (Sec-
tion 4) shows that from an initial position of Y7 = 0.0,
the Y7 ≈ –1.0 solution is reached. However, the other
solutions are crucial when input is above threshold, a
situation that is analyzed in the sections below. Both
nodes 6 and 7 emit negative gas when output activity
is high, but this is not the case for the stable point. In
the presence of negative gas, node 3 emits positive
gas—again this is not the case for the stable point.

Thus we have the general picture when no visual
input is received above the threshold level of 0.84.
Both visual input nodes 6 and 7 are highly inhibited,
and the left-back motor node 3 is highly excited. No
nodes are emitting gas, and gas concentrations are
zero in the neighborhood of each node. Thus the left
motor is inhibited, and the robot circles counter-clock-
wise, due to the right motor being on for seven in eight
time steps (remember that the spiking subnetwork on
the left-back motor node only turns off the motor one
in eight time steps; see Section 4.1). So what happens
when inputs are above threshold?

5.1.2 Inputs Above Threshold The following anal-
ysis assumes inputs take their maximum value of 1.0
but is qualitatively the same for all values above the
visual input thresholds of 0.84. In the presence of high
input to both nodes (again in the absence of high gas
concentrations), the equations simplify to Yt

6 =
tanh(Yt–1

6  + 0.62) and Yt
7 = tanh(2Yt–1

7  + 1.68); the sta-
ble solution is Y3 ≈ –0.8; Y6 ≈ 0.9; Y7 ≈ 1.0. Note
how all the node output activities have reversed; the
previously inhibited nodes 6 and 7 are now excited,
while the previously excited left-back motor node is
now inhibited. The input threshold has produced an
on/off “switch.” The immediate effect of high visual
input to node 7 is to turn off the left-back motor node
through the inhibitory connection, thus turning on the
left motor, so the robot follows a slow clockwise turn.

However, the picture is complicated by the emis-
sion of gas from the subnetwork nodes. Both nodes 6
and 7 emit negative gas when highly active, and node
3 emits positive gas in the presence of high negative
gas concentrations. Three different scenarios are inves-
tigated: where both inputs go high at the same time,
and where either input goes high first.

In the model of gas diffusion used, gas concentra-
tion builds up according to Equations 2 to 4, reaching

a maximum concentration C = C0 . The node 6
characteristics ensure negative gas spreads out very
quickly over a large area: The concentration of nega-
tive gas at node 7 due to node 6 emission quickly
affects the transfer function (on the very next time
step). The small distance between nodes 6 and 7, and
the high value of the radius of gas emission r for node
6, produce a gas concentration that drops K7 from 2 to

–0.25. Now Yt
7 = tanh(–0.25Yt–1

7  – 0.57) has a stable

Figure 11 For nodes 3 (the left-back motor node), 6
and 7, involved in the “switch” subnetwork described fully
in Section 5.1, the figure shows data over a run of 100
time steps for node output Y ∈ [–1, 1], node transfer
parameter K ∈ [–4, 4], positive and negative gas concen-
trations C1, C2 ∈ [0, 1] at the node site. Area between the
output and time axis is shaded for clarity.

e d r⁄( )2–
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negative solution (–0.43) even with high positive sen-
sory input. Thus, if node 6 receives bright input before
node 7, node 7 is inhibited despite receiving bright
input, so does not inhibit the left-back motor node,
and the robot continues rotating.

The case where both inputs are bright at the same
time is very similar to the case where node 6 receives
high input before input 7, due to the faster diffusion
of gas from node 6. Node 7 will inhibit the left-back
motor node briefly (even more so as the combined
negative gas from nodes 6 and 7 is concentrated
enough to affect the left-back motor node transfer
function parameter) but the negative gas build-up due
to node 6 quickly inhibits node 7, and the left-back
motor node will return to its previous excited state
where Y3 ≈ 1.0.

Finally we turn to the case where node 7 receives
bright input before node 6. The immediate effect is for
node 7 to inhibit the left-back motor node. The second-
ary effect is for node 7 to emit negative gas. Despite
the slower diffusion of gas from node 7 gas than from
node 6, it is still enough to inhibit node 6 so long as
node 7 receives bright input for four or more time steps
before node 6; this time period is crucial to the behav-
ior. Even with high input, node 6 cannot now produce
output sufficient to emit gas so cannot inhibit node 7.
Now, the three solutions to the node 7 equation with
no input [Yt

7 = tanh(2Yt–1
7  – 0.32)] mentioned previ-

ously come into play. From an initial condition of Y7

≈ 1.0, even with no external input, there is a stable
solution at Y7 ≈ 0.9. Thus the network is now in a
highly stable state with node 7 output at near maxi-
mum with or without external input, node 6 inhibited
due to negative gas emitted by node 7, and the left-
back motor inhibited due to node 7 synapse output.
The overall effect is to switch the network into a per-
manent open-loop behavior where further external
input is irrelevant. Due to the inhibition of the left-
back motor node, the left motor is on and the robot
continues in a slow clockwise turn. So under what
conditions does node 7 receive bright visual input four
or more time steps before node 6?

5.1.3 Visual Input Positions, Success and Failure
Modes Figure 7 shows that the visual inputs to nodes
6 and 7 are vertically aligned in the visual field, with 7
directly below 6. Scanning across the square will cause
both nodes to receive bright input at roughly the same
time, thus node 7 will be inhibited by node 6, and the
robot will continue rotating. However, scanning across
the triangle will cause node 7 to receive bright visual
input significantly before node 6, thus inhibiting node
6. This in turn will cause the network to switch into
the permanent open-loop state, and the robot will con-
tinue in the slow clockwise turn. Table 1 summarizes
the behavior of the robot as determined by the switch-
ing subnetwork.

Table 1 Summary of “switch” subnetwork behavior, showing the robot motion based on the visual input to nodes 6 and
7. The robot rotates fast counter-clockwise (ccw) for the cases where no bright visual input is received, and for the cases
where node 6 receives bright input before or at the same time as node 7. The robot moves in a slow clockwise (cw) turn
only when node 7 receives bright input significantly before node 6. Due to the visual input to node 6 being higher in the
visual field than the input to node 7, node 7 will only reliably receive bright visual input before node 6 when the triangle is
scanned across. Thus the robot will rotate past the square, but move toward the triangle

Node 6 input Node 7 input
Node receiving 
first bright input

Left-back motor 
node

Robot motion

Dark Dark – Excited Fast ccw rotation

Bright Dark 6 Excited Fast ccw rotation

Bright Bright 6 Excited Fast ccw rotation

Bright Bright Same time Excited Fast ccw rotation

Dark Bright 7 Inhibited Slow cw rotation

Bright Bright 7 Inhibited Slow cw rotation
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We can also see the failure modes from this analysis.
It is the four (or more) required time steps of bright
input to node 7, without bright input to node 6, that
produces visual input noise filtration. However, an
extremely noisy environment may “fool” the controller
into the permanent dynamical system switch, through
only node 7 receiving bright input. Such a situation
may occur with flashes of light aimed at only certain
parts of the arena, which might be erroneously identi-
fied as triangles by the controller. Similarly, bright
shapes with angled edges leading to node 7 receiving
input before node 6 will be identified by the controller
as triangles, and approached. Finally, triangles with
edges insufficiently angled to allow input 7 to be bright
for four time steps before input 6 will not be approached
by the controller. Among these unidentified triangles
will be upside-down triangles and right-angled trian-
gles. In the next section, we summarize the overall
behavior of the controller and draw some general prin-
ciples of GasNet robot controller operation.

5.2 Open-Loop GasNet Controller Summary

The overall behavior of the robot controller can be
summarized as follows. In the absence of bright visual
input, the robot rotates counter-clockwise, with the
right motor permanently excited, and the left motor
inhibited by the switching subnetwork. This behavior
continues until the robot scans across a bright object,
such that the lower half of the visual field receives
bright input significantly before the upper half. This
permanently switches off the left-back motor node,
exciting the left motor and causing the robot to move
forward. Now the effect of the spiking subnetwork is
seen; once every eight time steps the right motor is
turned off, thus the robot moves in a slow clockwise
arc back toward the triangle, which it has rotated past.
So, we have explained in full the behavior seen in the
two example evaluations, shown in Figure 10.

The two subnetworks analyzed are crucial to the
understanding of the robot controller triangle discrim-
ination, in conjunction with the robot–environment
coupling. The primary robot–environment coupling is
the permanent switch mechanism; scanning across the
square will produce no change in the robot motion
beyond a slight slowing of the turn. By contrast, scan-
ning across the triangle will lock the robot into a fixed
behavior in which no subsequent external input affects
the network, and with both motors full on the robot

goes forward toward the bright object. The second
subnetwork is used by the controller to compensate
for both the relatively slow time course of the perma-
nent switch mediated by the gas diffusion, and the
momentum of the robot. While rotating past the trian-
gle, the permanent switch behavior takes some time to
come into play, and the robot motors take some time
to overcome momentum and friction. It is the right
motor turning off once in every eight time steps that
adjusts for these effects, turning the robot back toward
the triangle. Without this spiking behavior, the robot
would overshoot and run into the wall past the trian-
gle; it is the lack of active “closed-loop” tracking that
produces the need for this compensation. In the next
section we hypothesize why the GasNets network
class is more evolvable than the NoGas network class.

5.3 Why are GasNets Good for Evolution?

From this detailed analysis of the open-loop control-
ler, we can frame some preliminary conclusions on the
usefulness of the mechanisms utilized in GasNet con-
trollers for the generation of adaptive behavior over
time. First, tunable pattern generation is extremely
easy to produce using GasNet controllers. In general,
pattern generation is based on limit cycle behavior,
with the system cycling through some set of states
(Beer, Chiel, & Gallagher, 1999; Chiel et al., 1999). As
we have seen from the analysis in Section 4.1, the spik-
ing subnetwork used by the open-loop controller oper-
ated in exactly such a fashion; the high fitness of the
controller is due to this subnetwork slowly turning the
robot back toward the triangle. This leads to our first
hypothesis for why the GasNet class is more evolva-
ble than the NoGas class; the GasNets are more ame-
nable to being “tuned” to the specific characteristics
of the environment. The pattern produced in which the
right-back motor node spiked once in every eight time
steps was perfectly tuned to the speed and size of the
robot wheels, the size of the triangle, and the size of
the arena in which the robot operated. A different pat-
tern would not have produced such high fitness in this
environment, and the same pattern would not have
produced such high fitness in a different environment.
We hypothesize that the same kind of environmental
tuning is more difficult with the NoGas class.

The tuning of generated patterns is closely related
to our second hypothesis regarding useful properties
in the GasNet class for adaptive behavior: the ability
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to switch between stable states, in other words a dis-
continuous change of behavior determined by external
input, and the ability to mediate such switching. This
is clearly possible to achieve without gas modulation,
but the features of the gas diffusion mechanism allow
such a switch to take place over several time steps,
through the build-up of gas concentration levels. This
was seen in the functionally equivalent mechanisms of
Section 5.1, where the switch from fast counter-clock-
wise rotation to slow clockwise rotation was inhibited
by bright input, only when such bright input was received
over several time steps. Thus the switching can be based
on input patterns received over time, not just at a sin-
gle time point.

Finally, the ability to filter out noisy input is straight-
forward to produce when using the GasNet controller
class, similarly through requiring that input be con-
sistent over several time steps. This was seen in the
requirement that bright input was received several time
steps earlier by visual input nodes lower in the visual
field, before the controller responded (Section 5.1).
Thus, bright flashes and other noisy environment effects
were efficiently excluded by the robot controller.

In the next two sections, we investigate these hypoth-
eses in two ways. First, we analyze and compare two
solutions utilizing the same shape discrimination strat-
egy, one GasNet controller and one NoGas controller,
to compare the underlying mechanisms. Second, we
re-evolve previously evolved controllers in an environ-
ment with different characteristics to the environment
in which they were originally evolved, to compare the
tunability of the mechanisms used by the evolved con-
trollers.

6 Functionally Equivalent GasNet and 
NoGas Controllers

Two controllers, one evolved using the GasNet class
and one evolved using the NoGas class, were analyzed
using the dynamical system methods of the previous
sections. It was found that both employed the same
strategy for the triangle–square discrimination task,
based on a method of timing the duration for which
bright visual input was received in the upper half of
the visual field. Due to triangles being narrower at the
top than squares, this allows the controllers to dis-
criminate successfully between the two shapes. In this
section we investigate the GasNet and NoGas mecha-

nisms for timing the duration over which bright input
is received and argue that the GasNet mechanism is
simpler to tune to the characteristics of the environ-
ment.

Figure 12 shows the two functionally equivalent
subnetworks; both controllers time the duration over
which bright input is received from visual inputs in
the upper half of the visual field. A second visual
input mechanism (not shown) acts simply as a ‘‘bright
object finding detector.’’ This bright object finding
mechanism is “later” in the visual field than the timing
mechanism, in the sense that the position of visual
input and direction of robot rotation is such that the
bright object finding mechanism will “see” things
after the timing mechanism. The bright object behav-
ior is inhibited if the duration of bright input to the
timing mechanism is sufficiently long, which is the
case when scanning across the square, but not when
scanning across the triangle. Thus the controller
approaches the triangle but rotates past the square. In
the next sections we describe the methods by which
the GasNet and NoGas solutions produce such a tim-
ing mechanism.

6.1 The GasNet ‘‘Timer’’

With the GasNet class, it is simple to produce a timing
mechanism that retains activity for some time after the
initial input has been received. A single node receiv-
ing visual input, and with the property that gas emis-
sion occurs when the node output activity is high, will

Figure 12 The two functionally equivalent subnetworks
analyzed in Section 6. Both employ the same strategy for
triangle–square discrimination; timing the duration of
receiving bright input in the upper half of the visual field.
Because triangles are narrower than squares at the top,
this allows the shapes to be discriminated successfully.
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start emitting gas when bright input is received. The
gas concentration built up during emission will take
some time to decay once bright input is no longer
received, with this decay time being a function of the
genetically specified rate of gas concentration build-
up. Remember from Equations 2 to 4 (Section 2.2) that
gas concentration decays in a Gaussian fashion with
distance from the emitting node, but increases linearly
over time during emission, and decreases linearly over
time once emission stops. As the time taken for gas
concentration to build up to a maximum is specified
by the genotype, the mechanism is simple to tune to
the characteristics of the environment. Figure 13 shows
the concentration of gas over time for a given square
wave input of varying duration, simulating the effect
of bright visual input to the emitting node.

For this timing mechanism to affect the controller
operation, we require the built-up gas concentration to
affect the motor node activity. Again, this is relatively
simple to effect, as the gas concentration can modulate
either the motor node, or as in the controller analyzed
here, another visual input node that has an output con-
nection to the motor node. The left-hand side of Fig-
ure 12 shows the subnetwork responsible for the GasNet
timing mechanism; bright input to nodes 8 and 9 pro-
duces concentration of gas 1 at node 4. If gas concen-
tration is high enough, the increase in the node 4
transfer parameter K increases output sufficiently to
inhibit the right-forward motor node. Thus, the robot
rotates clockwise past the square, but moves straight
toward the triangle. In the next section we describe the
intuitively less-obvious operation of the NoGas timing
mechanism.

6.2 The NoGas ‘‘Timer’’

A fully connected three-node subnetwork based around
a motor node (see the right-hand side of Figure 12)
allows the NoGas solution to create exactly the same
timing mechanism seen in the previous section. Dynam-
ical systems analysis of the subnetwork shows a single
stable equilibrium point for the system when visual
input is below the input threshold, and a different sin-
gle stable equilibrium when visual input is above
threshold.

The key to the timing mechanism is how the sys-
tem moves between these fixed points when the visual
input changes. The fully connected feedback nature of
this three-node system makes it impossible to give a
full quantitative description of the behavior, but quali-
tative features can be outlined. With no bright input to
node 8, the system settles into the first stable fixed
point described above, while with bright input the sys-
tem moves toward the second stable point. Once bright
input is no longer received, the system slowly decays
back to the first stable fixed point.

The feedback between the nodes ensures that the
decay between stable states is fairly slow, producing
an effect that can build up and decay over time, in a
similar fashion to that of gas concentration. The
longer that bright input is received for, the nearer to
the high visual input stable state the system reaches,
and the longer it takes to decay back to the low visual
input stable state. Figure 14 shows the outputs for the
three nodes in the system when a square wave visual
input is applied to node 8, and clearly shows the slow
change from one state to another when visual input
changes from dark to bright, and vice versa. It takes
roughly 10 time steps for node 3 to reach the bright
input stable state, and roughly 30 steps to decay back
to the dark visual input regime. The motor node activ-
ity Y3 is the crucial value; as this goes from negative to
positive, the left motor is inhibited, and the robot does
not approach the bright object. Only when sufficient
bright input has been received will this occur, for
instance, when the square has been scanned across.

Thus we have our NoGas timing mechanism.
Instead of using the GasNet build-up and decay of gas
concentration to modulate motor node properties, the
NoGas version uses a fully connected subnetwork that
decays from one stable equilibrium state to another,
depending on the level of visual input received. As
proposed in Section 5.3, we hypothesize that the Gas-

Figure 13 Gas concentration C1 over 200 time steps. A
square wave external visual input of increasing width is
applied as input, to illustrate the differences between the
output seen for the triangle and for the square. Area
between the output and time axis is shaded for clarity.
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Net version is easier to tune to the specific characteris-
tics of the environment than the NoGas version. In the
next section, we test this hypothesis for the two func-
tionally equivalent controllers through re-evolving the
controllers in environments with modified properties.

7 Re-Evolution of Controllers in 
Modified Environments

The hypothesis that GasNet controllers are easier to
tune to the specific properties of the environment than
NoGas controllers can be investigated through the
behavior of the controllers in environments with mod-
ified properties. In this section, we analyze controllers
when evaluated in two separate environments, where
the robot motor speeds are respectively set to double
and quarter the usual motor speeds. This has the effect
of making the robot move at a different speed in the
arena, in particular spinning past the two shapes at
very different rates from the speeds encountered during
the original evolutionary phase. Note that the environ-
ments could be modified similarly through altering the
size and properties of the shapes, and/or the size of the
arena. Other modifications could also investigate the
effect of re-evolving from lesioned or similarly modi-
fied control networks. However, in this work we focus
on modification of the robot motor speeds.

7.1 Re-Evolution of the Functionally 
Equivalent Controllers

We would expect the crucial timing mechanisms
described in Section 6 to be affected by evaluation in
environments with modified robot speeds, with the time
spent spinning past the triangle and square much shorter
in the double-speed environment, and much longer in
the quarter-speed environment. However, the hypothe-
sis that the GasNet mechanism is in some sense easier
to tune to the particular properties of the environment
can be tested through seeding the controllers back into
the evolutionary process, with fitness based on evalua-
tion in the modified environments. We can then re-run
the evolutionary process from the controller seeds,
assessing how long before controllers of 100% fitness
are again achieved. Although this will not tell us directly
how easy the controller was to originally tune to the
environment, we argue that the evolutionary tuning
processes involved are similar. In other words, if it is
much easier to tune the evolved GasNet controller to
the specific characteristics of the modified environ-
ment, it would also have been much easier to tune the
GasNet controller to the original environment.

The two controllers were used to seed the initial
populations for the distributed evolutionary algorithm
(Section 2.6), and evolution repeated 20 times for each
controller in each modified environment until control-
lers of 100% fitness were observed. In this re-evolu-
tion, we allow only the parts of the genotype involved
in the timing mechanism to be affected by the evolu-
tionary process; we are assessing how easy it is to
modify the actual mechanism itself, not the rest of the
network.

Results for re-evolution studies of the two con-
trollers are given in Table 2. In the double speed envi-
ronment, both controllers drop in fitness to well under
20%, with no significant differences seen between the
fitness of the two controllers. However, there is mas-
sive difference in the number of generations required
to re-evolve controllers of 100% fitness; the GasNet
controller is much easier to tune to the modified prop-
erties of the environment (10 generations on average
compared with 409 generations). In the quarter-speed
environment, the GasNet controller achieves signifi-
cantly higher fitness than the NoGas controller, but
the difference in the number of generations required to
reach 100% fitness controllers is much larger than might
be predicted by this fitness difference (30 generations

Figure 14 Node output data (ranging from ±1) for
nodes 3, 4, and 8 over 200 time steps. A square wave
external visual input is applied to node 8 to illustrate the
two fixed points of the system, and the slow decay from
one state to the other. Area between the output and time
axis is shaded for clarity.
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on average compared with 591 generations). So in both
modified environments, the GasNet controllers are
much easier to evolve successful controllers than would
be predicted from their fitnesses; the GasNets are more
tunable.

From the results presented in this section, we can
support the hypothesis of the previous section,
namely, that the GasNet controllers are easier to tune
to the specific properties of the environment than the
corresponding NoGas controllers. In the next section
we extend this to a sample of previously evolved con-
trollers.

7.2 Re-Evolution of a Sample of Controllers

It may be argued that the two functionally equivalent
controllers investigated are based on a mechanism that
is in principle easier both to produce and tune using
the GasNet control class. Thus re-evolving the timing
mechanism in modified environments will unfairly
favor the GasNet controller. By contrast other mecha-
nisms may favor NoGas classes; here we counter this
argument through extending the re-evolution analysis
to a random sample of 40 previously evolved GasNet
and NoGas controllers of 100% fitness.

The 40 controllers were used to seed the initial
populations for the distributed evolutionary algorithm,
which was run until controllers once more showed
100% fitness, with fitness evaluated in the same dou-
ble- and quarter-speed environments described in the
previous section. Table 3 shows the results for the two

conditions, averaged over 10 evolutionary runs of
each of the 40 controllers. The results are not as strik-
ing as those from the functionally equivalent control-
lers, lending some weight to the hypothesis that the
previous analysis unfairly favored the GasNet mecha-
nism. However, the GasNet controllers still showed
significantly faster re-evolution than the NoGas con-
trollers. In the double-speed environment, both sam-
ples of controllers fell to average fitnesses of 0.26, but
the GasNet controllers on average re-evolved in 107
generations compared with 240 generations for the
NoGas controllers. In the quarter-speed environment,
the differences are much smaller, with comparable
mean numbers of generations for re-evolution, but
there is evidence of faster evolution from the median
numbers of generations. Thus from our sample of
GasNet controllers, we also see evidence of signifi-
cantly faster re-evolution to modified environments;
the GasNets are more tunable.

Smith (2002) has also investigated the evolution and
re-evolution of abstract central pattern generation net-
works, similarly finding that the GasNet class is more
tunable to the required pattern than the corresponding
NoGas class. In the next section we draw together the
various experiments carried out in this article.

8 Summary

The detailed analysis of a number of GasNet and NoGas
controllers allowed us to frame two hypotheses regard-

Table 2 Data for the two functionally equivalent networks shown in Figure 12, re-evolved in two modified environments.
The robot motors are set to double-speed and quarter-speed, respectively, and the two controllers evaluated 100 times
for fitness, then used to seed the initial populations for the evolutionary algorithm until 100% fitness controllers were pro-
duced (20 runs were performed for each controller on each condition). The evaluated fitnesses, and mean, median, and
standard deviation of the number of generations of re-evolution required to reach 100% fitness controllers are shown,
with significant differences between the GasNet and NoGas controllers highlighted (both parametric t-tests and nonpar-
ametric Mann–Whitney U-tests were performed; *p < 0.05, **p < 0.01)

Double speed Quarter speed

GasNet NoGas GasNet NoGas

Number of runs 20 20 20 20

Mean evaluated fitness (σ) 0.17 (0.074) 0.15 (0.066) 0.36* (0.10) 0.21 (0.016)

Mean re-evolution generations (σ) 10 (5)** 409 (336) 30 (31)** 591 (346)

Median re-evolution generations 10** 360 19** 608
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ing the suitability of the GasNet class to robot control.
First, the ability both to produce and modify central
pattern generation output was seen to be central to a
number of evolved control solutions. This seems sur-
prising. We are not investigating such behaviors as
walking and swimming gaits, or rhythmic feeding,
where behavior is often based on central pattern gen-
eration. Our visual shape discrimination task might
not appear at first sight to be related to such pattern
generation. However, a number of GasNet controllers
were seen to use pattern generation subnetworks in the
final evolved behavior.

Second, the ability to switch between dynamical
states dependent on external input, and the ability to
mediate this switch over a number of time steps, was
seen to be extremely useful both in behavior genera-
tion and in filtering environmental noise. From analy-
sis of the functionally equivalent GasNet and NoGas
controllers in Section 6, we argued that the kinds of
active perception timing strategies able to mediate such
behavior switching and noise filtration were much
easier to evolve using the GasNet class. To develop and
tune the NoGas timing mechanism required the con-
struction of a complex fully connected circuit, whereas
the corresponding GasNet timing mechanism was based
on the build-up and decay of gas.

The twin hypotheses that GasNet classes were
more amenable to both the development and tuning of
pattern generation and the development and tuning of
switching mechanisms were supported by the re-evo-
lution studies. We saw that the functionally equivalent

GasNet controller was much easier to tune to a modi-
fied environment than the corresponding NoGas con-
troller. To a lesser extent, although still significant, this
same re-evolution tunability was seen over a large sam-
ple of previously evolved controllers.

So, can we draw any conclusions from this work
on what makes an evolvable network class for the vis-
ual discrimination problem? The simple answer is yes.
The key feature of the GasNets seen to be useful for
this task is the ability to adapt smoothly to the temporal
characteristics of the environment. This encompasses
the initial development and subsequent tuning of the
controllers to the detailed properties of the robot and
environment in which it finds itself. Included in this
ability to adapt smoothly to the temporal characteris-
tics of the environment is the ability to generate a rich
variety of temporal patterns through the interaction of
the gas diffusion mechanism and the electrical synap-
tic mechanism. The different time courses over which
these two mechanisms operate were seen to be crucial
to this pattern generation, along with the ability of the
evolutionary process to modify those time courses.
Indeed, there is a tantalizing link here with the role of
the gaseous neuromodulator nitric oxide in real nervous
systems, where NO is often implicated in the modula-
tion of central pattern oscillations (see, for example,
Gelperin, Flores, Raccuia-Behling, & Cooke, 2000).

By showing that the evolvability of the GasNets is
due to this principle of temporal adaptivity, we have
provided some support for the intuition of many evo-
lutionary robotics practitioners, namely, that robot

Table 3 Data for a sample of 20 GasNet and 20 NoGas controllers, re-evolved in two modified environments. The
robot motors are set to double-speed and quarter-speed, respectively, and the two controllers evaluated 100 times for
fitness, then used to seed the initial populations for the evolutionary algorithm until 100% fitness controllers were pro-
duced (10 runs were performed for each controller on each condition). The evaluated fitnesses, and mean, median, and
standard deviation of the number of generations of re-evolution required to reach 100% fitness controllers are shown,
with significant differences between the GasNet and NoGas controllers highlighted (both parametric t-tests and nonpar-
ametric Mann–Whitney U-tests were performed; *p < 0.05, **p < 0.01)

Double speed Quarter speed

GasNet NoGas GasNet NoGas

Number of runs 200 200 200 200

Mean evaluated fitness (σ) 0.27 (0.13) 0.26 (0.18) 0.35 (0.27) 0.29 (0.019)

Mean re-evolution generations (σ) 107 (190)** 240 (363) 108 (229) 116 (252)

Median re-evolution generations 36** 49 13** 21
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controllers operating in the real world must incorporate
temporal structure, and that the evolutionary process must
be able to adapt that structure easily. For example, Har-
vey (1993) makes the point that “in environments where
physical events have natural time scales, the dimension
of time is not an optional extra, but fundamental” (p. 50).
For a robot operating over time and moving in some
environment, changing any aspect of that environment
may affect the observed sensory input over time. For
example, changing either the size of objects, or the
speed at which they move, will change the time period
over which they impact on to the robot sensory inputs.
Thus, the ability for evolution easily to adapt solutions
to the temporal characteristics of the environments in
which they operate is crucial to the evolution of con-
trollers able to generate adaptive behavior over time.

On this principle of temporal adaptivity, the Gas-
Net neural network class falls squarely into a larger
class that is likely to contain other networks with tem-
porally modifiable properties, such as continuous time
recurrent networks (Beer & Gallagher, 1992), pulsed
neural networks (Maass & Bishop, 1999), and net-
works with time-lagged synaptic activity (Harvey,
1993). However, we argue that simple recurrent net-
works such as the NoGas are not members of this
class; although activity is retained over time and the
connection architecture may be arbitrarily modified, it
is not straightforward for the evolutionary process to
modify the time courses of mechanisms operating in
the network. For example, as seen in the NoGas timer
(Section 6.2), it is not easy to set up an effect that lasts
for some given period of time. Similarly, generating
and tuning patterns is more difficult with simple
recurrent networks (Smith, 2002).

9 Discussion

It is often implicitly assumed that the incorporation of
plasticity into agent controllers is primarily useful to
adapt to change in the immediate environment of the
agent. This definition also includes developmental
plasticity, in which the agent adapts to the initial envi-
ronment in which it finds itself (see, for example, Flo-
reano & Urzelai, 1999). Recent interest in the Baldwin
effect (Hinton & Nowlan, 1987; Mayley, 1996) has
extended this picture, highlighting the role of lifetime
plasticity in increasing the evolvability of the underly-
ing solution class. However, in this article we have

investigated a third possibility: plasticity as a mecha-
nism by which controllers can utilize a range of differ-
ent time courses during operation. In the majority of
work on plasticity in artificial systems, the time course
of the plasticity process is not explicitly specified; for
example, Hebbian learning rules typically update syn-
aptic weights instantaneously. However, here we have
explicitly allowed the time course of the plastic neuro-
modulatory effect to vary, dependent on gas emission
from nearby nodes.

In the GasNets investigated in this article, evolved
controllers used the modulation of neuron transfer func-
tions as a process operating over a different time course
to that of the underlying network synaptic activity. The
particular plasticity mechanism used, concentration-
dependent neuronal modulation, allowed the GasNet
controllers easily to generate and tune temporal pat-
terns, and tune behavior to the particular temporal
characteristics of the environment. This was seen to
have a direct effect on the evolvability of the GasNet
class. However, in highlighting the functional role of
the gaseous diffusion in robot control, we have also
implicitly addressed two other issues, discussed below.

It might be argued that the gaseous modulation of
node parameters during operation plays a similar role
to stochastic learning in evolutionary simulations of
the Baldwin effect (Baldwin, 1896). The role of learn-
ing in evolution is often likened to a search of nearby
volumes of genotype space, with the final fitness
returned as the average over the search volume. For
example, Hinton & Nowlan (1987) show that randomly
setting undecided parameters in a bit-string genotype,
in other words, allowing a form of stochastic lifetime
learning, enables evolutionary search to solve a needle-
in-a-haystack problem. In essence the lifetime learn-
ing provides the evolutionary process with the infor-
mation that “you’re getting warm.” This same process
may occur during the evolution of GasNet controllers,
if the neuromodulatory effect of the gases is to explore
nearby controller genotypes through modifying the
network node properties. In other words, it may be
that the current controller is no good, but altering the
gains of one or more nodes generates more successful
controllers; the gaseous neuromodulation would then
provide selective pressure toward these controllers.
Unfortunately, the functional role seen for the gaseous
modulation does not support this argument; the gase-
ous diffusion is playing an active part in the evolved
behavior, not simply sampling similar networks with
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modified node properties. However, it is an interesting
possibility that the effect plays a part earlier in the
evolutionary process.

A different argument for the usefulness of a simi-
lar neuromodulatory mechanism was made by Eggen-
berger et al. (1999), when evolving robot controllers
for a block-pushing task. In their model, associative
learning of synaptic weights in a fixed architecture
network controller could be turned on and off by the
concentration of a number of global gases. They argue
that this process does not primarily play a functional
role in the behavior but rather acts as a mechanism to
allow transferral from controllers evolved in simula-
tion to operation in the real world.2 In other words, the
plasticity in the network is useful not in the original
evolution, but in allowing the controllers to operate in
slightly different (real-world) environments from the
(simulated) environments in which they have been
evaluated during evolution. There are obvious paral-
lels with the re-evolutionary analysis carried out in
Section 7, in which the GasNets were seen to evolve
to modified environments much faster than the
NoGas. Although there was no evidence that the Gas-
Nets were more robust to the modified environment
before re-evolution, it may well be that such robust-
ness would be seen in less drastically changed envi-
ronmental properties. This is an intriguing possibility
for the future development of robust controllers able
to operate in environments that change over time.

And finally, to return to the central theme of this
article. The promotion of evolutionary robotics and
other artificial evolution methodologies into practical
techniques for real-world applications depends cru-
cially on the design and evaluation of robust evolvable
solution classes. In this article, we have shown that
such evaluation can come from analysis of the opera-
tion of successfully evolved solutions. The develop-
ment of evolvable solution classes remains a significant
challenge. The techniques developed in this article
provide one potential way to address this challenge.

Notes

1 Commonly defined as the “ability to evolve”; see Smith et
al. (2002) for discussion.

2 The mechanism behind the model derived by Eggenberger
et al. (1999) may turn out to be similar to the homeostatic
networks evolved by Di Paulo (2000), in which associative

learning is turned on by node activity falling outside some
given range. Di Paolo has shown that such networks can
evolve to cope with radically disruptive change, such as
reversing the position of sensory inputs.
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