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Issues in Evolutionary RoboticsInman Harvey1 and Philip Husbands1 and Dave Cli� 1;21School of Cognitive and Computing Sciences2IRC, School of Biological SciencesUniversity of Sussex, Brighton BN1 9QH, U.K.inmanh or philh or davec, all @cogs.susx.ac.ukAbstractIn this paper we propose and justify a method-ology for the development of the control systems,or `cognitive architectures', of autonomous mobilerobots. We argue that the design by hand of suchcontrol systems becomes prohibitively di�cult ascomplexity increases.We discuss an alternative approach, involv-ing arti�cial evolution, where the basic build-ing blocks for cognitive architectures are adaptivenoise-tolerant dynamical neural networks, ratherthan programs. These networks may be recurrent,and should operate in real time. Evolution shouldbe incremental, using an extended and modi�edversion of genetic algorithms. We �nally proposethat, sooner rather than later, visual processingwill be required in order for robots to engage innon-trivial navigation behaviours.Time constraints suggest that initial architec-ture evaluations should be largely done in sim-ulation. The pitfalls of simulations comparedwith reality are discussed, together with the im-portance of incorporating noise. To support ourclaims and proposals, we present results fromsome preliminary experiments where robots whichroam o�ce-like environments are evolved.1 IntroductionThis paper �rstly gives an analysis which proposes thatan evolutionary approach to the design of robots can beexpected to supercede design by hand; it then exploresissues arising from this, and presents results from somepreliminary experiments: using an extended genetic al-gorithm, we have evolved control architectures for a sim-ulated version of a physical robot constructed at Sussex.An evolutionary approach to real robotics was dis-cussed at a 1987 workshop (3), and in the context ofsubsumption architecture by a student of Brooks (27);but no practical results have been reported. A numberof researchers have shown the method to be viable forsimulated robots in highly simpli�ed simulated worlds(1), but have not had to face the exponential increasein complexity that follows with progress from toy worldsinto the real world.

Independently in 1991, we (as members of the Pranceconsortium) made a research proposal to use an evolu-tionary approach in developing real autonomous robots(24); and Brooks proposed at Ecal-91 in Paris a di�er-ent evolutionary approach, using genetic programming(9).Straightforward Genetic Algorithms (GAs) use evolu-tionary ideas for function optimisation, and are not im-mediately applicable to robotics. Necessary adaptationsto GAs are discussed in (14). This paper concentrateson other issues, in particular whether the cognitive ar-chitecture of a robot should be evolved in the form of aBehavioural Language, as advocated by Brooks, or in theform of arti�cial neural networks. We argue that thereare good reasons for the latter approach.After setting the stage with these theoretical consider-ations we go on to report on preliminary simulation ex-periments in evolving control networks for simple robotsequipped with a few touch sensors. The simulations arenot naive { they are based on observations of a real robotand attempt to model the physics of its interactions withthe world.2 Interesting robots are too di�cult todesignTraditional approaches to the development of au-tonomous robot control systems have made only modestprogress, with fragile and computationally very expen-sive methods. This is largely because of the traditionalimplicit assumption of functional decomposition | theassumption that perception, planning and action can beanalysed independently of each other.In contrast, recent work at MIT bases robot control ar-chitectures around behavioural decomposition (6, 8). Intheory, this involves analysing independent behavioursof a robot or animat,1 such that each behaviour can be`wired in' all the way from sensor input to motor out-put. Simple behaviours are wired in at �rst, and thenmore complex behaviours are added as separate layers,a�ecting earlier layers only by means of suppression orinhibition mechanisms.It is extremely di�cult to foresee all possible interac-1Animat: simulated animal or autonomous robot (28).



tions with the environment, and between separate partsof the robot itself (8, 22). Designing appropriate cogni-tive architectures is a task with inherently explosive com-plexity. Complexity is likely to scale much faster thanthe number of layers or modules within the architecture| it can scale with the number of possible interactionsbetween modules.To design cognitive architectures for robots with emer-gent behaviours hence requires either (a) a computation-ally intractable planning problem (10) or (b) a creativeact on the part of the designer | which is to be greatlyadmired, though impossible to formalise. In both casesit seems likely that the limits of feasibility for real robotsdoing useful things are currently being reached.3 Let's evolve robots insteadIf, however, some objective �tness function can be de-rived for any given architecture, there is the possibility ofautomatic evolution of the architecture without explicitdesign. Natural evolution is the existence proof for theviability of this approach, given appropriate resources.Genetic Algorithms (GAs) (12) use ideas borrowed fromevolution in order to solve problems in highly complexsearch spaces, and it is here suggested that GAs, suitablyextended in their application, are a means of evading theproblems mentioned in the previous section.The arti�cial evolution approach will maintain a pop-ulation of viable genotypes (chromosomes), coding forcognitive architectures, which will be inter-bred and mu-tated according to a selection pressure. This pressurewill be controlled by a task-oriented evaluation function:the better the robot performs its task the more evolu-tionarily favoured is its cognitive architecture. Ratherthan attempting to hand-design a system to perform aparticular task or range of tasks well, the evolutionaryapproach will allow their gradual emergence.There is no need for any assumptions about means toachieve a particular kind of behaviour, as long as thisbehaviour is directly or implicitly included in the evalu-ation function. Brooks' subsumption approach was men-tioned above as a contrast to the dogmatic assumptionsof functional decomposition implicit in much of tradi-tional robotics. Nevertheless, it is similarly not nec-essary to be dogmatically committed to an exclusivelybehavioural decomposition. By allowing either type ofdecomposition, the evolutionary process will determinewhether in practice either one, or neither, should char-acterise the robots' cognitive architecture.4 An incremental, species approachAn animal should not be considered as a solution to aproblem posed 4 billion years ago. Nevertheless, in theshort term, adaptations in a species may be usefully in-terpreted as solving particular problems for that species.

So when using the evolution of animals as a source ofideas for the evolution of animats, GAs should be usedas a method for searching the space of possible adapta-tions of an existing animat, not as a search through thecomplete space of animats. The basis for extending stan-dard GAs to cope with this has been worked out in (14).The implications are that the population being evolvedis always a genetically-converged species; and that in-creases in genotype length, associated with increases incomplexity, can only happen very gradually.This of course has strong resemblances to Brooks' in-cremental approach, wherein `low-level' behaviours arewired in and thoroughly debugged, before the next layerof behaviour is carefully designed on top of them. Thedi�erence with the approach we advocate is that of sub-stituting evolution for design.5 The use of simulationArti�cial evolution requires that the members of a size-able population must be evaluated over the course ofmany generations. In the case of the evolution of au-tonomous robot control systems, to date it has been as-sumed it would take far too long to do all of these evalua-tion in the real world (15, 9, 24, 3). Instead it is suggestedthat most evaluations should be done in simulation. Inthe short to medium term this seems a sensible strategybut we have strong doubts about its long term viability.Assuming the use of simulation for the time being, itis crucial that it is kept as closely in step with realityas possible. A number of techniques can be used to thisend. Firstly, the simulation can be calibrated at regularintervals by carefully testing the architectures evolved inthe real robot. Serious discrepancies should be ironedout. Secondly, accurate simulations of the inputs to therobot sensors and the reactions of the actuators should bebased on carefully collected empirical data. Thirdly, andabove all, noise must be taken into account at all levels.In order to acquire the desired level of accuracy it may benecessary to use a mixed hardware/software simulationin which simulated signals are fed into hardware sensorsor actuators and the response is read directly. The useof low resolution sensing makes this approach feasible. Itis important to remember that it is not our world thatis being simulated, but the robot's.A range of unstructured dynamic environments shouldbe used in the simulation. A cognitive architecture thathas evolved to cope with a range of such environmentsis much more likely to be robust than one evolved tooperate in a single well structured world.If adaptive noise-tolerant units, such as neural nets,are used as the key elements of the control system, then100% accuracy is not required. Discrepancies betweenthe simulations and the real world, as long as they arenot too big, can be treated as noise; the system can adaptto cope with this.



In the long term, as the robots become more sophisti-cated and their worlds more dynamic, will the simulationrun out of steam? The simulation of a medium resolutionvisual system with, for instance, motion detection pre-processing is painfully slow on today's hardware. Tech-niques to test many generations of control systems in realworlds will have to be developed. We are currently pur-suing the development of one such technique: see (11)for further details.6 What should we evolve?So far we have not addressed the question of what exactlyit is that is being evolved. There are at least three usefulways to implement the control system of an autonomousrobot:� An explicit control program, in some high level lan-guage;� A mathematical expression mapping inputs to out-puts, e.g. a polynomial transfer function;� A blue-print for a processing structure, a network ofsimple processing elements.6.1 High Level ProgramsIn (9), following a suggestion by Langton, Brooks pro-poses using an extension of Koza's genetic programmingtechniques (18) as the method for evolving a physical orsimulated robot.One potential problem with evolving a programminglanguage is that, if it supports partial recursion, pro-grams to be evaluated may never halt, unless some ar-bitrary `time-out' is imposed. Brooks' Behaviour Lan-guage (7) does not use partial recursion, and hence canbe evolved without this problem. Subject to the quali�-cation that Genetic Programming should have genotypelength changes restricted to small steps his approach at�rst sight seems reasonable, but we have two broad ob-jections.The �rst is that any such programming approachtreats the `brain' as a computational system, producinga set of motor outputs for any given set of sensor in-puts. This snapshot view of cognition has been the mainparadigm in AI, but we support an alternative view ofagents as dynamical systems rather than computationalsystems, which are perturbed by their interactions withthe environment, which is also a dynamical system. Thisview is expressed in (19, 5, 26), and will not be developedfurther here.The second objection, which is supported by our sim-ulation results, is that the primitives manipulated in theevolutionary process should be at the lowest level possi-ble, and this is in contrast to Brooks' use of higher levellanguages. The Behavior Language, BL, is in e�ect a

blueprint for a network of Finite State Automata, andthe target language Brooks proposes for Genetic Pro-gramming is an even higher level language, GEN, whichcan be compiled into BL.Our intuitions are based on the notion that any highlevel semantic groupings necessarily restricts the possi-bilities available to the evolutionary process, comparedto the alternative of letting the lowest level of primitivesbe manipulated by genetic operators. The human de-signer's prejudices are incorporated within their choiceof high-level semantics, and these restrictions give riseto a much more coarse-grained �tness landscape, withsteeper precipices. It might be thought that the use oflow-level primitives necessitates enormously many gen-erations of evolution with vast populations before anyinteresting high-level behaviour emerges, but our simu-lations show that this is not the case at all.A further factor concerning high-level languages is thatthe injection of noise into anything other than the lowestlevels becomes di�cult to justify. For a network consid-ered to be modelled at a physical level it is easier tojustify the insertion of noise at many points within thesystem, and as will be seen this appears to have valuablee�ects, not least in making the �tness landscape moreblurred and hence less rugged for evolution.6.2 Polynomial Transfer FunctionsThere are a number of close relationships, in this con-text, between polynomial transfer functions and arti�cialneural networks, not least that the input-output associ-ations of most neural networks can be arbitrarily closelyapproximated by a polynomial function and vice versa.Clearly the problem of brittleness and halting is not anissue, yet neither scheme is computationally restricted.Even for modest numbers of inputs and outputs, themost useful transfer function may be a highly complexnon-linear expression with many terms; the search spaceis potentially very large. Simulation results suggestthat the search space, except for low dimensions, lacksstructure, resulting in the GA degenerating into randomsearch. Similar results for the related problem of systemidenti�cation have also been reported (16).The robustness required for useful behaviour in thereal world is almost certainly going to demand eithersome degree of adaptation or an expression complicatedenough to cover a wide enough range of situations. Thelatter leads to the problems described above. The formerwill require auxiliary systems identi�cation algorithmswhich will seriously complicate matters by being compu-tationally expensive (25) and requiring error measures.6.3 Neural NetsEvolutionary approaches to designing connectionist net-work architectures are manifold, e.g. (17, 13, 21, 23); All



these have used some form of genetic algorithm to searchthrough a pre-de�ned �nite space of possible network ar-chitectures. In other words, at a more or less sophisti-cated level, the basic architecture has been de�ned withsome parameters left as variables, and the GA has beenused to tweak the parameters to optimal values. It isargued in (14) that for the equivalent of robot evolutionit will be necessary to extend this to open-ended evolu-tion instead, with signi�cant implications. Nevertheless,the evolvability of connectionist networks in general isclearly established.It might be argued that in practice connectionist net-works are simulated on a serial computer; and in turnthat a serial Turing machine can be simulated with aconnectionist network. This does not mean that theirevolvability is the same. To build a connectionist net-work as a virtual machine on top of a conventionallyprogrammed computer does not alter the fact that thevirtual machine may be suitable for evolutionary devel-opment whereas the underlying real machine is not | themutations of structure are at the virtual machine levelonly. The price paid for this, however, is the computa-tional ine�ciency of simulating one type of computationwith another.Concise speci�cation on the genotype of sub-networksor modules which may be repeatedly used is possible,provided that there is a mechanism to interpret suchspeci�cations several times analogously to the way sub-routines are called within a program. The desirabilityof adaptation has been mentioned above, and obviouslyarti�cial neural networks allow for this. The massivelyparallel nature of neural nets enables very fast implemen-tation in the appropriate hardware, in contrast to thenecessarily (locally) serial interpretation of a behaviourlanguage.What sort of network?There are good grounds for thinking that a generalisedform of connectionist network could be one very appro-priate class. Let us start with three basic axioms:1. The `brain' should be a physical system, occupyinga physical volume with a �nite number of input andoutput points on its surface.2. Interactions within the brain should be mediatedby physical signals travelling with �nite velocitiesthrough its volume, from the inputs, and to the out-puts.3. Subject to some lower limit of an undecomposable`atom' or node, these three axioms apply to any phys-ical subvolume of the whole brain.A justi�cation for the third axiom is that of the in-cremental development of the whole by alterations and

additions over evolutionary timescales. The consequenceof these axioms, as can be seen by shrinking in anyfashion the surface containing the original volume, is anetwork model where internal nodes are the undecom-posable atoms, and connections between inputs, internalnodes and outputs are through directed arcs by signalstaking �nite times. Such a network can be arbitrarilyrecurrent. The assumption of only a �nite number of in-put/output points on any surface means that this is not a�eld theory. It rules out of this model such more generalmethods of physical interaction as might be assumed tobe involved with, e.g. di�use chemical neurotransmittersin the human brain.No assumptions about the operations of the nodeshave yet been made. The simplest assumptions wouldbe those of standard connectionist models. Input signalsare weighted by a scalar quantity; all output signals areidentical when they leave the node, being calculated fromthe weighted sum of the inputs. If this weighted sum ispassed through a sigmoid or thresholding function, thenwe have the non-linear behaviour we have learnt to knowand love. So far the only generalisation this model haswhen compared with the picture given in (20) is thattimelags between nodes need to be speci�ed. But a wholenew universe of possible dynamical behaviours is openedup by this extension.Such networks are more di�cult to analyse than stan-dard feedforward ones. However with an evolutionaryapproach it may not be necessary to analyse how itworks, but rather one should be able to assess how good isthe behaviour it elicits. This is no short-cut recipe, butrequires that the internal complexity of the `brain' (ofan organism or a machine) be dependent on the historyof interactions with its world; the more the complexitythat is required, the longer the history that is needed tomould it.A particular type of network falling under this generalclassi�cation, and used in the experiments described inthis paper, is described in more detail in section 9.1.7 Timing issuesThe practical problems of timing should be taken noteof. The robot will have timing circuitry to synchronisesensing, control and motor activities. This should notcause any undue problems for the implementation ofevolved neural networks. As long as they operate us-ing discrete time intervals, then even complex recurrentnetworks can be handled in a straightforward manner.The more general and possibly more powerful class ofasynchronous continuous time networks are a little moredi�cult but create no signi�cant problems. Arbitrar-ily complex polynomial transfer functions, which mayinvolve a lengthy computation, are certainly more di�-cult to handle than discrete time networks. Potentiallynon-halting high level programs with many conditional
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whiskerFigure 1: Plan view of simple six-sensor robot.branches are harder still.8 Robots need visionIn autonomous robot navigation, a number of sensortechnologies are commonly employed to enable the taskof navigation. For the purposes of the discussion thatfollows, it is useful to employ the distinction found inthe biology literature between exteroceptors and intero-ceptors. An exteroceptor is a receptor (i.e. sensor) whichdetects stimuli external to an animal, e.g. light or sound;an interoceptor senses or detects stimuli that arise insidethe animal, e.g. blood pressure.The development of a successful navigating robot de-pends on �nding a satisfactory combination of extero-ceptors and interoceptors. Here the discussion focusseson the exteroceptors we envisage necessary for our robot.The majority of recent projects in autonomousbehavioural2 robotics have not employed vision as aprimary exteroception mechanism. Most commonly,mechanosensory \whiskers" and \bumpers", or activeranging devices (such as ultrasound depth sensors orlaser light-stripers) have been employed. Such sensorsare essentially proximal sensing devices. That is, theyonly provide reliable data for the immediate surround-ings of the robot. Such robots are thus forced to employprimitive navigation strategies. The most common suchstrategy is \wall following", where the robot must alwaysmaintain sensory contact with a sizeable static externalsurface, such as a wall of the robotics lab. Wall-followingrobots that lose sensory contact with all external surfacesoften su�er from sensor-blindness, the chief symptom ofwhich is a signi�cant degradation, or total loss, of navi-gation ability.In some restricted behavioural or ecological niches,wall-following is a satisfactory navigation strategy, andsensor-blindness can be overcome by wandering until sen-sory contact is re-established. The need for more sophis-ticated navigation competences, which we take as man-ifest, is only likely to be overcome fully by an increasedreliance on distal sensors | in particular, vision.2I.e., subsumption-based or reactive-systems robotics.

There is growing research in the �eld of mounting com-puter vision systems on mobile robotic platforms { anapproach referred to as animate vision (2). While manyprojects are underway in developing animate vision sys-tems, we are not aware of any where evolution is em-ployed in preference to design.Although using vision does not eliminate problemssuch as sensor-blindness, it does provide a rich source ofinformation concerning an agent's external environment.Whether designing or evolving a visual system, a num-ber of factors have to be taken into account. Signi�cantfactors include:� The discretization of the sampling of the optic array,i.e. how many pixels do we want in the images ourrobot samples, and what sort of geometry should theimage have (a square raster is not necessarily con-venient). The number of pixels in the image has amanifest e�ect on the bandwidth of the visual pro-cessing channels.� The angular extent of the vision system's �eld of view{ should the robot be equipped with 360o vision orwill a more restricted �eld of view su�ce?� The visual angular resolution of the robot's optics.Should the vision system employ a uniform resolu-tion, or have some sort of spatially variant \foveal"(nonuniform) vision system? Many animals have res-olution which varies across the visual �eld. Typicallythis is a result of the need for high-resolution visionfor certain tasks (predation or identifying mates) cou-pled with a need for a wide �eld of view, sampled ata lower resolution.That many animals, particularly insects, successfullyoccupy their ecological niches using low-resolution low-bandwidth vision as a primary source of exteroception in-formation indicates that such an approach (as opposed tohigh resolution and bandwidth) is worth exploring withinan evolutionary robotics context, in the �rst instance atleast.Simulation vs. Reality in VisionFor the evolutionary approach to be successful, methodsof varying the details of the visual sampling and the sub-sequent processing of the visual signal are imperative.Evolutionary learning can be accelerated if the pop-ulations undergoing evolution exist within a simulatedsystem. The problem here is in ensuring that the sim-ulated visual systems correspond in a useful manner tothe physical visual systems with which the robot will beequipped. While such simulations are possible in princi-ple, the computational demands soon become consider-able and, unless the necessary processing hardware (e.g.
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0.0 2.0Figure 2: Noisy neuron transfer function.specialised graphics pipeline processors) is readily avail-able, it is envisaged that physical instantiation of thevisual systems would be required at an early stage.For a physical robot to be equipped with a vision sys-tem that has variable sampling bandwidth, geometry,visual extent, and angular resolution, requires that thecamera(s) mounted on the robot are capable of o�er-ing performance at the upper limits of what is envisagednecessary. For example, a high-resolution image can besubsampled (with averaging or smoothing) to provide alower-resolution image. This could be done under geneticcontrol, which is a very crude �rst step towards evolvingsensors.Whether the image-capture mechanism is real or vir-tual, the image-processing scheme can be simulated (i.e.the parallelism can be simulated rather than embodied intruly parallel hardware). But as the imaging bandwidthincreases, or if the robot's speed of reaction is critical,specialised image processing hardware (with suitably ad-justable parameters) would be required.Envisaging what is necessary for the robot is likely onlyto be possible after some experience with it: a circularitywhich reveals that some iteration is required betweenthe simulation work and the building of real robots { apluralist approach will be the most fruitful.9 Preliminary ExperimentsA real robot assembled in the Engineering Departmentat Sussex has been simulated using the methodology es-tablished above. The behaviour of the motors propellingthe wheels has been modelled for the outputs, as haveinputs from whisker and bumper touch sensors. Simu-lation of a low resolution insect-type visual system hasbeen added and results using that are described in an-other paper (11). This is part of an ongoing project atSussex to develop an evolutionary approach to robotics,

with increasingly sophisticated tasks leading to naviga-tion using learnt visual landmarks.The �rst phase of the work explored the methodol-ogy using careful simulations. Results from this are pre-sented here. We are now into the second phase of thework which will directly calibrate the simulations usingthe real robot. A further phase, described in (11), alsojust begun, will look at the evolution of visually guidedbehaviours without using simulations at all.A plan view of the robot used in the simulation exper-iments is shown in Figure 1. The robot is cylindrical inshape with two wheels towards the front and a trailingrear castor.The wheels have independent drives allowing turningon the spot and fairly unrestricted movementacross a atoor. The signals to the motor can be represented as areal value in the range [�1:0; 1:0]. This range is dividedup into �ve more or less equal segments, depending onwhich segment the signal falls into, the wheel will either:remain stationary; rotate full speed forward; full speedbackward; half speed forward; or half speed backward.The aim of the experiments was to evolve `neural-style'networks to control the robot in a variety of environ-ments. Before going on to describe the experiments indetail, the particular type of neural networks used, andtheir genetic encoding, will be described.9.1 The neural networksAs explained in Section 6.3 we advocate the use of contin-uous real-valued networks with unrestricted connectionsand time delays between units. These can be thought ofas something like analogue circuits with real-valued sig-nals continuously propagating through the connections.Our experience, and also that of others (4), is that thissort of network can support a range of behaviours, de-pending on its exact couplings with the world, and sois highly adaptive without using Hebbian-type weightchanges or the like.The particular networks used in the experiments havea �xed number of input nodes, one for each sensor, anda �xed number of output units, two for each motor. Asall the units are linear threshold devices with outputs inthe range [0:0; 1:0] � R, two units are needed to givethe motors a signal in the range [�1:0; 1:0] � R. If theoutput signals from these four output units are labelledSo1, to So4 then, the left motor signal is given by So1 �So2, and the right motor signal is given by So3 � So4.Each unit is a noisy linear threshold device. Internalnoise was added because we felt it would provide furtheruseful and interesting dynamical properties. Any physi-cal implementation of our nets would be likely to includenaturally occurring noise anyway. The input-output re-lationship for such a node is shown in Figure 2, whichwas generated by plotting the output for a �xed set ofinputs ten times and overlaying them.
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Figure 3: The genetic encoding schemeWithin the networks two types of connection are al-lowed: normal and veto. A normal connection is aweighted link joining the output of one unit to the inputof another. A veto connection is a special in�nitely in-hibitory connection between two units. If there is a vetoconnection between units a and b, and a's output exceedsits veto threshold, then all normal connection outputsfrom b are turned o� (though in the current implemen-tation, further veto outputs are not a�ected). The vetothreshold is always much higher than the lower thresh-old for the normal signal. The veto mechanism is a crudebut e�ective model of phenomena found in invertebratenervous systems.3As well as the input and output units, each networkwill have some number of `hidden' units. This number isnot prespeci�ed { the genotypes can be a variable length.The genetic encoding speci�es properties of the units andthe connections and connection-types emanating fromthem. It is now described in more detail.9.2 The genetic encodingThe genetic encoding used is illustrated in Figure 3.The genotype is interpreted sequentially. Firstly theinput units are coded for, each preceded by a marker.For each node, the �rst part of its gene can encode nodeproperties such as threshold values; there then follows avariable number of groups each representing a connec-tion from that node. Each group speci�es whether it isa normal or veto connection, and then the target node3For example, feed-forward inhibition of the locust lgmd visualinterneuron acts as a veto to prevent the lgmd from producingtransient responses caused by delays in earlier processing. See e.g.(29, pp.77-78).
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Figure 4: Results of simple experiment. See text for furtherexplanation.indicated by jump-type and jump-size. The jump-typeallows for both relative and absolute addressing. Rela-tive addressing is provided by jumps forwards or back-wards along the genotype order; absolute addressing isrelative to the start or end of the genotype. These modesof addressing mean that o�spring produced by crossoverwill always be legal.The internal nodes and output nodes are handled simi-larly with their own identifying genetic markers. Clearlythis scheme allows for any number of internal nodes. Thevariable length of the resulting genotypes necessitatesa careful crossover operator which exchanges homolo-gous segments. In keeping with Saga principles, whena crossover between two parents results in an o�springof di�erent length, such changes in length (although al-lowed) are restricted to a minimum.9.3 The physics: simulating movementIn the experiments described next the continuous natureof the system was modelled by using a �ne-time-slice sim-ulation. At each time step the sensor readings are fedinto the neural network. The continuous nature of thenetworks is simulated by running them (synchronouslyupdating all units inputs and outputs for a number ofiterations (about 100), with a variance to counter dis-torting periodic e�ects) and then converting the outputsto motor signals. The new position of the robot is thencalculated by using the appropriate kinematic equations.Using the wheel velocities, the motion is resolved into arotation about one wheel plus a translation parallel tothe velocity vector of the other. Standard Newtonianmechanics are used. However, the motion is not mod-elled as being wholly deterministic: noise is injected intothe calculations. Collisions are handled as accurately aspossible | using observations of the real system. The



Figure 5: Motion of a single robot controlled by an evolved network.nature of the collision depends on speed and angle ofincidence as well as the shape of the obstacle.This type of simulation is not perfect, it can and willbe made more accurate, but we feel it is realistic enoughto take our results seriously.9.4 The experimentsEach of the following experiments was run for 50 gener-ations, each with a population size of 40. The crossoverrate was set at 1.0, while the mutation rate was of theorder of 1 bit per genotype.Figure 4 shows the results for an experiment in whicha control network was evolved using an evaluation func-tion which encouraged wandering in a cluttered o�ce-type environment containing walls, pillars and doorways(see Figure 5). Robust control networks were favouredby scoring each genotype several times for a single �t-ness evaluation. The robot was always started from thesame position in the same orientation, and was scoredon how far away from its starting position it moved in a�xed time period. On each scoring run the robot faceda di�erent set of situations because of the noise in thesystem. The minimum of the scores achieved was takenas the �tness value for the genotype. The robots werestarted from rest with no initialising signals; internalnoise was su�cient to allow �tter nets to settle into use-ful initial states. The bottom line on the graph showsthe �tness of the best individual in each generation. Thetop line shows the best score achieved by any member ofthe population for any of the runs making up its evalua-tion set. The fact that these two lines converge indicatesthat more and more robust networks began to appear.

Clearly very good control networks have evolved for thissimple speci�c task. Figure 5 shows a short run by arobot controlled by one of these networks. As a matterof convenience, the robot's whiskers are shown movingthrough objects. It can be seen that the network gener-ates a `move in a straight line at full speed' behaviourwhen in free space, and various rotational movementswhen presented with obstacles. Members of earlier gen-erations had far more random behaviours, spending mostof their time in messy collisions or just sitting still.Figure 6 shows a typical behaviour generated by a net-work evolved under a evaluation function describing amuch more di�cult task. The evaluation function mea-sured the area of the enclosed polygon formed by therobot's path over a �nite time period. This time therobot was always started at random locations with a ran-dom orientation. Note the robot turns fairly smoothly onencountering obstacles. In earlier generations collisionswere much more messy.Figure 7 gives interesting comparative results for dif-ferent �tness functions based on the above evaluationfunction. It shows the best, average and worst scores ofthe best individuals per generation scored over its eval-uation set as in the previous experiment.The upper graph was obtained by taking the �tness tobe the average of the small number of runs in the evalu-ation set; the lower graph was obtained by taking the �t-ness to be the worst of the runs. Each run started from arandom position with a random orientation. The resultsclearly show that evaluating from the average gives a bet-ter average performance but a very poor noisy worst per-formance. Evaluating from the worst pushes the worst



Figure 6: Motion of a robot evolved to maximise the area of thebounding polygon of its path over a limited time period.and average much closer together, providing a far morerobust solution.Figure 8 shows a network evolved in this second exper-iment. It is fairly complex with many feedback loops, butit is interpretable in terms of generated behaviours. Ifit reminds you of a bowl of spaghetti without the bolog-nese sauce and chianti, this is probably partly due tothe fact that there is no term in the evaluation functionsthat penalises unnecessary links. However, initial pop-ulations are started with individuals having (randomly)one or zero internal nodes; the number can only growgradually if that promotes greater �tness. We expectthat more concise networks will result if we introduce acost for link creation in the evaluation function, and al-low for the possibility of non-unity time delays and/orweights on connections.These early experiments with primitive behaviourshave clearly been successful: we have built on them byevolving networks for sighted robots; further details ofthe work involving vision are given in (11).10 ConclusionsThere is no evidence to suggest that humans are goodat designing systems which involve many emergent in-
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