
G9.5 Experiments with an ecosystems model forintegrated production planningPhilip Husbands, Malcolm McIlhagga and Robert IvesAbstractThis paper outlines a coevolutionary distributed genetic algorithm for tackling anintegrated manufacturing planning and scheduling problem. In this multispeciesecosystems model, the genotype of each species represents a feasible manufacturing(process) plan for a particular component to be manufactured in the machine shop.Separate populations evolve under the pressure of selection to �nd near-optimalprocess plans for each of the components. However, their �tness functions take intoaccount the use of shared resources in their common world (a model of the machineshop). This means that without the need for an explicit scheduling stage, a low costschedule will emerge at the same time as the plans are being optimised. Resultsare presented of the use of this model on a set of industrial problems. It is shownto signi�cantly outperform simulated annealing and a dispatching rule algorithmover a wide range of optimisation criteria.G9.5.1 Project OverviewResearch on job shop scheduling (JSS), as the most general of the classical scheduling problems, hasgenerated a great deal of literature (Muth and Thomson 1963, Balas 1969, Garey et al 1976, Graves1981, Ow and Smith 1988, Carlier and Pinson 1989). All of this work has used a particular de�nitionof the scheduling problem or very close variants of it. This article describes a case study where amultispecies coevolutionary genetic algorithm is used to tackle a less restricted highly generalisedversion of JSS. It is shown how the technique provides an integrated production planning system,treating process planning and scheduling as inextricably interwoven parts of the same problem.The traditional view of JSS is shown in �gure G9.5.1. A number of �xed manufacturing plans,one for each component to be manufactured, are interleaved by a scheduler so as to minimise somecriteria such as the total length of the schedule. More formally, we are given a set J of n jobs, aset M of m machines, and a set O of K operations. For each operation p 2 O there is one jobjp 2 J to which it belongs, and one machine mp 2 M on which it must be processed for a timetp 2 N. There is also a binary temporal ordering relation ! on O that decomposes the set intopartial ordering networks corresponding to the jobs. That is, if x ! y, then jx = jy and there isno z, distinct from x and y, such that x ! z or z ! y. Using the minimise makespan objectivefunction, i.e. minimising the elapsed time needed to �nish processing all jobs, the problem is to �nda start time sp for each operation p 2 O such that:maxp2O (sp + tp) (G9.5.1)is minimised subject to: tp � 0; 8p 2 O (G9.5.2)sx � sy � ty; if y ! x; x; y 2 O (G9.5.3)c 1995 IOP Publishing Ltd and Oxford University Press Handbook of Evolutionary Computation G9.5:1



(si � sj � tj)_(sj � si � ti); if mi = mj ; i; j 2 O (G9.5.4)However, a problem that would often be more useful to solve is that illustrated in �gure G9.5.2.Here the intention is to optimise the individual manufacturing plans in parallel, taking into accountthe numerous interactions between them resulting from the shared use of resources. This is theoptimization task that henceforth will be termed the integrated planning and scheduling problemand is the focus of this case study. An ecosystems model has been developed to tackle variouspractical instances of this problem, one of which is presented here.
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fixed plansFigure G9.5.1. Traditional approach to job shop scheduling.The idea behind the ecosystems model is as follows. The genotype of each species represents afeasible manufacturing (process) plan for a particular component to be manufactured in the machineshop. Separate populations evolve under the pressure of selection to �nd near-optimal process plansfor each of the components. However, their �tness functions take into account the use of sharedresources in their common world (a model of the machine shop). This means that without the needfor an explicit scheduling stage, a low cost schedule will emerge at the same time as the plans arebeing optimised. The system is illustrated in �gure G9.5.3. The role of the Arbitrators, whichcoevolve along with the other species, is to resolve resource conicts betwen manufacturing plansfor di�erent components.This project is one of the strands of ongoing research in the Evolutionary and Adaptive SystemsGroup, School of Cognitive and Computing Sciences, University of Sussex. It has been carried outin collaboration with Edinburgh University, Logica, and Rolls Royce.Description of the ProblemThe integrated planning and scheduling problems considered in this case study are typical industrialproblems. They are generated from data collected from David Brown Vehicle Transmissions Ltd.They model the manufacture of medium complexity prismatic parts, by metal removal processes.They are based on the work of Palmer (1994).The statistics shown in section G9.5.4 are all mean �gures taken from 100 sample problems.A problem consists of a number of jobs (1-14 jobs for each problem) each of which requires a planand all of which must be scheduled for a speci�c shop-oor. A job is assumed to be one or moreidentical parts which (usually) remain together as they move through the shop oor. Here eachpart could have 1-14 processes. A part consists of a blank (the raw material that it is machinedfrom) and a number of features which de�ne its appearance, these can be thought of as describingvolumetric removals of material from the blank. A process plan for a given part may be either �xedor exible, either way the process plan describes the processes that must be carried out (includingpossible ordering or sequencing constraints) for a speci�c set of features to appear on the work-piece.However, the process plan does not de�ne the exact way in which that feature is to be machined.G9.5:2 Handbook of Evolutionary Computation c 1995 IOP Publishing Ltd and Oxford University Press
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Figure G9.5.3. The ecosystems model.The GA searches for near-optimal combinations of processes, machines, tools and setups (work-piece orientations) for each feature, taking into account interactions with other features and theoverall constraints of the problem. In this case the shop-oor does not alter between problems. Theshop-oor consists of 25 machines which vary in the number and diversity of processes that theycan carry out. Each process plan is generated from the de�ned object (including some descriptionof its features and certain possible machining order constraints) and the possible processes that cangenerate those features on the work- piece; in this case there are one or two applicable processesper feature. For full details see (Palmer 1994, McIlhagga et al 1995).c 1995 IOP Publishing Ltd and Oxford University Press Handbook of Evolutionary Computation G9.5:3
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Figure G9.5.4. Distributed interacting populations.G9.5.2 Design ProcessMotivationIt is well known that the standard JSS problem is NP-hard (Garey and Johnson 1979). Theintegrated planning and scheduling problem dealt with here is harder still, involving larger searchspaces and more complex constraints, and hence has not attracted much attention until recently. Anumber of researchers have developed scheduling techniques that allow a small number of optionsin their process plans (Sycara et al 1991, Tonsho� et al 1989) , but still they are dealing with only asmall fraction of the whole problem. Liang and Dutta (1990) have pointed out the need to combineplanning and scheduling, but their proposed solution was demonstrated on a very small simpli�edproblem. Given a problem of this complexity it is natural to appeal to stochastic optimisationtechniques, hence the development of the GA-based method reported here. Comparisons with othertechniques are discussed later in section G9.5.4.The Distributed Co-evolutionary GAA major early concern in this work was how to provide coherent coevolution. The initial,somewhat unsatisfactory, implementation involved a set of interacting standard sequential GAsand is described in Husbands and Mill (1991). A later, more satisfactory implementation, that hasbeen used ever since, spreads each population `geographically' over the same 2D toroidal grid, this isillustrated in �gure G9.5.4. Each cell on the grid contains exactly one member of each population.Selection is local, individuals can mate only with those members of their own species in theirlocal neighbourhood. Following Hillis (1990) the neighbourhood is de�ned in terms of a Gaussiandistribution over distance from the individual; the standard deviation is chosen so as to result in asmall number of individuals per neighbourhood. Neighbourhoods overlap allowing information owthrough the whole population without the need for global control. Selection works by using a simpleranking scheme within a neighbourhood: the most �t individual is twice as likely to be selected asthe median individual. O�spring produced replace individuals from their parents' neighbourhood.Replacement is probabilistic using the inverse scheme to selection. In this way genetic materialremains spatially local and a robust and coherent coevolution (particularly between Arbitratorsand process plan organisms) is allowed to unfold. Interactions are also local: costing involves thesimulation of the concurrent execution of all the plans at the same location on the grid (there will beone for each component, and an Arbitrator to resolve conicts). This implementation consistentlygives better results in fewer evaluations than the �rst. For full details see Husbands (1993, 1994).The overall algorithm is quite straightforward. It can be implemented sequentially or in aparallel asynchronous manner, depending on available hardware.G9.5:4 Handbook of Evolutionary Computation c 1995 IOP Publishing Ltd and Oxford University Press



ecosystems for planningOverall()(i) Randomly generate each population, put one member of each population in each cell of atoroidal grid.(ii) Cost each member of each plan population (phase1 + phase2 costs). Phase 1 costs are thoseintrinsic to a given plan (basic machining costs). Phase2 costs include waiting times and arecalculated by simulating the concurrent execution of all plans represented in a given cell ongrid, any resource conicts are resolved by Arbitrator in that cell. Cost Arbitrators accordingto how well conicts resolved.(iii) i  0.(iv) Pick random starting cell on the toroidal grid.(v) Breed each of the representatives of the di�erent populations found in that cell.(vi) If all cells on the grid have been visited Go to (vii). Else move to next cell,Go to (v).(vii) If i < MaxIterations, i  i + 1, Go to (iV). Else Go to (viii).(viii) Exit.The breeding algorithm, which is applied in turn to the members of the di�erent populations,is a little more complicated.Breed(current cell,current population)(i) i  0.(ii) Clear NeighbourArray(iii) Pick a cell in neighbourhood of current cell by generating x and y distances (from current cell)according to a binomial approximation to a Gaussian distribution. The sign of the distance(up or down, left or right) is chosen randomly (50/50).(iv) If the cell chosen is not in NeighbourArray, put it in NeighbourArray, i i+1, Go to (v). ElseGo to (iii).(v) If i < LocalSelectionSize, Go to (iii). Else Go to (vi).(vi) Rank (sort) the members of current population located in the cells recorded in NeighbourArrayaccording to their cost. Choose one of these using a linear selection function.(vii) Produce o�spring using the individual chosen in (vi) and current population member incurrent cell as the parents.(viii) Choose a cell from ranked NeighbourArray according to an inverse linear selection function.Replace member of current population in this cell with o�spring produced in (vii).(ix) Find phase one (local) costs for this new individual (not necessary for Arbitrators).(x) Calculate new phase two costs for all individuals in the cell the new individual has been placedin, by simulating their concurrent execution. Update costs accordingly.(xi) Exit.The binomial approximation to a Gaussian distribution used in step (iii), falls o� sharply fordistances greater than 2 cells, and is truncated to zero for distances greater than four cells.RequirementsThe architecture of the evolutionary systems is such that the evaluation functions can easily bechanged to meet the particular requirements of a speci�c application of the general model. However,the overall requirements will always be the same: minimise the cost of the manufacturing plan foreach component (according to particular criteria chosen, e.g. machining and setup costs) and at thesame time minimise some higher-level criteria such as makespan, mean owtime, total tardiness, orsome combination of these (French 1982).RepresentationAs already mentioned, there have been a number of applications of the ecosystems model to di�erentintegrated manufacturing planning problems. Each of these has used the same encoding scheme forthe Arbitrators, but the process plan encodings have been tailored to the particular instance of theintegrated problem. The encoding scheme used in the case study reported here will be the only onedescribed in this paper; for a more complex encoding used for a very general version of the problemsee Husbands (1993).For this instance of the problem the process plan chromosomes are divided into two sections:c 1995 IOP Publishing Ltd and Oxford University Press Handbook of Evolutionary Computation G9.5:5



Figure G9.5.5. Process plan encodingthe �rst part deals with method (i.e. machine) choices, the second with sequence (or ordering)choices, see �gure G9.5.5. Method choices are only denoted for jobs where there is more than oneapplicable method. Currently, all methods have two options and are therefore represented as bits ina bitstring. Lookup tables in the cost function translate these binary values into a machine choice.The method choices are held on the genome in an order which maps on to a set of known operations(1-N), which can be considered the default sequence. For each job, the cost function (see later)maintains a data tree containing the space of legal sequences of operations. Sequence choices onthe chromosome are interpreted as routes down the sequence tree for a particular job. The defaultsequence is always legal, so in cases where the problem description constrains the genome to onlyone legal sequence, the sequencing information is implicit. The evaluation function is a set of `dataabstraction' routines that traverse a given tree structure, following a route taken as argument, whichreturn with a necessarily valid operation sequence.The Arbitrators are required to resolve conicts arising when members of the other populationsdemand the same resources during overlapping time intervals. The Arbitrators' genotype is a bitstring which encodes a table indicating which population should have precedence at any particularstage of the execution of a plan, should a conict over a shared resource occur. A conict at stageL between populations K and J is resolved by looking up the appropriate entry in the Lth table.Since population members cannot conict with themselves, and we only need a single entry for eachpossible population pairing, the table at each stage only needs to be of size N (N � 1)=2, whereN is the number of separate component populations. As the Arbitrators represent such a set oftables attened out into a string, their genome is a bit string of length SN (N � 1)=2, where S isthe maximum possible number of stages in a plan. Each bit is uniquely identi�ed with a particularpopulation pairing and is interpreted according to the function given in Equation G9.5.5.f(n1; n2; k) = g �kN (N � 1)2 + n1(N � 1)� n1(n1 + 1)2 + n2 � 1� (G9.5.5)Where n1 and n2 are unique labels for particular populations, n1 < n2, k refers to the stage of theplan and g[i] refers to the value of the ith gene on the Arbitrator genome. If f(n1; n2; k) = 1 thenn1 dominates, else n2 dominates. By using pairwise �ltering the Arbitrator can be used to resolveconicts between any number of di�erent species.Evaluation FunctionsEach job, j, has the following data associated with it: release date rj; due date dj; completion timeCj; owtime Fj = Cj � rj; lateness Lj = Cj � dj; tardiness Tj = max(0; Lj); processing time of jobj on machine i, Pij.From this data the following kinds of cost functions can be calculated in a straightforwardmanner. makespan: Cmax; mean owtime: 1N PNj=1 Fj; total tardiness: PNj=1 Tj ; proportion oftardy jobs.A number of di�erent evaluation functions were experimented with. Particularly good resultswere obtained with the objective function, O, shown in equation G9.5.6. This function is to beminimised.G9.5:6 Handbook of Evolutionary Computation c 1995 IOP Publishing Ltd and Oxford University Press



ecosystems for planningO = 1N NXj=1Fj + 2� NXj=1Tj (G9.5.6)This function, mean owtime plus twice the total tardiness, is applied to each member of eachcell on the 2D grid, including the Arbitrators. The owtime term encourages individually e�cientplans and the tardiness term encourages minimal interactions between the plans.G9.5.3 Development and ImplementationThe system was developed in C under Unix running on Sun workstations. The distributedcoevolutionary GA makes use of the MPI parallel message passing interface protocol, allowingit to run on single workstations, networks of workstations and specialised parallel machines.G9.5.4 ResultsThis section presents results from runs on 100 problems generated from data provided in Palmer(1994). Table G9.5.1 gives the values for various criteria averaged over the 100 problems. Thedistributed coevolutionary GA (CDGA) results are shown alongside those previously found byPalmer with simulated annealing (SA) and local dispatching rule heuristics (K&C).Algorithm makespan proportion tardy total tardiness totalmachining time mean owtimeCDGA 81.22 0.14 5.84 171.75 34.86SA 89.09 0.18 8.87 191.22 36.10K&C 95.96 0.31 30.28 218.13 41.37Table G9.5.1. Problem set comparisonAs can be seen from table G9.5.1 the distributed coevolutionary GA outperforms SA andK&C on all of the optimisation criteria. The mean improvement over SA, averaged over all ofthe optimisation criteria is 16.58%. The mean improvement over K&C, averaged over all of theoptimisation criteria, is 37.60%. Each of the methods was run for a comparable number of evaluationfunction calls.G9.5.5 ConclusionsIn this case study of a complex manufacturing planning problem, we found that for each of a widerange of optimisation criteria the ecosystems model consistently outperformed simulated annealingand a dispatching rule algorithm. Unlike any of the other techniques, the coevolutionary distributedGA produces a number of unique (and quite di�erent) high quality solutions to the problem oneach run. Typically the CDGA would generate eight or nine unique very high quality solutionsto a given problem on a single run. This work has involved adapting Husbands' coevolutionarymodel of integrated production planning for use with a new set of problems and with di�erent costfunctions to those used previously (Husbands 1993). This adaptation turned out to be relativelystraightforward, an experience that supports the claim that the coevolutionary model is very general(Husbands 1993).AcknowledgementsThis work was supported by EPSRC grant GR/J40812.c 1995 IOP Publishing Ltd and Oxford University Press Handbook of Evolutionary Computation G9.5:7
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