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Abstract
We propose a biologically plausible architecture for unsupervised ensemble learning in a

population of spiking neural network classifiers. A mixture of experts type organisation is

shown to be effective, with the individual classifier outputs combined via a gating network

whose operation is driven by input timing dependent plasticity (ITDP). The ITDP gating

mechanism is based on recent experimental findings. An abstract, analytically tractable

model of the ITDP driven ensemble architecture is derived from a logical model based on

the probabilities of neural firing events. A detailed analysis of this model provides insights

that allow it to be extended into a full, biologically plausible, computational implementation

of the architecture which is demonstrated on a visual classification task. The extended

model makes use of a style of spiking network, first introduced as a model of cortical micro-

circuits, that is capable of Bayesian inference, effectively performing expectation maximiza-

tion. The unsupervised ensemble learning mechanism, based around such spiking

expectation maximization (SEM) networks whose combined outputs are mediated by

ITDP, is shown to perform the visual classification task well and to generalize to unseen

data. The combined ensemble performance is significantly better than that of the individual

classifiers, validating the ensemble architecture and learning mechanisms. The properties

of the full model are analysed in the light of extensive experiments with the classification

task, including an investigation into the influence of different input feature selection

schemes and a comparison with a hierarchical STDP based ensemble architecture.

Author Summary

Ensemble effects appear to be common in the nervous system. That is, there are many
examples of where groups of neurons, or groups of neural circuits, act together to give bet-
ter performance than is possible from a single neuron or single neural circuit. For instance,
there is evidence that ensembles of spatially distinct neural circuits are involved in some
classification tasks. Several authors have suggested that architectures for ensemble learning
similar to those developed in machine learning and artificial intelligence might be active in
the brain, coordinating the activity of populations of classifier circuits. However, to date it
has not been clear what kinds of biologically plausible mechanismmight underpin such a
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scheme. Our model shows how such an architecture can be successfully constructed
though the use of the rather understudiedmechanism of input timing dependent plasticity
(ITDP) as a way of coordinating and guiding the activity of a population of model cortical
microcircuits. The model is successfully demonstrated on a visual classification task (rec-
ognizing hand written integers).

Introduction

There is growing evidence that many brain mechanisms involved in perception and learning
make use of ensemble effects, whereby groups of neurons, or groups of neural circuits, act
together to improve performance. At the lowest level of neuronal organisation it appears that
the collective activity of groups of neurons is used to overcome the unreliable, stochastic nature
of single neuron firing during the learning of motor skills [1, 2]. There are also many examples
at higher levels of organisation. For instance Li et al. (2008) [3] used a combination of func-
tional magnetic resonance imaging and olfactory psychophysics to show that initially indistin-
guishable odours become discriminable after aversive conditioning, and that during the
learning process there were clear, spatially diverse ensemble activity patterns across the pri-
mary olfactory (piriform) cortex and in the orbitofrontal cortex. They hypothesized that in this
case fear conditioning recruits functionally distinct networks from across the cortex which act
in concert to maximize adaptive behaviour. Many others have suggested that the integration of
information frommultiple sensorymodalities and different areas of the cortex, in complex rec-
ognition or other cognitive tasks, may involve ensemble learningmechanisms [4–9]. For
instance, the influential ‘functional constancy’, or ‘metamodal’, theory of cortical operation
[10, 11] suggests coordinated action of multiple areas during learning and cognitive processing
[6]. The hypothesis is that different cortical areas have a core functional, or information pro-
cessing, specialization, and this is maintained following the loss of a sense, but with a shift in
preferred input sensorymodality. According to the theory, the relative weights of different sen-
sory input modalities (e.g., vision, touch, hearing) within an area are related to how useful the
information in that modality is for the area’s core function (e.g. motion detection, object recog-
nition etc). Information from the different areas is presumably integrated and coordinated by
some kind of ensemble mechanisms, especially during periods of adjustment after the loss of a
sensorymodality (e.g. through blindness) [6]. Indeed, these kinds of observations have led to
an argument that ensembles of neurons, rather than single neurons, should be viewed as the
basic functional unit of the central nervous system [12–15].

The examples above are reminiscent of the kinds of effects seen in both cooperative and
competitive ensemble methods known to be effective in machine learning [16–20]. Hence a
number of researchers have implemented ensemble models that attempt to reflect aspects of
the biology while borrowing ideas and methods frommachine learning. These include low-
level models concentrating on the oscillatory properties of neuron ensembles, showing how
synchronisation dynamics between ensembles can underpin supervisedand unsupervised
adaptation in a variety of scenarios [14, 21–23], and higher-level models proposing informa-
tion processing architectures that can be used to coordinate and organise learning in ensembles
in the brain [5, 6]. In the latter category, mixture of experts (MoE) type architectures [24] have
been proposed as an interesting candidate for ensemble learning in the cortex and other areas.
In particular Bock and Fine (2014) [6] have argued that a MoE architecture is a very good fit to
the functional constancy theory of cortical operation.

Ensemble Learning Neural Network by ITDP
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In the artificial neural network literature, ensemble learning on a classification task typically
involves multiple continuous value (i.e. on-spiking) artificial neural networks (classifiers) act-
ing in parallel on the same stimuli (pattern to classify), or on different aspects, or modes, of the
same overall stimuli. A combined classification from the multiple classifiers, e.g. by majority
vote, very often gives better, more reliable performance than that of a single classifier [18, 20].
The MoE ensemble learning architecture makes use of the input stimuli not only to train the
individual classifiers (experts) but also to control the mechanism that combines the outputs of
the individual experts into an overall classification. In the classic MoE architecture [24], the
individual classification outputs of the experts are non-linearly combined via a single gating
network which also receives the same input stimuli as the experts (Fig 1). One of the attractions
of this architecture is its tendency to cluster input-output patterns into natural groupings, such
that each expert can concentrate on a different sub-region of input space (or a different set of
sub-problems or ‘tasks’). The gating network tends to guide adaptation in the individual classi-
fiers such that the task space is divided up so as to reduce interference.

The suggestions of MoE type architectures at play in the brain are intriguing but to date
there have been no detailed, implementation-level, proposals for biologically plausible, unsu-
pervised, spike-based architectures that exhibits such ensemble learning effects. In this paper,
for the first time, we put forward a detailed hypothesis of how experimentally observedneural
mechanisms of plasticity can be combined to give an effective and biologically plausible ensem-
ble learning architecture. We demonstrate such an architecture through the computational
implementation of a model of unsupervised learning in an ensemble of spiking networks.

One key problem to overcome was how the outputs of multiple networks/areas/‘experts’
could be combined via a non-linear gating mechanism in a biologically plausible way. We pro-
pose that a mechanism based on input timing dependent plasticity (ITDP) provides a solution.
ITDP, a form of heterosynaptic plasticity activated by correlations between different presynap-
tic pathways [25, 26], is a rather understudiedmechanisms of plasticity but it has been shown
to occur in the cortex [27], the cortico-amygdala regions [28] involved in the odour discrimina-
tion task mentioned earlier [3], as well as in the hippocampus [26]. We argue that it is a good
candidate for the kind of coordination needed in biological ensemble learningmechanisms,
particularly as it has recently been shown to involve exactly the kind of gating plasticity mecha-
nisms that would be required in our hypothesized architecture [29].

Nessler et al. (2013) [30] recently proposed a spiking model of corticalmicrocircuits that
are able to perform Bayesian inference. They model the soft winner-take-all (WTA) circuits,
involving pyramidal neurons inhibiting each other via interneurons, which have been shown
to be a commonmotif of cortical microcircuits [31]. A combination of spike timing dependent
plasticity (STDP) and activity-dependent changes in the excitability of neurons is able to
induce Bayesian information processing in these circuits such that they are able to perform
expectationmaximisation (EM). The circuits are thus referred to as SEM networks (spiking
EM) [30]. Our ensemble architecture makes use of such SEM networks as the individual
ensemble units (classifiers).

Mixture of Experts

The standard MoE architecture [24, 32] used in machine learning is shown in Fig 1. The out-
puts of an ensemble of N classifiers feed into a final decision unit whose output is the combined
classification. A separate gating network, withN outputs, weights the individual classifier out-
puts, typically by multiplying them by the corresponding gating output (Fig 1). The final deci-
sion unit uses a simple rule (often some variation of the highest weighted classification from
the ensemble classifiers) to generate the final classification. The classifiers and the gating
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network are typically feedforward nets which are trained by a gradient descent algorithm in a
supervisedmanner. In the standard setup the classifiers in the ensemble and the gating network
all receive the same input data. The classifiers and the combining mechanism, via the gating
network, adapt together, with the gating mechanism helping to ‘guide’ learning. This often
leads to some degree of specialization among the ensemble with different classifiers performing
better in different areas of the input space. Extensions can include more explicit variation
among the classifiers by providing themwith different inputs (e.g. different sub samples, or fea-
tures, of some overall input vector). Techniques such as this can encourage diversity among the
classifiers which is generally a good thing in terms of performance [18]. In general, ensemble
methods, such as MoE, have been shown to outperform single classifiermethods in many cir-
cumstances. The combined performance of an ensemble of relatively simple, cheap classifiers is
often much better than that of the individual classifiers themselves [16, 18, 20].

Our model of ensemble learning in biologically plausible spiking neural networks does not
attempt to slavishly follow the methods and structure of the standard MoE architecture, but
instead adapts some of the basic underlying principles to produce a MoE like system which can
operate according to biologically plausible mechanisms which are based on empirical findings.

Fig 1. The standard MoE architecture. The outputs (classifications) from the classifier networks are fed into an output

unit which combines them according to some simple rule. The gating network weights the individual classifier outputs

before they enter the final output unit, and thus guides learning of the overall combined classification. The classifiers and

gating networks receive the same input data. See text for further details.

doi:10.1371/journal.pcbi.1005137.g001
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Input Timing Dependent Synaptic Plasticity

The term input timing dependent plasticity (ITDP) was first coined in [26] where it was empir-
ically demonstrated in the hippocampus. It is a form of heterosynaptic plasticity—where the
activity of a particular neuron leads to changes in the strength of synaptic connections between
another pair of neurons, rather than its own connections. Classical Hebbian plasticity involves
correlations between pre- and post- synaptic activity, specifically activity in the presynaptic cell
is causally related to activity in the postsynaptic cell [33]. By contrast, ITDP involves synaptic
plasticity which is induced by correlations between two presynaptic pathways. Dudman et al.
(2007) [26] observed that stimulation of distal perforant path (PP) inputs to hippocampal CA1
pyramidal neurons induced long-term potentiation at the CA1 proximal Schaffer collateral
(SC) synapses when the two inputs were paired at a precise interval. The neural system is illus-
trated in Fig 2 left. Plasticity at the synapse (SC) between neurons CA3 and CA1 is induced
when there is a precise interval between stimulations from CA3 and from the distal (PP) per-
forant pathway from neuron EC in the entorhinal cortex (see timing curve, Fig 2 left). More
recently, Basu et al. (2016) [29] have extended these findings by investigating the role of addi-
tional long-range inhibitory projections (LRIPs) from EC to CA1, the function of which were
largely unknown. They showed that the LRIPs have a powerful gating role, by disinhibiting
intrahippocampal information flow. This enables the induction of plasticity when cortical and
hippocampal inputs arrive at CA1 pyramidal neurons with a precise 20ms interval.

Humeau et al. (2003) [25] observed a very similar form of heterosynaptic plasticity in the
mammalian lateral amygdala. Specifically, simultaneous activation of converging cortical and
thalamic afferents induced plasticity. More recently ITDP has been demonstrated in the cortex
[27] and in the cortico-amygdala regions [28]. Another study [34] predicted the function of the
vestibule-occular reflex gain adaptation by modeling heterosynaptic spike-timing dependent
depression from the interaction between vestibular and floccular inputs converging on the
medial vestibular nucleus in the cerebellum.Dong et al. (2008) [35] also reported a related kind
of heterosynaptic plasticity operating in the hippocampus, but on different pathways from
those studied by Dudman et al (2007) [26] and Basu et al. (2016) [29]. Thus this, as yet little
studied, form of plasticity appears to exist in many of the main brain regions associated with
learning and the coordination of information frommultiple sensory/internal pathways.

In the above example of ITDP acting in the hippocampus (Fig 2), the role of neuron EC in
enabling ITDP driven plasticity at synapse SC is somewhat reminiscent of the action of the gat-
ing neurons in the MoE architecture outlined in the previous section, especially when we take

Fig 2. Experimentally observed ITDP behaviour (left) (after [26]), and its simplifications (right) used in this paper. The original

ITDP behaviour is modelled either by a Gaussian (for spiking neural network) or a pulse (for logical voter network) functions.

doi:10.1371/journal.pcbi.1005137.g002
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into account the new findings that the EC to CA1 inhibitory projections do indeed enable a gat-
ing mechanism [29]. Moreover, distal projection from the entorhinal cortex to the CA1 region
are topographic [36, 37] and the enhancement of excitatory postsynaptic potentials (EPSP) is
specific to the paired pathway [26], indicating that only the ITDP synapse which is paired with
the distal signal is potentiated. These facts suggest the possibility of specific targeted pathways
enabling ‘instructor’ signals. In addition, the EPSP from the distal input is attenuated [26],
meaning that the ‘instructor’ signal would not directly influence any final network output,
rather it indirectly influences through ‘instructions’ that enable plasticity. These properties are
exactly those needed to operate a biologically plausible spikingMoE type architecture. This led
us to the development of such an architecture using an ensemble of spiking networks with
ITDP-activating distal connections playing a kind of gating role which allows coordinated
learning in the ensemble (these connections are a slight abstraction of the PP and LRIP connec-
tions rolled into one, to provide a temporally precise mechanism). This system is described
over the following sections and embodies our biologically founded hypothesis of a potential
role for ITDP in coordinating ensemble learning.

First a tractable analytic model of the biologically plausible ITDP driven spiking ensemble
architecture and its attendant MoE type mechanisms is developed.Derived from a logical
model based on the probabilities of neural firing events, this gives insights into the system’s
performance and stability. With this knowledge in hand, the analytic model is extended into a
full, biologically plausible, computational implementation of the architecture which is demon-
strated on a visual classification task (identifying hand written characters). The unsupervised
ensemble learningmechanism is shown to perform the task well, with the combined ensemble
performance being significantly better than that of the individual classifiers. The properties of
the full model are analysed in the light of extensive experiments with the classification task,
including an investigation into the influence of different input feature selection schemes and a
comparison with a hierarchical STDP-only based ensemble architecture.

Results

An Analytic Model of a Voter Ensemble Network with ITDP

This section describes the analytic formulation of ITDP driven spiking ensemble learning
using probability metrics. The development of such an analytic/logicalmodel serves two pur-
poses: to demonstrate and better understand the mechanisms of spike-based ensemble learn-
ing, particularly the coordination of classifier outputs through ITDP, and as the basis of a fast,
simplifiedmodel which can be used to provide unsupervised learning in an ensemble of arbi-
trary base classifiers. Later in the paper we extend the proposedmodel to a more biologically
plausible spiking neural network ensemble learning architecture.

Three neuron ITDP. We developed a tractable model based on the hippocampal system
in which Dudman et al. (2007) [26] first demonstrated ITDP empirically. Consider three sim-
plified binary ‘neurons’ which ‘fire’ an event (spike) according to their firing probabilities. The
first neuron k represents a target neuron which corresponds to the hippocampal CA1 pyrami-
dal cell (Fig 2), the second neuronm represents a CA3 neuron which projects a fast Schaffer
collateral (SC) synapse to the proximal dendrite of k, and the last neuron g represents a neuron
from the entorhinal cortex that projects a distal (PP) synapse via a perforant pathway to the
CA1 cell. g is modelled as a gating neuron.

For analytical tractability, we first consider a discrete-time based system as an extremely
simplified case. We assume output of the system is clocked, where all neurons always give their
decisions synchronously by either firing or being silent at every tick. The distal firing delay
(20ms) of biological ITDP is eliminated by ignoring the effects of hippocampal trisynaptic
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transmission delay and the deformation of distal excitatory postsynaptic potentials (EPSPs)
due to dendritic propagation. Thus the potentiation of the ITDP synapse occurs only when the
two presynaptic neurons fire together at any given time instance. This plasticity rule can be
conceptually illustrated by simplifying the original experimental ITDP curve as a pulse-like
function (Logical ITDP model in Fig 2), where we can regard the ITDP operation as a logical
process which is modelled as “(m, g) fire together, (m, k) wire together” in a heterosynaptic
way. A model using a Gaussian simplification which takes the proximal-distal spike interval
into account (Simplified ITDP model in Fig 2) will be used later for a more detailed, biologi-
cally plausible neural network model, where each presynaptic neuron fire a burst of spikes as
an output event thus having a range of different spike-timings between two presynaptic neu-
rons. For the time being we concentrate on the logical model which allows us to examine some
important intrinsic properties of learning in a spiking ensemble. From this logical simplifica-
tion, we can express the probabilities of the possible joint events of two presynaptic neurons
with independent Bernoulli random variablesm and g at any discrete time instance as:

pðm ^ gÞ ¼ pðmÞpðgÞ ð1Þ

pðm _ gÞ ¼ pðmÞ þ pðgÞ � pðmÞpðgÞ ð2Þ

pð:m ^ :gÞ ¼ 1 � pðm _ gÞ ð3Þ

We assumem and g to be independent in this simplified illustrative model in line with the
(hippocampal) biological case where the input signals for neuronsm and g are assumed to be
uncorrelated. This is because whereas g receives direct sensory information from EC,m receives
highly processed information of the same sensory signal through a tri-synaptic path, so the
inputs for the two neurons can essentially be assumed to be independent. In the full ensemble
models developed later, this assumption holds, to a good level of approximation, as the input
vectors for each ensemble classifier are distinct measurements of the raw input data through the
use of different feature subsets for each classifier. This issue is discussed further in Methods.

The synaptic weight w in this logical model is potentiated by ITDP when bothm and g fire.
In order to prevent the unbounded growth of weight strength, we employed the synaptic learn-
ing rule from [30], such that the synapse is potentiated by an amount which is inversely expo-
nentially dependant on its weight, whereas it is depressed by a constant amount if only one
neuronm or g fires. If neither of the presynaptic neurons fire, no ITDP is triggered. This self-
dependent rule is not intended to model the slight amount of LTD which was originally shown
in the outer region of the peak potentiation of the experimental ITDP curve shown by [26] (see
Fig 2 left). Rather, it provides a local mechanism for synaptic normalisation where multiple
proximal synapses from a number ofm neurons compete for the synaptic resources without
the unbounded growth of synaptic weights. Also it has been shown that the kind of inversely
exponential weight dependency rule used here closely reproduced the pre-post pairing fre-
quency dependent STDP behaviour of biological synapses [30] when used to model STDP. It is
expected that this correspondencewill also be valid for other types of timing-dependent plas-
ticities such as ITDP. Thus, using this rule, the weight change by ITDP in our logical model is
triggeredwhen either one ofm or g or both fire. The change of the weight Δw from neuronm
to the postsynaptic neuron f can be written as:

Dw ¼

ae� w � 1 ; if ðm ^ gÞ

� 1 ; if ðm _ gÞ ^ :ðm ^ gÞ

0 ; otherwise

8
><

>:
ð4Þ
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where a� 1 is a constant which shifts the weight to a positive value. It is evident that the sum
of all three probabilities is 1 according to Eqs 1–3. From Eqs 1–4, we derived the expected
value of the weight w at equilibrium under constant presynaptic firing probabilities to give the
expression in Eq 5 (seeMethods for details).

wjE½Dw�¼0
¼ logðaÞ þ log

pðmÞpðgÞ
pðmÞ þ pðgÞ � pðmÞpðgÞ

� �

ð5Þ

Now we have the expected value of w at equilibrium expressed in terms of the two probabili-
ties p(m) and p(g). It can be seen that the weight converges to the difference of two log proba-
bilities of the events (m = 1 and g = 1) and (m = 1 or g = 1) with a shift of log(a).

Unsupervised Learning in a Spiking Voter Ensemble Network

Next we built an extended logical model for learning the weighted combination of a population
(ensemble) of spiking neuronal voters (classifiers) using the simplified ITDP model described
earlier. A voter was assumed to have a set of output neurons (one for each class) each of which
fires an event (spike) according to its firing probability distribution. The voter follows the
mechanism of stochastic winner-takes-all (sWTA), where only a single neuron can fire for any
presented input data. The firing probabilities of the neurons in a voter sum up to unity and
these probabilities are determined by the input presented to the voter. Therefore, a voter gener-
ates a stochastic decision (casts a vote representing the classification) by firing a spike from one
of its output neurons whenever an input pattern is presented to the voter. The input pattern
shown to the voter can be any neurally coded information (such as an image, sound, or tactile
information) which is to be classified by the voter. A pattern given to the voter is regarded as
being labeled as belonging to a certain class (c), where the number of existing classes is assumed
to be initially known. However, it is unnecessary to relate the absolute value of the class label to
the specific neuron index, since any voter neuron can represent an arbitrary data class by firing
dominantly. In this abstract model, which was primarily motivated as a vehicle to test the effi-
cacy of ITDP driven coordination of ensemble member outputs, the individual ensemble classi-
fiers were assumed to be fully trained in advance using an arbitrary set of input data. Their
tables of firing probabilities (as in Fig 3) effectively represent the posterior probabilities of each
class for a given input vector.

Using the simplified voter model, we can build an analytically tractable voter ensemble net-
work capable of learning the spike-basedweighted combination of the individual voters. In
other words, learn to combine the individual votes by weighting them appropriately so as to
give a better overall classification. The ensemble system consists of three subsystems similar to
those in the MoE architecture: an ensemble of voters, a final voter which receives the decisions
from the ensemble and combines them to give the final classification output, and a gating voter
which guides ITDP between the ensemble and the final voter (Fig 3 right). The neurons of all
voters in the ensemble project connections to all the neurons in the final voter (c.f. proximal
projections from CA3 in the hippocampal case), whereas the gating voter projects topographic
(one to one) distal connections to the final voter (Fig 3 right, c.f. distal topographic projections
from EC in the hippocampal case). Every ensemble voter and the gating voter take their own
representation vectors derived either from the same input pattern or from different patterns
from distinct input subsets (e.g. different regions of an image). The spikes from the gating
voter passing through the topographic distal connection are assumed to have no significant
contribution to the final voter output (except indirectly through guiding ITDP). This is
because, following the biological data, in our model long range EPSP propagation from distal
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synapses to the soma is significantly attenuated and therefore has little influence on evoking
postsynaptic action potentials [26].

The gating voter guides ITDP via its topographic projections, which selectively enhance the
connection strengths from the ensemble voter neurons representing the same class to one of
the final voter neurons (the gating voter’s topographic counterpart) regardless of the ensemble
neuron indices. Therefore, the system produces the ‘unsupervised’ weighted combination of
ensemble outputs by learning the ITDP weights to reflect the long term co-firing statistics of
the ensemble and the gating voter so that the most coherent neuronal paths for a specific class
are converged to one of the final voter neurons.

We derived the following analytic solution (Eq 6) for the values of the weights of the ITDP
synapses projecting from the voter ensemble to the final voter (Fig 3) under equilibrium (i.e.
when they have converged after learning). SeeMethods for details of the derivation.

wj
ki ¼ logðaÞ � log

PM
l¼1
fpðmj

ijxlÞ þ pðgkjxlÞg
PM

l¼1
pðmj

ijxlÞpðgkjxlÞ
� 1

 !

ð6Þ

Where pðmj
ijxlÞ is the firing probability of the ith neuron of the jth ensemble voter for input

sample xl, w
j
ki is the weight frommj

i to the kth neuron (fk) of the final voter, and p(gk|xl) is the
firing probability of the corresponding gating voter neuron which projects to fk.

We also derived an analytic solution for the expected firing probability of a final voter neu-
ron under the presentation of the samples belonging to a particular class as given in Eq 7 (see

Fig 3. A voter and the voter ensemble network (NC = 4). (Left) A voter and the predefined firing probabilities of each voter

neuron for a set of virtual input samples X = {x1, x2, . . ., xM}. (Right) The voter ensemble network. The weightwjki represents

the weight of connection from the ith neuron of the jth voter to the kth neuron of the final voter.

doi:10.1371/journal.pcbi.1005137.g003
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Methods for derivation).

E½pðfkjcÞ� ¼
1

Mc

XMc

l¼1

XNS

q¼1

pðsqjxlÞ �
eukðqÞ

PNC
r¼1
eurðqÞ

 !

; ð7Þ

where p(fk|c) is the firing probability of a final voter neuron at qth ensemble state sq under pre-
sentation of the samples from class c, uk(q) is the weighted sum of spikes from the ensemble in
state sq arriving at the postsynaptic neuron k, and NC is the number of classes (seeMethods for
full explanation of all terms). This gives the analytic solution of the final voter firing probabili-
ties as a function of joint probabilities of ensemble voter firings under each class presentation.
The addition of these expression now gives us a complete analytic spiking ensemble model.

Validation of analytic solutions by numerical simulation. In order to see if the ensemble
architecture performs as expected and to validate the analytic solutions of the voter ensemble
network, we compared its results, as derived in the previous section, with a numerical simula-
tion that simply iterated through all the underlying equations of the same model. This valida-
tion was deemedworthwhile because the simplified analytical model is based on Bernoulli
random variables that simulate per sample firing events. The numerical simulation of the
model allowed us to check that the long-term trends and statistics matched those predicted by
the analytical solutions. Full details can be found in S1 Text.

The simple iterative numerical simulation—using abstract input data—did indeed produce
very close agreement with the analytic solutions, validating our analytic formulation of
expectedweight values, and demonstrated that the system performs very well under appropri-
ate parameter settings. By defining a number of parameters that easily allowed us to design a
range of differently performing ensembles, the simple numerical simulation also allowed vari-
ous insights into the overall learning dynamics and the dependence on key factors (ensemble
size, gating voter performance, ensemble voter performances). The performance of classifiers
(voters) was measured using normalised conditional entropy (NCE) [30], which is suitable for
measuring the performance of a multi-class discrimination task where the explicit relation
between the neuronal index and the corresponding class is unavailable. NCE has a value in the
range 0�NCE� 0.5, with lower conditional entropy indicating that each neuron fires more
predominantly for one class, hence giving better performance—thismeasure will be used
throughout the remainder of this paper (seeMethods for the details of the simulation proce-
dure and the NCE calculation, see S1 Text for full details of the simple numerical simulation
results).

One key insight confirmed by the simple numerical simulation was that, as long as there is
sufficient guidance from the gating voter, the decisions from the better performing ensemble
neurons influence the final voter output more by developing relatively stronger weights than
the other neurons. Thus the spike from one strongly weighted synaptic projection can over-
whelm several other weakly weighted ‘wrong’ decisions. Such dynamics achieved successful
learning of the weighted vote, based on the history of ensemble behaviour (exactly the behav-
iour we desire in this kind of ensemble learning).More specifically, the simulation of the sim-
plified spiking ensemble system showed that the gating voter and at least one ensemble voter
must have positive discriminability (NCE<0.5) in order to properly learn to performweighted
voting. That is, the gating voter, and at least one ensemble member, must have at least reason-
able—but not necessarily great—performance on the classification task for the overall ensemble
performance to be very good.

These validation tests showed that the logical model of a spiking voter ensemble system and
its analytic solutions are capable of performing efficient spike-basedweighted voting, driven by
ITDP, and gave us important insights into how that is achieved. They also demonstrated how
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the seemingly complex network of interactions between stochastic processes within a popula-
tion of voters can be effectively described by a series of probability metrics. In the next section
we report on results from a computational model based on this tractable logical model which
was significantly extended to encompass more biologically realistic spiking neural networks,
with ensemble members having their own inherent plasticity. This system was demonstrated
on a practical classification task with real data.

Ensemble of ITDP Mediated Spiking Expectation Maximization Neural

Networks

The logical voter ensemble model described in the previous section showed that the computa-
tional characteristics of ITDP provide a novel functionality which can be used to coordinate
multiple neural classifiers such that they perform spike based online ensemble learning. This
form of ensemble learning simultaneously solves both the weighted vote and combining prob-
lems of arbitrarily ordered decisions from individual classifiers in an unsupervisedmanner.
After this validation of the overall ensemble scheme, we next investigated an extended neural
architecture for combined learning in an ensemble of biologically plausible spiking neural net-
work classifiers using ITDP. The overall scheme is based on the initial simplifiedmodel, but
the components are now significantly extended. Instead of assuming the individual classifiers
are pre-trained, they are fully implemented as spiking networks with their own inherent plas-
ticity. Individual classifier and overall ensemble learning dynamics occur simultaneously. The
individual classifiers in the ensemble are implemented as Spiking ExpectationMaximisation
(SEM) neural network which have been shown to perform spike based Bayesian inference [30],
an ability that is often cited as an important mechanism for perception [38–40] in which hid-
den causes (e.g. the categories of objects) underlying noisy and potentially ambiguous sensory
inputs have to be inferred.

A body of experimental data proposes that the brain can be viewed as using principles of
Bayesian inference for processing sensory information in order to solve cognitive tasks such as
reasoning and for producing adequate sensorimotor responses [41, 42]. Learning using Bayes-
ian inference updates the probability estimate for a hypothesis (a posterior probability distribu-
tion for hidden causes) as additional evidence is acquired. Recently, a spike-based neuronal
implementation of Bayesian processing has been proposed by Nessler et al. [30, 43, 44] as a
model of common corticalmicrocircuits. Their feedforward network architecture implements
Bayesian computations using population-coded input neurons and a soft winner takes all
(WTA) output layer, in which internal generative models are represented implicitly through
the synaptic weights to be learnt, and the inference for the probability of hidden causes is car-
ried out by integrating such weighted inputs and competing for firing in a WTA circuit. The
synaptic learning uses a spike-timing dependent plasticity (STDP) rule which has been shown
to effectively implement Maximum LikelihoodEstimation (MLE) allowing the network to
emulate the ExpectationMaximization (EM) algorithm. The behaviour of such networks was
validated by a rigorous mathematical formulation which explains its relation to the EM algo-
rithm [30].

Our reimplementation and extension of Nessler’s [30] model forms the basis of our classifi-
ers and is well-suited for integration into our spike-based ensemble system. Viewing the SEM
model as a unit corticalmicrocircuit for solving classification tasks, we can naturally build an
integrated ITDP-based ensemble architecture as an extension of the logical ITDP ensemble
model described earlier. Fig 4 shows the two layer feedforward neural architecture for the
SEM-ITDP ensemble system. The first layer consists of an ensemble of SEM networks and a
gating SEM, which share the presynaptic input neurons encoding the input data. Reflecting the
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often non-uniform, and specifically targeted, convergent receptive fields of cortical neurons
involved in perceptual processing [45], eachWTA circuit receives a projection from a subset of
input neurons (representing e.g. a specific retinal area), which enables learning for different
‘feature’ subsets of the input data. All synapses in the ensemble layer are subjected to STDP
learning. Following Nessler et al. (2013) [30] and others, in order to demonstrate and test the
operation of the system, binarizedMNIST handwritten digit images [46] were used as input
data for classification, where the ON/OFF state of each pixel is encoded by two input neurons.
The MNIST dataset is a large database of handwritten digits covering a wide range of writing
styles, making it a challenging problem. The output from the ensemble layer is fed to the final
WTA circuit via ITDP synapses which are driven by the more biologically plausible ITDP
curve shown in Fig 2. The following sections will describe in detail the model SEM circuit and
the ITDP dynamics, followed by an investigation into how the SEM-ITDP ensemble system
applied to image classification performed simultaneous realtime learning of both the individual
classifier networks and the ITDP layer in parallel.

SEM neural networkmodel. Let us first revisit a single SEM neural network model [30]
for spike based unsupervisedclassification. The SEM network is a single layer spiking neural
network in which the neurons in the output layer receive all-to-all connections projected from a
set of inputs. The output neurons are grouped as a WTA circuit which is subjected to lateral
inhibition,modelled as a common (global) inhibitory signal which is in turn based on the activ-
ity of the neurons. AWTA circuit consists of K stochastically firing neurons. The firing of each
neuron zk is modelled as an inhomogeneous Poisson process with instantaneous firing rate rk(t),

rkðtÞ ¼ eukðtÞ ð8Þ

ukðtÞ ¼ wk0 þ
Xn

i¼1

wkiyiðtÞ � IðtÞ þ vðtÞ ð9Þ

IðtÞ ¼ Oinh � ðAinh þ OinhÞeðtf � tÞ=tinh ð10Þ

where uk(t) is a membrane potential which sums up the EPSPs from all presynaptic input neu-
rons (yi (i = 1, . . ., n)) multiplied by the respective synaptic weightwki. The variablewk0 repre-
sents neuronal excitability, and I(t) is the input from the global inhibitory signal to theWTA
circuit. v(t) is an additional stochastic perturbationby a Ornstein-Uhlenbeck process which emu-
lates the background neural activity using a kind of simulated Brownian dynamics that decorre-
lates theWTA firing rate from that of the input firing rate in order to prevent mislearning [30,
47]. The EPSP evoked by the ith input neuron is modelled as a double exponential curvewhich
has both fast rising (τf) and slow decaying (τs) time constants. At each time instance, EPSP ampli-
tudes are summed over all presynaptic spike times (tp) to become yi(t) for the ith input at time t.

yiðtÞ ¼ AEPSP

P
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The scaling factor AEPSP is set as a function of the two time constants in order to ensure that
the peak value of an EPSP is 1. Whenever one of the neurons in theWTA circuit fires at tf, I(t)
adds a strong negative pulse (amplitude of Ainh) to the membrane potential of all z neurons,
which exponentially decays back to its resting value (Oinh) with a time constant (τinh). There-
fore, I(t) determines the overall firing rate of WTA circuits as well as controlling the refractory
period of a fired neuron.
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Input evidence xj for a feature j of observeddata is encoded as a group of neuronal activa-
tions yi. If the set of possible values of xj consists ofm values Gj = [v1, v2, . . ., vm], the input xj is
encoded usingm input neurons. Therefore, if input data is given as a N (j = 1, . . .,N) dimen-
sional vector, the total number of input neurons ismN. For further details of the Bayesian pro-
cessing dynamics of the SEM networks see the Methods section.

The rules for STDP driven synapse plasticity between the input layer and the SEM classifi-
ers, ITDP driven plasticity on final output network synapses (as in Fig 4), and neuronal excit-
ability plasticity, are all explained in the Methods section. In this extended version of the
model, ITDP follows the biologically realistic plasticity curve shown in Fig 2 middle (Simplified
ITDP curve).

Experimentswith ensembles of SEM networks. In this sectionwe present results from
running the full biologically plausible SEM ensemble architecture on a real visual classification
task (as depicted in Fig 4). We show that the ensemble learning architecture successfully per-
formed the task and operated as expected from the earlier experiments with the more abstract
logical ensemble model (on which it is based).Weights in the STDP and ITDP connection lay-
ers smoothly converged to allow robust and accurate classification. The overall ensemble per-
formance was significantly better than the individual SEM classifier performances. The initial
experiments used a random (input) feature selection scheme.

The SEM ensemble architecture was tested on an unsupervisedclassification task involving
recognizingMNIST handwritten digits [46]. Each piece of input data was a greyscale image

Fig 4. SEM-ITDP ensemble network architecture. The STDP connections, which projects from the selected input neurons

to each WTA circuit, together with the WTA circuits constitute the SEM ensemble. The ITDP connections have the same

connectivity as the logical ITDP model. All of the ensemble, gating and final output networks use the same SEM circuit model.

doi:10.1371/journal.pcbi.1005137.g004
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having 28×28 = 784 pixels. The class labels of all data were unknown to the ensemble system,
so both the learning and combining aspects of the ensemble are unsupervised.All images were
binarized by setting all pixels with intensity greater than 200 (max 255) to 1, and 0 otherwise.
The dimension of the binary image was reduced by abandoning less occupied pixels by prepro-
cessing over the entire images in the dataset (pixels being ‘on’ in less than 3% of the total image
presentation were disabled) [30].

In contrast to the logical voter model experiments, where output was manually designed to
produce stochastic decisions, the outputs of individual SEM networks using a real dataset tend
to produce the same decision error for the specific input data. Promoting diversity between
individual classifier outputs is a prerequisite for improving ensemble quality in the machine
learning literature [48, 49], and ensemble feature selection has been shown to be an essential
step for constructing an ensemble of accurate and diverse base classifiers. The features of an
image in biological visual processing generally implies the neurally extracted stimuli which rep-
resent the elementary visual information of a scene (such as spot lights, oriented bars, and col-
ors), and they need to be learnt through the layers of a neural pipeline [50–52] which is beyond
the scope of this work. For the sake of simplicity, we used a raw pixel as the basic feature which
could be selected as an informative subset of the input data space. It has been shown that spe-
cific forms of weight decay or regularization provide a mechanism for biologically plausible
Bayesian feature selection [53–55]. In our ensemble system, selective projections from the
input layer to the ensembleWTAs effectively implemented pixel/feature selection in this
regard. Each ensemble layer SEM network learnt over a distinct subregion of images by
neurally implementing ensemble feature selection, where each ensembleWTA circuit received
the projection from a selected subset of input neurons such that the all-to-all connectivity from
a pair of input neuronsm andm + 1 to theWTA neurons was enabled if the pixelm was
selected as a feature. A quarter of the total number of pixels were selected for each ensemble
member by the feature selection schemes used (described later).

The gating network used either full (i.e. the whole image) or partial features for testing
supervisedor unsupervisedgating of ITDP learning. In order for both the partial-featured
ensemble network and the full-featured gating network to receive input from the same number
of input neurons, the images were supersampled to 56×56 pixels. This is because the output of
ourWTA circuit is a train of spikes (typically bursting at a few tens of Hz) during input presen-
tation, and different numbers of input neurons may result in different numbers of spikes in an
output burst. For ITDP learning, it is logically compatible with biological ITDP in vitro (both
distal and proximal neurons fire a single spike) to make all the ensembleWTAs and the gating
WTA fire the same number of spikes per burst. The image supersampling replicated a pixel to
four identical pixels (all four pixels indicate the same feature), so the set of all features for the
gatingWTA was represented by a quarter of the pixels of the supersampled image. A quarter of
pixels were selected for each ensembleWTA as its feature subset using some selection scheme
(see later). Thus the same number of input pixels was achieved both for the ensemble and gat-
ingWTAs. Another way of thinking about this process is that the pixels selected for an ensem-
ble WTA were replicated in order to match their number to the size of the original (not
supersampled) image.

We conducted an initial experiment using four classes of images (digits 0, 1, 2, and 3) each
of which had 700 samples (2800 images in total). The original 784 pixels were reduced to 347
by dimensionality reduction, followed by supersampling them tom = 1388, hence there were
NI = 2m = 2776 input neurons in the input layer and K = 4 output neurons in eachWTA cir-
cuit. The number of synapses is proportional to NE as each ensembleWTA receive the same
number of inputs in order to give an output burst of regular numbered spikes which behaves as
similar as possible to the (earlier tractable) logical voter ensemble model (which had been
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shown to performwell). Given an ensemble sizeNE, the system has KNI(NE + 1)/4 STDP syn-
apses in the first layer, K2 NE ITDP synapses in the second layer, andNI + K(NE + 2) Poissonian
neurons. The effect of increased synapses in the second layer was compensated by adjusting
the inhibition level of the finalWTA circuit (SeeMethods). We initially used random feature
selection, where a quarter of pixels were randomly selected for each ensemble member and for
the gating network, and the corresponding input neurons projected STDP synapses to their tar-
get WTA circuit. The input was fed to the network by successively presenting an image from
one class for a certain duration (Tpresent), followed by a resting period (Trest) where none of the
input neurons fire, in order to avoid overlap of EPSPs from input spikes caused by different
input images. Full numerical details of the experimental setting can be found in Methods (sub-
section SEM-ITDP experiments).

An example of the ensemble classification learning task with random feature selection is
shown in Fig 5. One of the images in a class was presented for 40ms followed by another 40ms
of resting period.Different images generated from four classes were presented successively in a
repeating order. Approximately a few tens of seconds after starting the simulation, the output
neurons of all WTA circuits began to fire a series of ordered bursts almost exclusively to one of
the hidden classes of each presented image. The allocation of output neuron indices firing for a
specific class arbitrarily emerged in all of the ensemble layer WTAs by unsupervised learning,
whereas the neuron indices between the gating network and final network were matched by
ITDP guidance. Technically, the system is not completely unsupervisedbecause the number of
classes is provided, even if the class labels are not; however, blinding the class labels makes the
task challenging for the system which has to discriminate distinct hidden causes in a self-orga-
nisedmanner. It can be seen from the figure that, after a period of learning, the network out-
puts produce consistent firing patterns, each output spiking exclusively for a single class of
input data.

After learning, the presynaptic weight maps for each output neuron of an ensemble layer
WTA circuit clearly represent four different hidden causes, which are shown by depicting the
difference betweenON and OFF weights for each pixel (Fig 6A and 6B). Once one of theWTA
neurons fires for one class more than the others, its presynaptic STDP weights are adjusted
such that either the ON or OFF weights for corresponding pixels are enhanced by STDP to

Fig 5. Spike trains from the SEM ensemble network with NE = 5 and random feature selection. (Left) Plot shows the input neuron

spikes from eight image presentations from different classes (digits) which are depicted in different colors (black: 0, red: 1, green: 2,

blue: 4). (Right) Two graphs show the output spikes of ensemble, gating, and final WTA neurons before and after learning. The colors of

the spikes represent which class is being presented as input. After learning the network outputs produce consistent firing patterns, each

output spiking exclusively for a single class.

doi:10.1371/journal.pcbi.1005137.g005
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reflect the target class. Thus the output neuron comes to fire more when an image from the
same class is presented again. Fig 6C shows the emergence of typical ITDP guidedweight learn-
ing on the connections between the ensemble layer and the final net (Fig 4). Over the learning
periodweight values become segregated into groups which depend on the frequency of the co-
firing of the ensemble and the gating neurons. In most cases, the highest-valued group con-
sisted of projections which formed topographical (but not necessarily using the same index)
connections between the neurons of each ensembleWTA and the final output WTA neurons,
which meant that the connections carrying the signal for the same class were most enhanced
and converged to the corresponding finalWTA neurons. Therefore it can be seen that the pro-
cess for combining ensemble outputs, controlled by ITDP learning, functioned similarly to the
learning of a spike-basedmajority vote system where only topographic connections having
identical weights exist between each ensembleWTA and the finalWTA. Despite the system
having no information about the class labels in ensembleWTA neurons, the gatingWTA
(which is also unsupervised)could selectively recruit and assign the ensemble output to con-
verge to one of the final layer neurons based on the history of the ensemble output. Clearly, the
fully extended ensemble architecture performs as expected.

The classification performance of the network was represented by calculating the normal-
ised conditional entropy (NCE) as in Eqs 26–28. Low conditional entropy indicates that each
output neuron fires predominantly for inputs from one class, hence representing high classifi-
cation performance. In order to observe the continuous change of network performance over
time, the conditional entropy was calculatedwithin a moving time window of 2800 image pre-
sentations (the total number of data) which is approximately 224 seconds in simulation time.
In most cases, the conditional entropies of all WTA circuits were converged after approxi-
mately a couple of rounds of total data presentation (after 448 sec).While the visual observa-
tion of spike bursting in the output WTA after learning seemed to show less salient differences
than expected, the traces of normalized conditional entropy showed that the finalWTA out-
performed the individual ensembleWTAs in nearly all cases. Fig 7 shows three particular
examples of different gatingWTA performances of: (A) better than the ensemble average, (B)
similar to the ensemble average, (C) worse than the ensemble average. It is interesting to note
that the performance of the gatingWTA, which actually guides the whole ensemble, does not
have to have the best performance in order for the overall performance of the ensemble to be
better than that of the individual classifiers.

Fig 6. An example of the STDP weight maps of a SEM classifier after learning (A, B) and the time evolution of ITDP weights (C).

Each weight map represents the presynaptic weight values that project to each of four WTA neurons (which each fire dominantly for one

of the classes). The grey area shows pixels disabled by preprocessing, and each colored pixel represent the difference of the weights

from the two input neurons for the corresponding pixel (white pixels represent unselected features). So as to use all features, a quarter

of pixels are evenly selected from the supersampled image in order to use all pixels of the original data.

doi:10.1371/journal.pcbi.1005137.g006
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As well as supporting the theoretical model of the logical voter ensemble presented earlier,
these initial experiments demonstrated that the ensemble architecture for a population of spik-
ing networks successfully extended into a more biologically realistic implementation in which
the individual classifiers and the combining mechanism all operated and learned in parallel.

SEM ensemble learning with different feature selection schemes. The initial experi-
ments described in the previous section used a simple random input feature selection scheme.
In order to investigate the influence of feature selection on learning in the SEM ensemble, a
detailed set of experiments were carried out to compare a number of different feature selection
heuristics. This section presents the results of those experiments. The basic experimental setup
and the visual classification task were the same as in the previous section. In each of the new
feature selection schemes, pixel subsets were stochastically selected from controlled probability
distributions. Ensemble behaviour was compared across the controlled feature distributions
and the random selection scheme in terms of the relationship between performance and
ensemble diversity.

For the controlled feature subsets, two Gaussian distribution schemes were tested, being sys-
tematically investigated for various ensemble sizesNE. These schemes are reminiscent of basic
biological topographic sensory receptive fields/features [45]. In order to promote diversity of
input patterns for ensemble members, each distribution was designed to enable pixels to be
drawn from different regions of the image, and for each ensembleWTA to receive projections
from different input neurons, corresponding to the selected pixel subsets. Hence each of the
SEM classifiers in the ensemble received its inputs from a different region of the image as
defined by the distributions. The first method selects pixels by sampling fromNE normal 2D
Gaussian distributions (i.e. with identity covariance matrices) with different means (mean
positions are distributed evenly on the image)—one for each ensemble member. The second
Gaussian method uses the same number of stretched Gaussian distributions (the selected pixel
group forms a thick bar on the image) all having the same mean at the centre of the image but
with varying orientations (which differ by π/NE rad)—see Figs 8 and 9 for illustrative descrip-
tions of each selection scheme and their resultant visual regions. SeeMethods section for fur-
ther details of the schemes.

Fig 7. Examples of ensemble behaviours (NE = 9) for different gating network performances ((A) better than, (B) similar to, (C)

worse than the ensemble average). All the ensemble and the gating WTAs used random feature selection. The colors represent the

NCEs of the final network (red), the gating network (blue), the ensemble networks (grey) and their average (black). Vertical lines indicate

the time span of the total data presentation, where input data are sequentially presented for multiple rounds in order to see long term

convergence. The NCE value at time t is calculated by counting the class-dependent spikes within the past finite time window of [Tp, t]

(Tp < t). In order to prevent a sudden change in the NCE plots due to the exclusion of the early system output (which are immature

resulting in high NCE values) from the time window, Tp was dynamically changed for faster burn-out of those initial values as: Tp = t(1−d/

4D) where d = t when t < 2D and d = 2D otherwise, D = 224sec is the duration of one round of dataset presentation. See Methods for

details of the NCE calculations.

doi:10.1371/journal.pcbi.1005137.g007
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Since the SEM network implements spike-based stochastic EM [30], its solution is only
guaranteed to converge to one of the local maxima, dependent on both the initial conditions
and the stochastic firing process, which means that the system behaviour can vary to some
extent between repeated trials. Thus it was necessary to set some criterion for the comparison
of the system behaviours under different feature assignment schemes. The most obvious
approach would be to compare them at their peak performances when all ensembleWTAs and
the gatingWTA are at their global maxima. If all the ensemble and gatingWTAs produce their
maximum performances, the final result will be also be at the maximum. However, it is hard to
manually search all WTAs for maximum performances (which is another optimisation prob-
lem), thus we first observed the performance of the system under different conditions only
when the performance of the full-featured gating network (i.e. using input from all features as
in Fig 6) had reached a level close to its best possible value. Later, more reliable, comparisons
were performed by using statistics from a number of repeated trials using supervisedoutput
from the gating network by giving the true class labels without learning (thus forcing identical
gating network behaviour over trials).

The ensemble system using three different feature selection scheme (random, normal
Gaussian, stretched Gaussian—see Fig 8) was investigated with eight different ensemble sizes
NE = {5, 7, 9, 11, 13, 16, 20, 25}. Fig 10 shows an example of the performances of all WTA out-
puts after running two rounds of input presentations. In order to minimise the influence of dif-
ferent gating network performances on the comparison of final performances, in the runs
summarized in the figure only the results from similar gating network performances were plot-
ted. The gating network always used the same full set of features, and the results from the

Fig 8. Illustrative images for controlled feature assignment for SEM ensemble networks. White regions indicate

available pixels (active region) as defined by preprocessing, and the Gaussian means for the normal Gaussian selection

scheme are evenly placed inside such regions by random placement procedure (See Methods for details of the actual

Gaussian mean placement). The number of stretched Gaussian features used increases linearly with ensemble size (see

Methods for details). The diameters of red circles and ovals roughly represent the full width at a tenth of maximum (FWTM)

for each principal direction (the length of an oval is shown far shorter than it actual is for the sake of visualization—long ovals

are used to ensure they form roughly uniform bars in the region of available pixels). In all cases, exactly 1/4 of pixels from the

available (white) region are stochastically selected (without replacement) for each ensemble network according to each

distribution function.

doi:10.1371/journal.pcbi.1005137.g008
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reasonably high gating network performances (NCE�0.26) were found by manually repeating
several tens of runs with different initial weights. The results show that the ensemble systems
using the Gaussian feature selection schemes both outperform, to a similar degree, random
selection and that the final performances increase (i.e. NCE decreases) with ensemble size in all
cases.

Further trends in system behaviour were investigated in more detail by averaging over
repeated simulations using a supervisedgating network whose neurons output the true class
(the ith neuron fires when the image from class i is presented), thus taking variability in the
unsupervisedgating network out of the equation. At the beginning of each image presentation

Fig 9. Examples of STDP weight maps from different feature selection schemes when NE = 5. The weight maps for the

ensemble WTA neurons which represent the digit 1 after learning are shown.

doi:10.1371/journal.pcbi.1005137.g009

Fig 10. All WTA performances vs. ensemble sizes for different feature selection schemes. Results having similar gating network

performances are depicted by manually finding the ‘best’ gating network performances at around NCE�0.26. All NCE values were taken

at the end of simulations which were run for two rounds of input presentations (t = 448 sec). Colors represent: ensemble networks (grey),

gating network (blue), and the final output network (red).

doi:10.1371/journal.pcbi.1005137.g010
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(t0), a supervisedgating neuron output was manually given as a train of three spikes, with an
interspike interval of 15ms starting from t0 + 5ms. By alleviating issues of variability, analysis
of repeated simulations with the supervisedgating network allowed better insight into the
dependency of system behaviour on the feature selection schemes and ensemble size. The
mean positions of the Normal Gaussian features were randomly ‘jittered’ about (within con-
straints, seeMethods for details) between simulations so as to eliminate any dependence on
exact pre-determined positions.We also measured the diversity of ensemble members in order
to investigate its influence on the final performance. Although various measurements for the
diversity of classifier ensembles have been proposed, there is no globally accepted theory on the
relationship between the ensemble diversity and performance, and only a few studies have con-
ducted a comparative analysis of different diversity measures for classifier ensembles [56, 57].
Among them, we chose an entropy based diversity measure [56, 58, 59] because it is a none-
pairwisemethod (hence less computationally intensive) and has been shown to have strong
correlation with ensemble accuracy across various combining methods and different bench-
mark datasets.

After learning has converged, the diversity of an ensemble of sizeNE for NC classes is calcu-
lated over the total input presentations as:

Div ¼
1

M

XM

l¼1

XNC

k¼1

� PlklogNCP
l
k ð12Þ

Plk ¼
1

NE

XNE

j¼1

njkðdlÞ
PNC

i¼1
njiðdlÞ

ð13Þ

whereM is the number of input data, and Plk represents the proportion of ensemble members
which assign dl to the instructed class k given by the gating network.While the original diver-
sity metric simply counts the number of classifiers giving the same decision, the SEM network
output consists of multiple spikes which can have originated from different output neurons
within the time window of the image presentation. Thus Plk is calculated from a soft decision,
where njkðdlÞ is the number of spikes from the neuron of the jth ensemble network which repre-
sents the kth class under the presentation of input data dl. Identifying which ensemble network
neuron represents the kth class is done by counting the total number of spikes from each neu-
ron when the kth gating network neuron fires and assigning the neuron which fires most.

The result from repeated simulations (Fig 11) showed that the normal Gaussian selection
scheme provided the best performances even if the average ensemble performance
(Eesb ¼

1

NE

P
jNCEj) was the worst. As expected, the ensemble diversities showed an inverse

relationship with the final network NCE, indicating its crucial role in the combined perfor-
mance. It can be inferred that while the two Gaussian feature schemes try to select pixel subsets
explicitly from different regions of the image, the normal Gaussian scheme generally has more
superimposedpixels between subsets than the other. This results in higher redundancy among
the output of ensemble members, and hence higher diversity. Preliminary ‘feature jitter’ experi-
ments with higher degrees of noise made it clear that the normal Gaussian scheme works best
when the features are reasonably evenly spread over the active region of the image with decent
separation between the means—in other words a set of evenly spread reasonably independent
features. This fits in with insights on how the architecture works (good performance is encour-
aged by not too much correlation between individual ensemble member inputs, and a good
level of diversity in the ensemble—appropriately used the normal Gaussian features are a
straightforwardway of achieving this). While performance gets better as the ensemble size
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increases, diversity roughly increases with ensemble size, indicating a greater chance of dis-
agreement in outputs between ensemble members as the population size increases. Krogh and
Vedelsby (1995) [60] have shown that the combination performance (final error E) of a regres-
sion ensemble is linearly related to the average error (E) and the ambiguity (A) of the individ-
ual ensemble members as follows: E ¼ E � A, where each term corresponds to the final
network performance, average ensemble performance, and diversity in our system.We can
expect a similar linear relationships between these quantities and indeed Fig 11E shows the lin-
ear relationship between the final network performance and Eesb−Div.

Fig 12A-12C shows that the trained ensemble generalizedwell to unseen data. Its perfor-
mance on unseen classification data compared very well with its performance on the training
data. In common with all the other earlier results, the figure shows the NCE entropy measure
for performance because of the unsupervisednature of the task, where the ‘correct’ associations
between input data and most active output neuron are not known in advance. Individual classi-
fier performances are shown in grey, and the overall ensemble (output layer) performance is
shown in red. An alternative is to measure the classification error rate in the test phase in rela-
tion to the associations between the class of the input data and the output neuron firing rates
made during the training phase. In terms of this classification error rate, the trained ensemble
typically generalizes to unseen data with an error of 15% or less. The best prediction perfor-
mances were found using the normal Gaussian selection scheme (Fig 12D–12F), which resulted
in an error rate of 10% or less. It can be seen that not only the ensemble size but also its diver-
sity in the training phase influences the performances on the unseen test set, where the

Fig 11. Statistics of ensemble performances and diversities for different feature selection schemes and ensemble

sizes. Each point in the graphs (A-D) is the averaged value of 50 simulations, and the error bars represent standard

deviations. Eesb in (C, D, E) represents the average NCE of ensemble members at each simulation, Div (B, D, E) is diversity.

(E) Final network NCE vs. the difference of diversity and average ensemble NCE. The background dots (grey, orange, light

blue) represent every individual simulation from all three feature selection schemes (random, normal Gaussian, stretched

Gaussian respectively) and eight ensemble sizes (3×8×50 = 1200 runs), and the larger dots are the average values of each of

50 repeated simulations (same colors as A-D).

doi:10.1371/journal.pcbi.1005137.g011
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generalization performances of ensembles having greater diversities can outperform those with
larger ensemble sizes (ex.NE = 13). Similar trends relating diversities and average test error
rates of ensemble members, indicate that networks in the more diverse ensembles are more
likely to disagree with each other because of a greater number of misclassifications. However,
their combined output eventually yields a better generalization performance on unseen data,
indicating that ensemble diversity is more important for the final result than the individual
classifier performances.

Comparison with an STDP Only Ensemble

Although the starting points for the ITDP based ensemble architecture proposed in this paper
were the earlier hypotheses about MoE type architectures operating in the brain [6], and the
realization that the circuits involved in ITDP studied in [26, 29] had exactly the properties
required for an ITDP driven gating mechanism that could control ensemble learning, an alter-
native hypotheses involves a hierarchical STDP only architecture. A multi-layered STDP sys-
tem where the final layer learns to coordinate the decisions of an earlier layer of classifiers
might also provide a mechanisms for effective ensemble learning.

The SEM neural network classifiers realize expectationmaximization by learning the co-fir-
ing statistics of pre and postsynaptic neurons via STDP. The neurons of the input layer repre-
sents discrete-valuedmultidimensional data (ex. digital pixel image) using a spike-coded
vector, where the value of each dimension is expressed by a group of exclusively firing neurons
representing its corresponding states. Since the spike output of a WTA ensemble similarly can
be regarded as the binary-codedmultidimensional input data for the final layer (ex.NE dimen-
sional data where the value of each dimension has NC states), this naturally leads to the possi-
bility that the latent variable (hypothesis) of a given ensemble state can be inferred by the final
WTA network using STDP learning instead of ITDP. One difference between the ensemble

Fig 12. (A, B, C) Training and test performances demonstrating generalization to unseen data (NE = 5). The testing phase

starts at iteration 448 by freezing the weights and by replacing the input samples by the test set which was not shown to

the system during the learning phase. (D) Test set error rates of the final output unit, (E) the average ensemble error rates,

and (F) the training phase diversities (same as in Fig 11) over different ensemble sizes using the normal Gaussian

selection scheme on the integer recognition problem. Each data point was plotted by averaging 50 runs, where the error

bar shows the standard deviations. NCE calculations as in Fig 7.

doi:10.1371/journal.pcbi.1005137.g012
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WTA layer and the input layer during the presentation of input data is that the firing probabili-
ties of WTA neurons are not exclusive for a given input sample (more than one neuron can
have a non-zero firing probability), while the population code used in the input layer neurons
always have all-or-none firing rates, which means that the state of the given input data is repre-
sented stochastically in theWTA layer. Although, as a form of interference, this might inher-
ently affect the behavior of a SEM network, previous work [30] indicates that it should still be
able to deal with incomplete or missing data.

Possible applications of multi-layered SEMmicrocircuit were suggested in [30], and a fur-
ther study [61] has shown the power of recurrent networks of multiple SEM circuits when used
as a neural reservoir for performing classification, memorization, and recall of spatiotemporal
patterns. These insights suggest an STDP only implementation of the MoE type architecture
presented earlier might be viable. Hence we conducted a preliminary investigation of using
STDP to learn the second layer connectionweights (i.e. connections between the ensemble and
final layer, Fig 4), making a comparison of the use of STDP and ITDP in that part of the ensem-
ble classifier system.

The learning of the second layer of weights by STDP was done straightforwardly by apply-
ing the same learning rule as in the first layer connections (between the input and ensemble
layers). All other settings and parameters were exactly the same as the original system. In order
to avoid the influence of the inevitable trial-to-trial variance of the presynaptic SEM ensemble
when the two learning rules are tested separately, the original ensemble network architecture
was expanded by having two final (parallel)WTA circuits which both receive connections
from the same ensembleWTAs, but are subject to different synaptic learning rules (one for
STDP and the other for ITDP). This setup, where the learning rules are tested in parallel,
ensures that both final layer WTAs receive exactly the same inputs, so that any differences in
their final performances depend only on the different synaptic learning rules. For the repeated
simulations with the normal Gaussian feature selection scheme, the same initial mean positions
were used without the randommean placement ‘jittering’. This is because the purpose of the
current experiment is to compare the two plasticity methods under as identical conditions as
possible, and we know from the earlier experiments with the ITDP ensemble that the perfor-
mance and trends of the fixed normal Gaussians was very close to the average of the randomly
jittered placements. These procedures enables a well-defined, unbiased comparison between
the two learning rules.

The connections from the gatingWTA to the ITDP final layer operate exactly as in the
experiments described earlier (i.e. as genuine gating connections involved in the heterosynaptic
plasticity process). For comparability, the STDP final layer also receives projections from the
gatingWTA, but they of course operate very differently—they are just like the connections to
the final network from any of the ensemble networks. Therefore in the STDP case the gating
WTA does not have an actual gating function but effectively operates as an extra ensemble
member. The corresponding synaptic weights are learnt by STDP in just the same way as for all
other ensembleWTA projections to the STDP final layer neurons. This use of an additional
ensemble member is potentially advantageous for the STDP final network in terms of the
amount of information used.

The results of multiple runs of the expanded comparative architecture on the MNIST hand-
written digits recognition task with random feature selection are illustrated in Fig 13. It is clear
from these initial tests that the STDP version compares favourably with the ITDP version,
although is generally not as good. The performance of the STDP finalWTA over repeated trials
shows that on many runs it outperforms most of the ensembleWTAs (i.e. ensemble learning is
successful in this version of the architecture). Although the STDP net is capable of bringing
improved classification from the SEM ensemble, its performance variance over repeated trials

Ensemble Learning Neural Network by ITDP

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005137 October 19, 2016 23 / 41



is higher than the ITDP net, indicating less robustness against the various ensemble conditions.
However, while the ITDP net is dependent on the gatingWTA performance (as we know from
earlier experiments—Fig 7), no single presynaptic WTA circuit strongly influences the STDP
net performance. The result of repeated runs sorted by the gatingWTA performance (Fig 13B)
indeed shows this dependency of the ITDP net, and the STDP net outperforms the ITDP net in
the region where the gatingWTA performances are the worst. However, as was shown with
earlier experiments, it is relatively easy to find good initial gating network settings, and it might
not be unreasonable to assume these would be partially or fully hardwired in by evolution in an
ITDP ensemble. The dependence of ITDP on (a reasonable) gating signal may be disadvanta-
geous in terms of the performance consistency in this type of neural system in isolation, and
without any biases in initial settings, but on the other hand, the gating mechanism (which after
all is the very essence of the ITDP system) can act as an effective and compact interface for pro-
viding higher control when connected to other neural modules. For example, the supervising
signal could be directly provided via a gating network from the higher nervous system, or the
gating signal could be continuously updated by reward-based learning performed by an exter-
nal neural system such as the basal ganglia. Also it is possible that multiple ITDP ensemble
modules could be connected such that the final output of one module is fed to the gating signal
of other modules (similar to the multilayered STDP SEM networks), achieving successive
improvements of system performance as information is passed through modules.

Fig 13C and 13D show the performances using a high performing ensembleWTA as the
gatingWTA which is automatically selected during the early simulation period. The gating
WTA was continuously updated during the first round of dataset presentation (0< t< 224)
by assigning one of the ensembleWTAs as the gatingWTA whenever the current gatingWTA
is outranked by it. This procedure was used, rather than assigning previously found good

Fig 13. Training performances of the expanded STDP/ITDP networks (using random feature selection on the MNIST

handwritten digits classification task as in earlier experiments). Each color represents, red: ITDP final WTA, green:

STDP final WTA, blue: gating WTA, grey/black: ensemble WTAs and their average. (A, B) An example of time courses of

performances and the final performances from 50 repeated trials using unsupervised gating WTA. The individual trials were

sorted by gating WTA performances in ascending order. (C, D) Simulations using the automatic selection of gating WTA. The

vertical lines with arrowheads in C indicate where the switching of gating WTA occurs (see text for further details).

doi:10.1371/journal.pcbi.1005137.g013
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(ITDP) gating network settings, in an attempt not to potentially bias proceeding against STDP
by using a network known to be good for ITDP. When the gatingWTA is replaced by the
selected ensembleWTA, the indices of its neurons representing corresponding classes also
changes. Thus the entire set of ITDP weights are automatically re-learnt to new values, which
causes the transition in the NCE value of the finalWTA until re-stabilization (the hills in the
red line in Fig 13C).

Indeed, we can see from the results of the more detailed set of comparative experiments
shown in Fig 14 that given a qualified gating signal of the kind describe above (i.e. from a gating
network that performs classification reasonably well), the ITDP final net consistently and sig-
nificantly outperformed the STDP final net over a wide range of conditions (feature selection
scheme, ensemble size) in both training and testing. This was the case even though the STDP
net uses one more presynaptic WTA circuit ensemble member, which can be seen to confer an
advantage (first two columns in Fig 14). Clearly, if the gating network was used only in the
ITDP case, and the main ensemble was the same size under both conditions, then the ITDP
version’s margin of superiority would be increased further.

It is interesting to note that the overall trends of the final performances of both methods are
similar to each other over the repeated trials in the region of good performance gatingWTAs
(the ups and downs of the red and green plots over the trials in Fig 13B and 13D follow each
other quite closely). There is also a similar dependency of the average performances on the
ensemble sizes (Fig 14), which suggests that there might be some shared underlyingmecha-
nisms in both combining methods. In the STDP ensemble, the synapses carrying the presynap-
tic spikes onto the postsynaptic neurons get enhanced after a fewmilliseconds of neural firing.
Since all the WTA neurons fire highly synchronous bursts of spikes during every input presen-
tation (the behavior is similar to the clocked output of the abstract voter ensemble model), in
most cases the last spike of the finalWTA burst triggering STDP follows right after the end of
the presynaptic bursts. This leads to the synaptic potentiation by STDP reflecting all the pre-
synaptic bursts. Considering the plasticity curves of STDP and ITDP in our model are of a sim-
ilar type with a few tens of milliseconds of time shift, both plasticities can be generally thought
as enhancing the synaptic weight if two neuron co-fire around the peak of the curve, and
depressing it otherwise. This insight leads to the hypothesis that the finalWTA in the STDP
network acts functionally quite similarly to the gatingWTA in the ITDP network. Among the
presynaptic ensembleWTA neurons, the better performing neurons (those which fire only
under the presentation of a specific class) will fire more spikes than the worse performing neu-
rons. This is because the neurons of each ensembleWTA typically fire highly regular burst of
3-4 spikes in total. The best performing neurons in the ensemble layer fires all 4 spikes for its
corresponding class and remains silent for the other classes. In the poorer performingWTA
neurons, more than two neurons will fire 1-2 spikes each, resulting in the dispersion of spikes.
Thus, over the course of STDP weight updates, the weights from the better performing presyn-
aptic WTA neurons will get more potentiation (by summing EPSPs from all 4 presynaptic
spikes) than the connectionweight from the more poorly performing neurons (which typically
carry only 1-2 spikes). This leads us to infer that the best performing presynaptic WTA neu-
rons under each class presentation generally influence the finalWTA most as learning pro-
ceeds (through the Hebbian STDP process). This autonomously drives the finalWTA towards
better performance through increased correlated activity with the ensemble, effectivelymaking
it a good ‘gating’ WTA (or at least ‘guiding’ WTA). This ‘guiding’ results in better performance
of the combined ensemble output in an analogous way to the explicit gating signals in the
ITDP ensemble mechanism. Of course the STDP version requires correlated pre- and post-syn-
aptic firing from the start in order to gain traction, whereas the more direct ITDP version does
not require post-synaptic firing. Although this STDP ‘gating signal’ may result in positive
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feedback of the finalWTA behavior, inputs from the other presynaptic neurons always inter-
fere with it, preventing an indefinite increase of system performance. The effect of supervised
gating signals shown in Fig 14 indeed shows the difference between the two mechanisms: the
STDP final net has increased performances driven by the supervised signal from one of the pre-
synaptic WTAs during the training phase, but its performance drop is much larger than for the
ITDP final net in the test phase after the supervised signal is removed. In particular, the odd
dependence of the STDP net on ensemble size in the stretched Gaussian selection case (where
performance decreases with ensemble size in the training phase, instead of increasing as in all
other cases, and the discrepancywith the test phase is particularlymarked: Fig 14 bottom of
3rd column) indicates the possibility of a negative effect of the supervised signal when the
ensemble size is small, where the training result can be deceptive because of the large influence
of the supervising signal on the finalWTA relative to the inputs from the rest of the

Fig 14. Average performances of STDP and ITDP ensembles over 50 trials on the MNIST handwritten digits task using

selected/supervised gating WTAs for different feature selection schemes and ensemble sizes (NE = 5, 9, 16, 25). The training

and test phases were run for three and two rounds of dataset presentation respectively. The error bars represent the standard

deviations of the performances from corresponding repeated runs.

doi:10.1371/journal.pcbi.1005137.g014
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presynaptic WTAs. By contrast the explicit gating signal in the ITDP system is more stable and
less prone to such effects, providing better overall performance.

Discussion

The main aim of this paper was to explore a hypothesized role for ITDP in the coordination of
ensemble learning, and in so doing present a biologically plausible architecture, with attendant
mechanisms, capable of producing unsupervisedensemble learning in a population of spiking
neural networks.We believe this has been achieved through the development of an MoE type
architecture built around SEM networks whose outputs are combined via an ITDP based
mechanism.While the architecture was successfully demonstrated on a visual classification
task, and performedwell, our central concern in this paper was not to try and absolutely maxi-
mize its performance (although of course we have striven for good performance). There are
various methods and tricks from the machine learning literature on ensemble learning that
could be employed in order to increase performance a little, but a detailed investigation of such
extensions is outside the scope of the current paper, making it far too long, and some would
involve data manipulation that would move the system away from the realms of biological
plausibility, which would detract from our main aims. However, one interesting direction for
future work related to this involves using different input data subsets for each ensemble mem-
ber. This can increase diversity in the ensemble which has been shown to boost performance in
many circumstances [18, 49], a finding that seems to carry over to our spiking ensemble system
according to the observations on diversity described in the previous section. Preliminary exper-
iments were carried out in which each SEM classifier was fed its own distinct and separate data-
set (all classifiers were fed in parallel, with an expanded, separate set of input neurons for each
classifier, rather than them all using the same ones as in the setup described earlier in this
paper). A significant increase in the overall ensemble performance after training was observed
as shown in Fig 15. Further work needs to be done to investigate the generalization of these
results and to analyse differences in learning dynamics for the ensemble system with single
(one set for all classifier) and multiple (different sets for each classifier) input data sets. The
issue of how such multiple input data sets might impinge on biological plausibility must also be
examined. A related area of further study is in applying the architecture to multiple sensory
modes, with data from different sensorymodes feeding into separate ensemble networks. Some
of the biological evidence for ensemble learning, as discussed in the Introduction section,
appears to involve the combination of multiple modes. Although we have tested the architec-
ture using a single sensorymode, there is no reason why it cannot be extended to handle multi-
ple modes.

Fig 15. Training performances of ensemble networks using different datasets for each ensemble member (NE = 5).

Individual classifier performances are shown in grey, and the overall ensemble (output layer) performance is shown in red.

Results are for various input feature selection schemes on the handwritten integers problem as in the previous section.

doi:10.1371/journal.pcbi.1005137.g015
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While our SEM ensemble model mimics the general MoE architecture, the overall process is
not identical to that used in the classic MoE system [18, 24]. A key difference is that the opera-
tion of the SEM gatingWTA on the ensemble outputs is not based on immediate training
input but is accumulated by slow additive synaptic plasticity over a relatively long time scale,
whereas the standard MoE gating network instantaneously changes the strength of ensemble
efferents for each input vector. Therefore our spiking system is not as adept at directly and
quickly filtering out the wrong output from the ensembleWTAs when an output neuron in the
ensemble fires for multiple classes. In this case the false spikes are also passed to the final layer
through the enhanced connections. However, because such a neuron has a higher probability
of firing for multiple classes, it dissipates its synaptic resource over multiple efferent connec-
tions, resulting in lower synaptic weights than in the case of a neuron which fires predomi-
nantly for one class. Hence the neuron that fires for multiple classes has less chance of winning
at the final output layer WTA. Similarly, false spikes from the gatingWTA will result in less
chance of enhancing the corresponding target set of ITDP weights because of timingmismatch.
In this way our spiking ensemble system can effectively filter out these false classifications, but
using different learning dynamics from the classical system. However, if a large number of
ensembleWTAs fire equally wrongly for the same class, the final output develops a higher
chance of generating the wrong output. The standard architecture can of course suffer from the
same problem [18, 49]. This can happen, for instance, when two input images are hard to dis-
criminate (such as the digits 3 and 8), even if the input subfeatures are randomly selected.
Therefore the system is not entirely free from the feature selection problem as experienced in
other ensemble learningmethods. This limitation meant that in such circumstances simula-
tions using high ensemble sizes did not significantly improve the overall performance (Fig 11),
indicating a lack of ensemble diversity. Preliminary experiments indicated that by using an
evolutionary search algorithm to evolve individual feature selection schemes for each ensemble
member, diversity is increased, alleviating this problem greatly and significantly increasing per-
formance. This is reminiscent of individually evolved receptive fields/input ‘features’ for spa-
tially separated networks in the cortex and other areas. Future work will explore this issue
more thoroughly. An interesting extension is the possibility of a form of evolutionary search
being neuronally integrated into the current architecture [62] so that feature selection is per-
formed in parallel with the other plastic processes, becoming part of the overall adaptation.

The empirical work on which we base our ITDP model [26, 29] was conducted in vitro.
While this was of course because of the technical difficulty of conducting such research in vivo,
it should be noted that work by Dong et al. (2008) [35] suggests that in some circumstances
there can be activity dependent differences in the dynamics of heterosynaptic plasticity operat-
ing in vivo. While Dong et al. were looking at heterosynaptic plasticity in the hippocampus,
they were not studying ITDP as defined in [26] and they were observingquite different neural
pathways from Dudman et al. (specifically, Dong’s system involved Schaffer and commissural
pathways, crucially without the different proximal and distal projections onto CA1 found in
Dudman’s system, from EC and CA3 respectively—instead the two CA1 inputs are both from
CA3). However, Dong et al. (2008) [35] made the interesting finding that in the system they
were studying, in vivo, coincident activity of converging afferent pathways tended to switch the
pathways to be LTP only or LTP/LTD depending on the activity states of the hippocampus
[35]. If such findings extended to the system we have based our learning rule on, then of course
our hypothesis would have to be revised.We are working under the assumption that the behav-
iour is stable in vivo. Recently Basu et al. (2016) [29] have provided some indirect evidence that
the ITDP behaviour of the particular circuits we are basing our functionalmodel on does hold
in vivo. They cite studies of the temporal relation of oscillatory activity in the entorhinal cortex
and the hippocampus in vivo that suggest that the disinhibitory gating mechanism enabled by
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the LRIPs may indeed be engaged during spatial behavior [63, 64] and associational learning
[65]. For example, during running and memory tasks, fast gamma oscillations (100Hz) arising
from EC are observed in CA1 and precede the slow gamma oscillations (50Hz) in CA1, which
are thought to reflect the CA3 pyramidal neuron input [63]. Crucially, EC-CA1 gamma activity
and CA3-CA1 gamma activity display a 90° phase offset during theta frequency oscillations (8
to 9Hz) [63] which is consistent with a 20-25ms time delay. However, since any ensemble
learning of the kind we have presented here would be part of a wider ‘cognitive architecture’, it
is interesting to speculate that some activity dependent influence on the dynamics of such
learningmight occur in the bigger picture (e.g. moderating or switching on/off ensemble learn-
ing in certain conditions).

For reasons discussed earlier in this paper, ITDP seems a very good candidate for involve-
ment in a biologicalmechanism ideal for combining ensemble member outputs, but it was nat-
urally interesting to also attempt an all STDP implementation. Although we had imagined
interference effects would compromise its learning ability, this version of the architecture per-
formed surprisingly well. When the gating network performed relatively poorly, the STDP ver-
sion compared very favourably with the ITDP version. However, with good (or at least
reasonably) performing gating networks the ITDP version was significantly better over all con-
ditions. This highlighted the dependence of the ITDP architecture on a gating network that
achieves reasonable performance in agreement with the similar findings from the initial more
abstract (voter) model. This shows that there is a small price to pay for the advantage the ITDP
process confers, namely that it strengthens connections without a need for the corresponding
final output neuron to be firing, thus providing a strong guiding function. The various methods
for reducing this reliance (or at least ensuring the gating performance is always reasonable)
that were outlined in the previous sectionwill be the subject of future work. Preliminary analy-
sis, as discussed in the previous section, suggests that there are some very interesting parallels
between the ways the successful ITDP and STDP architectures operated, notably that the best
performing ensembleWTA neurons in the STDP version had a guiding role functionally simi-
lar to that of the gating network in the ITDP version. While the differences and commonalities
between ITDP and STDP dynamics in combining ensemble classifiers were briefly discussed in
relation to the preliminary experiments, a more thorough comparative analysis of the effects of
various conditions on both learning schemes will be addressed in the future work. Certainly
the ITDP vs STDP work undertaken so far suggests that STDP-only architectures are another
plausible hypothesis for ensemble learning in populations of biological spiking networks.

Lateral inhibition in the SEM networks—which provides the competitionmechanism in the
WTA circuits—ismodeled as a common global signal that depends on the activity of the neu-
rons in the network [30]. This effectivelymodels a form of strong uniform local lateral inhibi-
tion as widely experimentally observed in the cortex [66, 67]. This inhibition mechanism is a
core part of the SEM network dynamics and reflects the fact that they are small locally orga-
nised networks.We assume multiple such networks act as the ensemble members in our archi-
tecture. However, it might be possible to model the ensemble layer by a bigger single group of
neurons which inhibit each other according to a ‘Mexican hat’ type function. Since with this
form of inhibition (which is also commonly assumed [68]) the effect drops off with distance,
with strong interaction among nearby neurons, a set of overlapping networks could emerge
that function similarly to a smoothed version of multiple WTA circuits.

Dealing with arbitrary (unknown) numbers of classes with our ITDP ensemble architecture
in a general unsupervisedmanner is a challenging future direction, although an individual
SEM network with a sufficient number of output neurons has been shown to perform unsuper-
vised clustering of a given dataset to some extent [30]. It might be possible to employ a higher
control to vary the number of classes in a supervisedway as shown in [72]. More preferably,
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the smoothed version of a lateral inhibitionmechanism using the Mexican hat topologymay
be capable of dealing with unknown numbers of classes in a more biologically plausible way by
incorporatingmore sophisticated synaptic and neuromodulatorymechanisms.

The novel architecture presented here demonstrates for the first time how unsupervised (or
indeed any form of) ensemble learning can be neurally implemented with populations of spik-
ing networks. Our results show that the ensemble performs better than individual networks.
The lack of diversity within the population, which sometimes becomes apparent, will be tackled
in the next phase of work as outlined above. It is also possible that the relative strength of the
ensemble method, in terms of efficiencyof learning, might change when reducing the time
spent on learning in the SEM networks (i.e. there may be an interesting resource/performance
trade-off).This issue will also be investigated.

Methods

Analytic Ensemble Model

Derivation of expression for synaptic weights under the influence of ITDP. From Eqs
1–4, we derived the expected value of the weight w at equilibriumunder constant presynaptic
firing probabilities to give the expression in Eq 5 as follows.

E½Dw� ¼ ðae� w � 1ÞpðmÞpðgÞ þ ð� 1ÞðpðmÞ þ pðgÞ � 2pðmÞpðgÞÞ þ ð0Þðpð:m ^ :gÞÞ ¼ 0 ð14Þ

Solving for w progresses thus:

e� w ¼
1

a
pðmÞ þ pðgÞ � pðmÞpðgÞ

pðmÞpðgÞ

� �

ð15Þ

Taking logs on both sides of Eq 15 to pull out w gives

wjE½Dw�¼0 ¼ logðaÞ þ log
pðmÞpðgÞ

pðmÞ þ pðgÞ � pðmÞpðgÞ

� �

ð16Þ

This gives the expected value of w at equilibrium expressed in terms of the two probabilities
p(m) and p(g).

Analytic solution of ITDP weights. In practice, a voter in our analytic, abstract ensemble
model emulates an abstract classifier which is assumed to have been fully trained in advance
using an arbitrary set of input data. A typical expression of the statistical decision follows the
Bayesian formalism, where the firing probability of each voter neuronmi represents the poste-
rior probability p(mi|x) of the corresponding class label for a given input vector. The input vec-
tors for each ensemble voter are distinct measurements of the raw input data (e.g. determined
by using different feature subsets for each voter). A voter outputs a decision with probability
one (∑i p(mi|x) = 1) by exclusively firing one of its neurons according to sWTA mechanism.
We assume that the input measurements for different voters ensure the ideal diversity of the
ensemble so that the decision outputs of voters are independent of each other. We set the num-
ber of neurons in a voter to the number of possible decisions (classes)NC; the firing probabili-
ties of the neurons for the presented sample comprises a probability vector. The probability
vectors of a voter are defined differently for each sample, comprisingM probability vectors of
sizeNC whereM is the number of data samples and NC is the number of existing classes (equal
to the number of voter output neurons). The statistics of probability vectors for each pattern
class are designed differently in order to emulate the classification capability of voters which is
assumed to be fully learnt in advance.
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The analytic solution for ITDP learning for the ensemble system is similar to the previous
three node formulation, as each connectionweight of the ensemble network is estimated by
assuming zero expected value of weight change once equilibriumhas been reached. Recall the
weight update Eqs 4 and 14, which are now written as the sum of the weight changes made
from each presented input sample. Consider the probability of sample presentations for xl dur-
ing ITDP learning as p(xl), where

PM
l¼1
pðxlÞ ¼ 1. The expected change of individual weights

by ITDP can be written as the sum of all long term weight changes occurring at each sample
presentation in the same way as in Eq 14,

E½Dwj
ki� ¼ ðae

� wjki � 1Þ
XM

l¼1

pðxlÞpðm
j
ijxlÞpðgkjxlÞ �

XM

l¼1

pðxlÞfpðm
j
ijxlÞ þ pðgkjxlÞ

� 2pðmj
ijxlÞpðgkjxlÞg ¼ 0

ð17Þ

where pðmj
ijxlÞ is the firing probability of the ith neuron of the jth ensemble voter for input

sample xl, w
j
ki is the weight frommj

i to the kth neuron (fk) of the final voter, and p(gk|xl) is the
firing probability of the corresponding gating voter neuron which projects to fk. Assuming the
constant probability of every sample presentation and solving for wjki at its equilibrium gives
the following analytic solution of weight convergence:

wjki ¼ logðaÞ � log
PM

l¼1
fpðmj

ijxlÞ þ pðgkjxlÞg
PM

l¼1
pðmj

ijxlÞpðgkjxlÞ
� 1

 !

ð18Þ

where the constant probability of sample presentation p(xl) = 1/M has been eliminated from
the equation.

Analytic solutions of final voter firing probabilities. While it is sufficient to express the
behaviours of the ensemble voters and the gating voter using pre-determined firing probabili-
ties for the purpose of obtaining weight convergence, the firing probabilities of neurons in the
final voter are calculated by integrating the ‘EPSP’s from all presynaptic spikes. Taking the sto-
chastic winner-takes-all Poissonian spiking formulation [30], the firing probability of neuron k
of the final voter at a discrete time t is written as:

pðfkðtÞÞ ¼
eukðtÞ

PNC
i¼1
euiðtÞ

ð19Þ

ukðtÞ ¼
XNE

j¼1

XNC

i¼1

wj
ki

X

s

�ðt � tji;sÞ ð20Þ

where uk(t) is the EPSP of the final voter neuron k at time t,NE is the ensemble size, and tji;s is
the time of the s’th spike output by neuronmj

i. The EPSP response kernel �(t) could be simply
modelled as a rectangular functionwhich integrates all the past spikes within a finite time win-
dow, or we could use exponential decay to smoothly decrease the potential. However, for the
sake of computational convenience for understanding the analytic solution of long term final
voter behaviour, we only integrate the instantaneous presynaptic spikes, which is equivalent to
using a unit impulse function for �(t), where all the spiking events are clocked at every discrete
time instance as assumed in the voter ensemble system. The average values of the final voter
probabilities can be calculated by solving the expected values of time-varying final voter proba-
bilities themselves. At each discrete time t, the state of the ensemble is always defined by the fir-
ing of NE neurons from the ensemble voters (one of theNC neurons fires in each voter),
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resulting inNS ¼ N
NE
C possible states of the ensemble. Given a set of ensemble firing states

S = {s1, s2, . . ., sNS}, let us define an index functionR(q, j) which gives the index of the firing neu-
ron of the voter j at the ensemble state sq. The function can be defined to return d + 1 where d
is the j’th digit of theNC-ary number which is equivalent to decimal number q. For example, if
NC = 4 and NE = 3, then R(25, 2) = 2 + 1 = 3 (25 is 121 as a quaternary number). Using this
index function, the probability of the occurrence of the state sq under the presentation of sam-
ple xl can be written very succinctly as a joint probability of neurons firing:

pðsqjxlÞ ¼
YNE

j¼1

pðmj
Rðq;jÞjxlÞ ð21Þ

The weighted sum of spikes from the ensemble in state sq arriving at the postsynaptic neu-
ron k is

ukðqÞ ¼
XNE

j¼1

wj
kRðq;jÞ ð22Þ

The probability of a final voter neuron p(fk|xl) at ensemble state q is then calculated as in Eq
19. Now we can calculate the expected probability of a final voter neuron under the presenta-
tion of sample xl as:

E½pðfkjxlÞ� ¼
XNS

q¼1

pðsqjxlÞ �
eukðqÞ

PNC
l¼1
eulðqÞ

 !

: ð23Þ

The expected firing probability of the final net neuron k under the presentation of the sam-
ples from class c can be written as follows by the law of total probability:

pðfkjcÞ ¼
1

Mc

XMc

l¼1

pðfkjxlÞ ð24Þ

E½pðfkjcÞ� ¼
1

Mc

XMc

l¼1

E½pðfkjxlÞ� ð25Þ

This gives the Eq 7, the expected (long term) firing probability of final net neuron k under
the presentation of class c.

Simulation of voter ensemble network. The detailedmethods for the iterated simulation
of the simple analytic spiking ensemble system are as follows.

During the learning phase, the input classes for the ensemble and gating voters were
equally presented by turn, which led to the same presentation probability of every input class
p(c) = 1/NC. Consider the input dataset as being divided into NC subsets belonging to each
class; Xc = {x1, x2, . . ., xn, . . ., xMc

} where c = 1, 2, . . ., NC. The following steps were performed
at each timestep t = (1, 2, . . ., T) with the learning rate η = 0.001 and the shift constant a = e5.

• Present a sample xn from the subsetXc, where n = {(t − 1) div NC} + 1 and c = {(t − 1)
modNC} + 1.

• All ensemble voters and gating voter fire according to their firing probabilities pðmjijxnÞ and
p(gk|xn).
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• All weights are updated by ITDP as w w + ηΔw. For everyweight wjki, Dwjki ¼ ae
wjki � 1, if

both the ensemble neuronmji and the gating neuron gk fire. If only one of those two fires,
decrease the weight by -1. If neither of them fires, do nothing.

The measuring phase was run for everyXc, each for the duration of Tm = T/NC, in order to
see how well one of the neurons in the final voter fired exclusively for each class. The measur-
ing phase for each class presentation proceeded as follows:

• All ensemble voters and the gating voter fire according to their firing probabilities pðmjijxnÞ
and p(gk|xn).

• Each final voter neuron fires after calculating its firing probabilities according to the
weighted integration of all presynaptic spikes as in Eq 19.

In order to compare the final voter output from the measuring phase with the analytic solu-
tion, we calculate all the momentary probabilities of each final voter neuron during simulation
and check their averages with Eq 7.

Performance measure. The NCE of a voter is calculated over the input set as:

NCE ¼
HðCjFÞ
HðC; FÞ

ð26Þ

where C = {c1, c2, . . ., cNC} is the class of presented inputs, and F = {f1, f2, . . ., fNC} denotes the
discrete random variable defined by the firing probabilities of the voter neurons fi for each
input class, andH is the standard entropy function.NCE can be expressed in terms of the joint
probability distribution P(C, F), which has NC×NC elements, as follows:

HðCjFÞ ¼ �
XNC

n¼1

XNC

i¼1

pðcn; fiÞlog
pðcn; fiÞ

PNC
l¼1
pðcl; fiÞ

 !

ð27Þ

HðC; FÞ ¼ �
XNC

n¼1

XNC

i¼1

pðcn; fiÞlog pðcn; fiÞð Þ ð28Þ

where we can analytically calculate p(cn, fi) from a probability table defined as in Fig 3 or it can
be measured from a numerical simulation by counting all the spikes over the simulation.

SEM Network Ensemble Learning

The detailedmethods for the full SEM-ITDP ensemble architecture are as follows.
Bayesian dynamics. According to the formulation given in [30], the overall network

dynamics can be explained in terms of spike-based Bayesian computation. The combined firing
activity of all z neurons in a WTA circuit can be expressed as the sum of K independent Pois-
son processes, which represents an inhomogeneous Poisson process of theWTA circuit with
rate:

RðtÞ ¼
XK

k¼1

rkðtÞ: ð29Þ

In an infinitesimal time interval [t, t + dt], the firing probabilities of a WTA circuit and its
neurons are R(t)dt and rk(t)dt respectively. Thus if we observe a neural spike in a WTA circuit
within this time interval, the conditional probability that this spike originated from neuron zk
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is expressed as

qkðtÞ ¼
rkðtÞdt
RðtÞdt

¼
eukðtÞ

PK
j¼1
eujðtÞ

: ð30Þ

Thus a firing event of zk can be thought as a sample drawn from the conditional probability
qk(t) which is equivalent to the posterior distribution of hidden cause k, given the evidence rep-
resented by the input neuron activation vector y(t) = {y1(t), y2(t), . . ., yn(t)} under the network
weightsw. By following Bayes’ rule, we can identify the network dynamics as a posterior proba-
bility which is expressed using prior and likelihooddistributions as:

pðkjyðtÞ;wÞ ¼ qkðtÞ ¼
ewk0 � e

P
wkiyi

PK
j¼1
ewj0þ

P
wjiyi
)
pðkjwÞpðyjk;wÞ

pðyjwÞ
: ð31Þ

The input neurons encode the actual observable input variables xjs with a population code
in order to assess different combinations of input neuron spiking states for every possible input
vector x = {x1, x2, . . ., xN} from the raw input data to be classified. The state of an input variable
x is encoded using a group of input neurons, where only one neuron in the group can fire at
each time instance to represent the instantaneous value of x(t). Therefore, together with the
total prior probabilities ∑p(k|w) = 1, the Bayesian computation of the network shown in Eq 31
operates under the constraints,

XK

k¼1

ewk0 ¼ 1; 8k :
X

i2Gj

ewki ¼ 1; j ¼ ð1; 2; :::;NÞ ð32Þ

whereGj represents a set of all possible values that an instantaneous input evidence xj can have,
which is also equivalent to the discretized value of each input variable in the continuous case.
This means that an input evidence xj for a feature j of observeddata is encoded as a group of neu-
ronal activations yi. If the set of possible value of xj consists ofm valuesGj = [v1, v2, . . ., vm], the
input xj is encoded usingm input neurons. Therefore, if input data is given as aN (j = 1, . . .,N)
dimensional vector, the total number of input neurons ismN.

Synaptic and neuronal plasticities. Synaptic plasticity in the STDP connections (Fig 4)
captures both biological plausibility and the computational requirement for Bayesian inference.
The LTP part of the STDP curve used follows the shape of EPSPs at the synapses [30], which is
similar to biological STDP, in that the backpropagating action potential from a postsynaptic
neuron interacts with the presynaptic EPSP arriving at the synapse. The magnitude of the
weight update depends on the inverse exponential of the synaptic weight itself to prevent
unboundedweight growth. Let us denote the connectionweight from the i’th input neuron to
the k’th ensemble layer neuron as wki, where now k indicates the index for the entire layer of
ensemble neurons (except the gating network), not the index within eachWTA circuit. The
synaptic update at time t is given by:

DwkiðtÞ ¼ yiðtÞ � c � e� wki � 1 ð33Þ

where yi(t) is the sum of EPSPs evoked by all presynaptic spikes as in Eq 11, and c (which is set
to e5 throughout the experiment) is a constant which determines the upper bound of synaptic
weights. The LTD part was set to decrease by a constant amount of 1. Given the EPSP caused
by presynaptic spikes, synaptic update occurs only at the moment of a postsynaptic neuron fir-
ing, with a certain learning rate. This plasticity rule can exhibit the stimulus frequency depen-
dent behaviour of biological synapses which has been observed in biological STDP
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experiments [69], where the shape of the plasticity curve (including the traditional hyperbolic
curve of the phenomenologicalmodel [70, 71]) depends on the repetition frequency of the
delayed pairing of pre and postsynaptic stimulations.

In contrast to the logical ITDP model, the SEM ITDP ensemble uses the more biologically
realistic ITDP plasticity curve shown in Fig 2 middle (Simplified ITDP curve). The continuous
ITDP curve also serves for dealing with the irregular spike trains output by the presynaptic
SEM networks, whereas the logical ITDP ensemble model concurrently fires a single spike
from each voter. The ITDP plasticity curve is defined as a function of the time difference
between two input stimuli using a Gaussian factor. As in the logical ITDP model, the peak LTP
at an input time delay of -20ms (where distal input precedes proximal input by 20ms) in bio-
logical ITDP is ignored for computational convenience, by assuming that the axon converging
on the proximal synapse already has 20ms of conduction delay. Thus the plasticity curvewas
shifted to have its peak value at zero delay. The change of the ITDP synapse from the kth
ensemble layer neuron to the fth neuron of the final output WTA (see Fig 4) can be written as:

Dwfk ¼ hfkðtÞ � c � e� wfk � 1 ð34Þ

hfkðtÞ ¼
P

sGf

X

sk

gðtGf � tkÞ ð35Þ

gðxÞ ¼ e� x2=2s2
ð36Þ

where hfk(t) is the sum of all synaptic potentiations evoked by the spike time differences between
the proximal (from ensemble neurons, sk) and distal (from gating neurons sGf ) inputs, calculated
by the Gaussian function g(x). The proximal weight wfk is updated whenever either of the two
presynaptic neurons spike. In the same way as the STDP update rule, the ITDP synaptic change
is regulated by an inverse exponential dependence on the weight itself and a constant synaptic
depression of 1, which results in the simplified ITDP curve shown in Fig 2. The variance of g(x)
was set to σ2 = 1.5×10−4, where the x axis represents the spike time difference in seconds.

The self-excitability of theWTA output neurons is modelled in a way that is directly analo-
gous to the plasticity of the synaptic weights. Recalling the membrane potential u(t) of a SEM
circuit neuron in Eq 9, the excitability wk0 of neuron zk is increasedwhenever it fires (zk(t) = 1)
as a function of the inverse exponential of wk0 and is decreased by 1 if not firing (zk(t) = 0).

Dwk0 ¼ zkðtÞ � e� wk0 � 1 ð37Þ

The update of wk0 is circuit-spike triggered,which means that the excitabilities of all neu-
rons in theWTA circuit are updated if one of the neurons fires. Therefore the value of wk0 con-
verges to satisfy the normalization constraint as a prior probability which is necessary for the
above mentioned Bayesian computation.

All the plasticities of STDP, ITDP, and neuronal excitability described above are updated at
their corresponding trigger conditions by w w + ηΔw. The learning rates (η) of every indi-
vidual synapse and excitability are adaptively changed by a variance tracking rule [43] as:

Znew ¼
mðm2 � m2

1
Þ

1þ e� m1

ð38Þ

m1  m1 þ Zðw � m1Þ ð39Þ

m2  m2 þ Zðw2 � m2Þ ð40Þ
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wherem1 andm2 are the first and the secondmoments of the corresponding learning variable.
μ is a constant which is globally set to 0.01. The learning rate and moments are updated
together whenever the update of a learning variable is triggered.

SEM-ITDP experiments. The core (common) numerical details of the SEM-ITDP experi-
ments are as follows: Tpresent = 40ms, Trest = 40ms. During input presentations, one of the two
input neurons that encode a pixel state fires with a constant rate of 40Hz.

The common network parameters (used in all experiments) were as follows; Ainh = 3000,
Oinh = −550, τinh = 0.005sec for neuronal inhibition, τs = 0.015sec, τf = 0.001sec,AEPSP =
{τs/(τs−τf)}(τs/τf)τf/(τs−τf) for the EPSP kernel. Due to the smaller number of afferent connec-
tions to the final WTA than the ensemble layer WTAs, its global inhibition level was shifted
(increasing output by giving less inhibition) by an amount proportional to the ensemble size
NE (i.e. related to the number of presynaptic neurons) in order to match the output intensity
to those of the ensemble neurons. The inhibition level of the final WTA circuit was set as
Af

inh ¼ 3000 � Is and Of
inh ¼ � 550 þ Is, with the level of shift Is = 560 − 4NE.

Feature selectionusing Gaussian distributions. The normal Gaussian selection scheme
worked by sampling pixels from 2D normal distributions with different means. The distribu-
tion function for the ith ensemble network was:

piðx; yÞ ¼ 0:1� exp �
ðx � mxi Þ

2
þ ðy � m

y
i Þ

2

2s2

� �

ð41Þ

with the variance σ2 = 49. Different means (mxi ; m
y
i ) for each ensembleWTA were located evenly

on the active region of image to cover every region. Although the Gaussian means for each
ensembleWTA can be evenly placed simply by using a regular lattice of different sizes on the
image, their locations were stochastically generated by a simple optimization procedure in
order to reduce any potential bias from a single specific formation of the means on the image
(the random elements are also more biologically relevant). In order to reduce the computation
time for the optimization, the mean positions were jittered by a small amount around the man-
ually placed initial positions under a certain constraint (Fig 16). The initial mean positions
were properly designed to be evenly scattered across the image for each ensemble size in order
to prevent any biased placement of the generated mean positions. A simple iterative procedure
for the random Gaussian mean placement is as follows:

1. Given the set of initial mean points (Ux
i ;U

y
i ), i = {1, 2, . . .,NE}, everymean point (mxi ; m

y
i ) is

drawn by randomly jittering the corresponding initial point as: mxi ¼ U
x
i þ Dmx and

m
y
i ¼ U

y
i þ Dmy, where Δμx and Δμy are randomly drawn in the range [−�, �].

2. Repeat 1 until everymean point (mxi ; m
y
i ) is inside the inner region (which is surrounded by

the green pixels as in Fig 16), where the minimum distance dmin between all pairs of mean
points satisfies dmin > δ.

The parameters � and δ are set for each ensemble sizesNE = {5, 7, 9, 11, 13, 16, 20, 25} as:
(�, δ) = {(9, 14), (7, 10), (5, 9), (5, 7.5), (5, 7), (5, 5.5), (5, 4.5), (3, 4.2)}, which were found to
allow the optimization process to execute in a reasonable time while producing reasonably
evenly distributedmean points.

The stretched Gaussian distribution selected pixel subsets to form a bar shape (at different
orientations) as shown in Fig 9 bottom. The probability density function for stretched Gaussian
distribution was:

piðxÞ ¼ exp xTS� 1

i x
� �

ð42Þ
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where x = (x, y) is a random vector (mean at the origin), and Si is the covariance matrix (sym-
metric, positive definite) for the ith ensemble member. Each element of the inverse covariance
matrix is written as:

S� 1

i ¼
a b

b c

" #

ð43Þ

Fig 16. Examples of random Gaussian mean placements for different NE from the manually designed initial points

(black points). The red pixels represent the outer border of the active region of the image, and the yellow pixels represent a

forbidden region which is 3 pixels thick. The jittered mean points were restricted to be placed inside the inner region (including

the green pixels) which is surrounded by the inner border (green).

doi:10.1371/journal.pcbi.1005137.g016

Ensemble Learning Neural Network by ITDP

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005137 October 19, 2016 37 / 41



a ¼
cos2yi
2s2

x

þ
sin2yi
2s2

y

b ¼
sin2yi
4s2

y

�
sin2yi
4s2

x

c ¼
sin2yi
2s2

x

þ
cos2yi
2s2

y

: ð44Þ

The variances for the ellipsoids were set to s2
x ¼ 4 and s2

y ¼ 625 identically for all ensemble
members (i.e. the pixels practically form a bar shape), except its orientation is rotated by θi rad.
Starting from θ0 = 0, the orientations are incremented by π/NE for each successive distribution
(i.e. θi = i.π/NE).

Supporting Information

S1 Text. Text and figures giving full details of the methods and results of a validation of the
analytic solutions for the initial abstract/simplifiedensemble learningmodel (the voter
ensemblemodel) by numerical simulation.
(PDF)
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This document gives details of the methods and results of a validation of the analytic solutions for
the initial abstract/simplified ensemble learning model (the voter ensemble model) by numerical
simulation.

Validation of Analytic Solutions by Numerical Simulation

In order to validate the analytic solutions of the voter ensemble network, we compared its
results, as derived in the first part of the Results Section of the main paper, with a numerical
simulation that simply iterated through all the underlying equations of the same model. This
validation was deemed worthwhile because the simplified analytical model is based on Bernoulli
random variables that simulate per sample firing events. The numerical simulation of the model
allowed us to check that the long-term trends and statistics matched those predicted by the
analytical solutions. The simulation was performed by a two-step process: a learning phase was
followed by a measuring phase. Since this initial simplified model is for illustrative purposes (to
determine if the ITDP and ensemble learning dynamics are as expected), for convenience and
ease of analysis, abstract automatically generated data was used for the simulation. First, we
defined the posterior probability tables as in Figure 3 (in the main paper) for every ensemble
voter and the gating voter by randomly drawing their values using a certain distribution. After
defining the posterior probabilities for an input dataset of size M , the learning phase trains
the connection weights using ITDP until they are sufficiently converged by running the system
for multiple rounds of dataset presentation. This is followed by the measuring phase which
measures the performance of the final voter using these fixed weights. The performance of a
single voter was measured using normalised conditional entropy (NCE) [1], which is suitable
for measuring the performance of a multi-class discrimination task where the explicit relation
between the neuronal index and the corresponding class is unavailable. NCE has a value in
the range 0≤NCE≤0.5, with lower conditional entropy indicating that each neuron fires more
predominantly for one class, hence giving better performance (See Methods for the details of
the simulation procedure and the NCE calculation).

Comparison with Numerical Simulation

Both the learning and measuring phases in the numerical simulation were run for T = M×R
steps, where R is the number of rounds of dataset presentation which was set to 10 or 100, de-
pending on the experiment. Using 4 input classes (NC = 4) the total number of input samples
was set to M = 400 which consists of 100 samples for each class. The pre-determined firing
probabilities of the ensemble and the gating voter can be set arbitrarily under the constraint∑NC

i=1 p(m
j
i |x) = 1. In order to easily test and understand the broad picture of the ensemble

behaviour (as well as to aid performance visualisation), let us represent the system by a few
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Figure S1.1. Illustrative descriptions of the changes of the analytically calculated NCEs
for a single voter and the final voter under various values of Pmax and ensemble sizes NE. For
illustration purpose, the neuron firing probabilities of a voter were fixed to Pmax for the dominant
firing neuron and r for the rest (See text for details). Average ensemble voter NCE was simply
controlled by using identical parameters for all ensemble voters. (Left) The NCE of a voter vs.
Pmax. (Right) Bivariate plots of the final voter NCEs vs. average ensemble NCEs with different
ensemble sizes 3≤NE≤10. The gating voter NCE is fixed to 0.4 by setting PG

max = 0.7.

parameters describing the presynaptic voters. Since the final voter performance is affected dir-
ectly by the performance of the ensemble and gating voters, and therefore cannot be objectively
measured independently of them, we consider the three key factors to be: the overall perform-
ance of the ensemble voters, the gating voter performance, and the ensemble size. Controlling
the overall performance of the ensemble voters is achieved by using statistically identical voters
for the entire ensemble. The performance of a voter can be adjusted by varying a parameter
which changes all of its firing probabilities as follows.

For NC = 4, the mean firing probabilities of the neurons in each voter for the samples from
each class can be considered as a 4×4 matrix where each column is set to the average firing
probabilities of a voter for the samples in the corresponding input class. We can see that the
voter performance is maximum (lowest NCE) when this matrix is the identity matrix. Also the
performance of a voter is analytically the same under the permutation of rows (i.e. switching
neuron indices) as can be seen in Equations 27 and 28 (main paper). Thus in order to easily
assign various performance values to the voters, we defined a parameter 1

NC
≤Pmax≤1 such that

every diagonal element of the matrix is set to Pmax, and all other elements are set equally to
r = (1− Pmax)/(NC − 1). The probability matrix of a voter for NC = 4 is written as:⎛

⎜⎜⎝
Pmax r r r
r Pmax r r
r r Pmax r
r r r Pmax

⎞
⎟⎟⎠ , r =

1− Pmax

3
,

1

4
≤Pmax≤1 (S1.1)

This probability matrix can be used to design a voter such that its NCE has the desired value.
The simple case would be to assign these class-dependent firing probabilities identically for all
samples within the corresponding class, which results in the NCE ranging from 0.5 (worst) to
0 (best) by setting Pmax accordingly. Using this setting, an initial illustrative picture of voter
ensemble behavior is shown in Figure S1.1 which describes the analytically calculated voter NCE
for different Pmax values and the final NCEs of combined output for different average ensemble
NCEs and its sizes. However, having identical firing probabilities for entire sample subsets is
not realistic. Thus we assign the firing probabilities of every sample for each subsets randomly
by using the elements of the above probability matrix as the means of normal distributions

2
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Figure S1.2. Time evolution of weights by numerical ITDP and their analytic solution for
different ensemble performances (48 connections run for 40000 time steps (100 rounds with
400 samples), NC = 4 and NE = 3). (A-C) The horizontal lines show the expected level of
convergence calculated from the analytic solution. (D-F) The final value of numerical weights
vs. analytic weights, each corresponds to A-C. The analytic solution matches the weight values
converged by numerical simulation. In order to see the distribution of weight values under higher
sample dependent variability of ensemble statistics, the sample-wise firing probabilities of each
voter were drawn uniformly randomly in the range PL < Pmax < PH (for the dominantly firing
neurons for corresponding classes) and 0.2R < r1,2 < 0.8R (the rest of probabilities) where
R = (1 − Pmax)/(NC − 2). The gating voter firing probabilities were similarly set in the range
0.5 < Pmax < 0.6. The min/max values (PL, PH) for Pmax were set as: (A,D): (0.3,0.9), (B,E):
(0.5,0.9), (C,F): (0.7,0.9).

with certain variances. For example, when NC = 4, the firing probabilities for four neurons
for a sample from class 1 are set as (p, r1, r2, r3) where p = N (Pmax, σ

2
p), r1,2 = N (r, σ2

r ), and
r3 = 1−(p+r1+r2). Probability assignment using uniform distributions is also possible to assess
wider diversity on the posterior probabilities of samples by defining the range as U(PL, PH).

Using these parameter settings, the ensemble system was tested with different performances
of the ensemble voters and the gating voter. First the weight convergence by ITDP was examined
by comparing the analytic solution of the expected values of weights and the weights learnt by
numerical simulation. Figure S1.2 shows clear separation of weight values into groups according
to the discriminability of the ensemble voters, indicating that the ITDP learning reflects the
history of presynaptic voter behaviours, which influences the final voter performance. After
learning with sufficient guidance from the gating voter, the decision from the better performing
ensemble neurons influences the final voter output more by developing relatively stronger weights
than the other neurons. Thus the spike from one strongly weighted synaptic projection can
overwhelm several other weakly weighted ‘wrong’ decisions, achieving the weighted vote learnt
from the previous history of ensemble behaviour (exactly the behaviour we desire in this kind of
ensemble learning). Plotting numerical vs. analytic weights, as in Figure S1.2 D-F, shows that
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Figure S1.3. Analytic illustration of outgoing connection weights from an ensemble neuron
to final voter neurons, depicted on (PE

max, P
G
max) space. (Left) Weight delivering the right class.

(Right) The other weight which does not match the current presented class. See text for further
details.

the two solutions match well, validating our analytic formulation of expected weight values, and
demonstrates that the system performs very well under appropriate parameter settings.

The main role of the gating voter is to guide the spike-evoked EPSPs from the ensemble
neurons which represent the same class onto one of the postsynaptic neurons of the final voter
via topographic distal signals. The analytic model allows us to, for example, easily gain insight
into the distribution of the outgoing weights from an ensemble neuron to each of final voter
neurons. For tractability, let us assume that each voter neuron has a constant firing probability
for all samples in the same class. Using the firing probabilities of presynaptic voters defined by
the diagonal matrices as in Equation S1.1, the probabilities of the ensemble voter and the gating
voter can be defined by the parameters PE

max and PG
max respectively. Assuming the probabilities

of input class presentations (p(cn)) are all the same, the analytic solution of the weight from
one of the ensemble voter neurons (mi) to the final voter neuron fk can be rewritten using
class-conditional probabilities p(m|c) as

wki = log(a)− log

(∑NC
n=1{p(mi|cn) + p(gk|cn)}∑NC

n=1 p(mi|cn)p(gk|cn)
− 1

)
(S1.2)

Setting a = e5, NC = 4, NE = 3, and substituting p(mi|cn) and p(gk|cn) for the elements of
the corresponding 4×4 diagonal probability matrices as in Equation S1.1, with parameters PE

max

and PG
max gives:

wki =

⎧⎨
⎩
5− log

(
5+B
1−B

)
, if k = 1

5− log
(
16−B
2+B

)
, otherwise

(S1.3)

B = PE
max + PG

max − 4PE
maxP

G
max. (S1.4)

We can see that the most enhanced connection weight from the presynaptic neuron mi to the
postsynaptic neuron fk (i = k in the current setting) has an inverse relationship with the rest of
the outgoing weights (connections to fk where i�=k) in (PE

max, P
G
max) space. Figure S1.3 shows

(when i = 1) that a low PG
max (i.e. low gating voter performance) results in less difference between

outgoing weights from the presynaptic neuron m1, hence giving equal EPSPs to all postsynaptic
neurons (i.e. w11 = w21 = w31 = w41, resulting in no capability of weighted voting). The same
holds for the ensemble voter parameter (PE

max). Therefore, in our ensemble voter system, both
the gating voter and at least one ensemble voter must have positive discriminability (NCE<0.5)
in order to learn to perform weighted voting.
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Figure S1.4. Numerical simulation of final voter firing probabilities for each class presentation
after learning (NC = 4, NE = 3). The sample-wise firing probabilities of voter neurons were set
by a normal distribution of variance 0.1, with the means PE

max = 0.5, 0.6, 0.7 for each ensemble
voter, and PG

max = 0.6 for the gating voter. (A-D) Each plot shows the time course of the firing
probabilities of each final voter neuron for different class presentations. Each coloured plot
shows the time span 0≤t≤10000, where the highest firing probabilities of each final voter neuron
appear densely plotted at the corresponding class presentations through learning, as indicated
by the grey boxes. (E) Analytic solution of the possible values of each final voter neuron firing
probabilities, obtained from the same numerically learnt weights as in A-D. (F) The average
firing probabilities of each neuron during each class presentation (the average of each coloured
value in the left graphs).

The performance of the final voter depends on the performances of every voter in the en-
semble, the gating voter, and the ensemble size. The combined output of the ensemble voter
network can be understood by measuring the long-term behavior of the momentary output of
the final voter. Figure S1.4 illustrates an example of the final voter probabilities iteratively cal-
culated using the numerical simulation (with fixed weights after learning) with NC = 4, NE = 3.
The firing probabilities of voters for each sample was randomly set by a normal distribution with
variance 0.1, where the means were set by the parameters PE

max = (0.5, 0.6, 0.7) for each ensemble
voter and PG

max = 0.6 for the gating voter. The EPSP for the final voter neuron was calculated
simply by using the weighted sum of presynaptic spikes, resulting in 43 = 64 possible states of
the presynaptic spikes. Thus the maximum number of probability values that each final voter
neuron can have is 64, where their individual values depend on the synaptic weights (Figure S1.4
E). At each time instance, the firing probability of each final voter neuron belongs to one of the
corresponding set of values, only differing by their frequency of appearance (as shown in Figure
S1.4 A-D). The average firing behaviour (Figure S1.4 F) shows that each neuron dominantly
fires for a corresponding class, which indicates that the ensemble network successfully achieved
weighted voting.

Figures S1.5 shows the relationship between the final voter performance and the presynaptic
voter performances, indicating the bidirectional dependence both on the ensemble and the gating
voters, as well as illustrating the close correspondence of the analytic solutions and numerical
simulations of the logical model. The sample-wise neuron firing probabilities of all voters in the
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Figure S1.5. Analytic (A-C) and numerical (D-F) long-term performances of the final voter
vs. ensemble and gating voters (NC = 4). The parameters for the ensemble (PE

max) and the
gating (PG

max) voters vary in the range [0.25, 1.0] with the interval of 0.025. Each column shows
the result using different ensemble sizes, where (A,D) NE = 3, (B,E) NE = 4, and (C,F) NE = 5.

ensemble are set by sampling from identical gaussian distributions of N (PE
max, 0.05) in order

to easily assign various overall average ensemble performances (and PG
max for the gating voter).

The results show a very good match between the numerical simulations and their analytic
solutions over the different combinations of the ensemble and gating voter parameters (0.25 <
PE
max, P

G
max < 1.0). The pairs of graphs in each column show the effect of increased ensemble size,

which improves the weighted vote performance as analytically predicted in Figure S1.1-right.
These validation tests showed that the logical model of a spiking voter ensemble system and

its analytic solutions are capable of performing efficient spike-based weighted voting, driven by
ITDP, and gives us important insights into how that is achieved. They also demonstrated how
the seemingly complex network of interactions between stochastic processes within a population
of voters can be effectively described by a series of probability metrics.
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