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Abstract— This work proposes a biologically inspired system
for the coordination of multiple and possible conflicting be
haviours in an autonomous mobile robot, devoted to explore
novel scenarios while ensuring its internal variables dynanics.
The proposed Evolutionary Artificial Homeostatic System, -
rived from the study of how an organism would self-regulate
in order to keep its essential variables within a limited rarge
(homeostasis), is composed of an artificial endocrine system,
including two hormones and two hormone receptors, and also
three previously evolved NSGasNet artificial neural netwoks.
It is shown that the integration of receptors enhance the syem
robustness without incorporating to the three evolved NSGs:
Nets more a priori knowledge. The experiments conducted ats
show that the proposed multi-hormone evolutionary artificial
homeostatic system is able to successfully coordinate a ntiple
and conflicting behaviours task, being also robust enough to
cope with internal and external disruptions.

|. INTRODUCTION

is comprised of two main modules, an artificial endocrine
system (AES), which is synthesized by means of evolution
(under two different performance criteria), and three esdl
spatially unconstrained GasNet models, named non-spatial
GasNets (NSGasNets) [14]. The AES is responsible for
coordinating the output of the network, thus both modules ar
dedicated to the control of actions in autonomous navigatio
tasks giving rise to an automatic mechanism of coordination
of distinct and possibly conflicting behaviours.

Apart from being concerned with the development of a
more biologically plausible model of behaviour coordinati
[15], we also tackled the reactive and non-reactive behavio
issue [16], considered to be fundamental while devising
intelligent systems within the context of embodied cogmiti
science. According to Arkin (1998) [4], purely reactive
systems and purely non-reactive systems have limitations

One of the key and most challenging issues when dahen considered in isolation. There is evidence that hybrid

veloping autonomous systems which are able to adapt

ygrsions, which incorporate both systems, are observed in

unforeseen situations and disruptions is how to coordinafi&ture, showing hierarchical organization and actiorctiea
conflicting behaviours and to operate and remain adapt®nning.

within a viability zone.

One possible approach is to modify the weights of a
artificial neural network according to a performance cidter
at each set of iterations (hence modifying the responseeof t
network), with promising results being reported [1][2][3]

The experiments conducted have shown that the proposed
fulti-hormone evolutionary artificial homeostatic system
(EAHS) is able to successfully coordinate multiple and
gonflicting behaviours, being also robust enough to cople wit
internal and external disruptions.

Another proposal, the so-called behaviour-based approach This paper is organized as follows: section Il presents the

is to try to coherently coordinate pre-determined behasgiou
using some kind of specialist system to switch among the

[4][5].

basis of the approach adopted in this work, together with the
getails of our proposal for a multiple hormone evolutionary
artificial homeostatic system. Section IIl describes the ex

In this work we present a further approach, which derivegeriments undertaken and their implementation procedures
from the study of how an organism would self-regulate ifSection IV covers the simulation results of the artificial

order to keep essential variables within a limited ranges Th
search for an internal equilibrium, known &®meostasis

homeostatic system subject to a novel environment and some
degrees of disruption. Section V closes the paper with final

[6][7], has motivated the synthesis of autonomous systenigmarks and some directions for future investigation.

in mobile robotics [2][8][9][10][11]. For instance, Dyke &
Harvey [8][12] have pointed out that in order to understan

dll. MUTILPE HORMONE APPROACH- THE FRAMEWORK

real or artificial life it is necessary to first understand the

conceptual framework and basic mechanisms of homeostasis
The architecture proposed here is an extension of previob

work by Vargaset al. [9][11] and Moioli et al. [10][13]. It

Renan C. Moioli and Phil Husbands are with the Centre for Qomp
tational Neuroscience and Robotics (CCNR), Departmentnédrinatics,
University of Sussex, Falmer, Brighton, BN1 9QH, United #dom,
(email: {r.moioli, p.husbands@sussex.ac.uk). Patricia A. Vargas is with the
School of Maths and Computer Science, Heriot-Watt Uniwgr&dinburgh,
Scotland, EH14 4AS, United Kingdom, (email: p.a.vargas@bwk)

Phil Husbands was partially supported by the Spatially Einbe
ded Complex Systems Engineering (SECSE) project, EPSR@Gt gra
EP/C51632X/1.

Similar to previous models of the evolutionary artifi-
g@il homeostatic system (EAHS) [9][10][11][13], the EAHS
proposed in this paper is particularly inspired by neuro-
endocrine interactions in biological organisms. The bfwsis
these interactions comes from the production and release by
endocrine glands of chemical substances called hormones,
that can affect the nervous system, which in turn can transmi
nerve impulses affecting the production and secretion of
hormones, thus establishing a control loop mechanism. The
main objective of this interface is to maintain homeostasis
metabolism and reproduction in the organism.



the ith hormone is updated as follows:

0, lf 1S; <0,
HP;(t+1) = (100 — BES) x a;(Max(HL;) — HL;(t)),
otherwise
1)

_vHorm whered is the target threshold of the internal sta 'S
NSGasNets /Bexp.m is the external stimulusy is the scaling factor/{ L is the
@1 e hormone level; and is the discrete time index. If the internal
T statelS is greater than or equal to a target threshold, then
; : hormone will be produced at a rate that will depend upon
% — the level of the external stimulus received and the level
of hormone already present within the artificial organism.
' g Otherwise, hormone production will cease. The interndesta
IS is governed by:
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SIOJON

..... ISi(t+1) = { 0,if (ES > N\;) and (HL; > w;)
! IS;(t) + B(Max(1S;) — 15;(t)), otherwise
Fig. 1. The basic framework of the Evolutionary Artificial Meostatic . . (2) .
System (EAHS). where) andw are pre-determined thresholds associated with
ES and HL, respectively, and3 is a gain value for the
rate of change of the internal state. The hormone Iéilel
Hormones are released in the blood stream and therefaepresents the amount of hormone stimulating the artificial
can reach almost any cell in the organism. Each cell ineural network (ANN), and is a function of its current value
our organism has protein molecules embedded in either thad of the amount of hormone produced:
plasma membrane or cytoplasm, named receptors, which will
mediate the cell response to specific hormones. The presence HL;(t+1) = HLi(t) x e YT + HP,(t) (3)
of receptors is vital to control these cellular responses to
the signalling promoted by assorted types of hormoneghereT is the half-life variable.
Hormones also act as ligand (from the Latin wdigiare The three NSGasNets (N1, N2 and N3 in Figure 1)
= to bind) while binding to receptors. are previously and separately evolved to accomplish three
Vargas et al. (2008b) [11] was the first to present an EAHSistinct and possibly conflicting behaviours. The NSGasNet
model incorporating hormone receptors. The current papisra discrete-time artificial recurrent neural network e
reports work that extends the approach by increasing tlieom the spatially embedded original GasNet model. The NS-
number of ANNs, hormones and receptors and incorporatifgasNet is spatially unconstrained and was shown to present
new rules that govern the interaction between the AES arliperior performance in terms of evolvability when compare
the ANNSs. to the original GasNet model on a pattern generation task
Basically, the EAHS is composed of an artificial endocrin@nd on a delayed response robot task [14][17] (the following
system (AES) employing two hormones, three separate NSection Il describes with further details the NSGasNet
GasNets (to be described later) and two kinds of hormorreodel).
receptor. The additional mediation provided by the recep- The outputs of the NSGasNets are modulated by the
tors is intended to enhance the system robustness withdwirmone levelsH Lyqyigue @and H Lyynger (EQ. 3), medi-
explicitly incorporating morea priori knowledge into the ated when necessary by two hormone receptors sensitivity
three evolved NSGasNets. The principal aim is to achievariables,de piore (EQ. 4) anddsqrigue (EQ. 5), giving rise
the control of conflicting behaviours leading to more stablé the dynamical coordination of behaviours. Basicallg th
performance of the system as it will be presented on SectidxES is responsible for producing and secreting two types of
IV. Figure 1 shows an overview of the EAHS. hormones, each associated to a different internal stateeof t
The AES consists of three main modules: hormone levelgent,/Statigue @and I.Shunger, respectively. In our model,
(HL), hormone production controller (HPC), and endocrinéhe IS4+ Of the artificial agent (Eq. 2) stands for the
gland (EG). HL holds a record of the level of hormone in thdatigue meter reading and tHe)},,,, 4., Stands for the inverse
organism; the hormone production controller is respomsibbf the battery meter reading, which implies that the lower th
for controlling the production of hormones in response tbattery level, the higher théS, e
variations in the internal state of the organism and to esler  The levels of the two hormones together with the external
stimulation; and the endocrine gland receives inputs fromnvironmental stimulus are responsible for determinirg th
the HPC, being responsible for producing and secretingensitivity of the receptors. This sensitivity, represenby
hormones when required. The hormone produciibR; of the § values, will in the end dictate the real output of three



IR sensors

and the mean value of pixel8 — 63 representing the right
reading. The readings range from 50 to 175 - the first value
representing the maximum perception of a black stripe. The
KiKS Khepera robot simulator was used [18].

- - ; The evolution of the entire EAHS was divided in two
—— ’ - Wheels steps. First, the three NSGasNets are evolved indepegdentl
@ b) employing a distributed genetic algorithm [19][20](one-NS

GasNet evolved for each task). The AES is evolved thereafter
Fig. 2. Real Khepera Il robot (a) and its schematic represient, including as a coordination module responsible for the swapping of
the IR sensors and the camera (b). behaviours between the NSGasNets. No crossover is em-
ployed. A generation is defined as twenty five breeding
NSGasNets and consequently the coherent coordination g}\]/‘%rgs’j:edrgzﬁnesvo.:%ueoEﬂgszlg;irtlter:irg ;urzssfor i_m?mmumh
the agent's behaviour. 9 ’ . spectiic for eac
task. There are two mutation operators applied to 10% of the
genes. The first operator is only for continuous variables.
beaptore = (1=H Lyatigue X lightSensor) x (1—H Lhunger) (4) It produces a change at each locus by an amount within
the [—10,+10] range. For the second mutation operator,
S fatigue = (1 — lightSensor) x (1 — H Lpunger) (5) designed to deal with discrete variables, a randomly chosen
gene locus is replaced with a new value that can be any value
within the [0, 99] range, in a uniform distribution. For further
(6) details about the application of the genetic algorithm ® th
evolution of GasNet models, the reader should refer to [21].

o ",
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[min(lightSensor Readings) — MinR]>

lightS —1-
rgnieensor (MazR — MinR)3

From Eq. 6 min(lightSensorReadings) is the most
stimulated light sensor value. The paramet&fésnR and A. Evolving the NSGasNets
MaxR assume the value85 and 450, respectively. The
parameters//inR and M ax R were devised empirically and
were specific for the chosen tasks [11].

GasNets are a class of artificial neural networks that makes
use of an analogue afolume signalingn the human brain,
- - - . . whereby neurotransmitters freely diffuse into a relativel
Itis important to highlight that the variablésrepresenting large volume around a nerve cell, potentially affecting gnan
the receptor sensitivity, are driven by the light source-radgiher neurons [22]. They are essentially standard discrete
ance, thus regulating the agent's response to the preseRgs recurrent artificial neural networks augmented by a
of the hormones. From a biological perspective, one cafhemical signaling system between neurons using diffusing
understand this sensitivity to the light source as if a fmiis ;.5 gases which can modulate the response of other
hypothalamus releases a neurotransmitter while senség hu;rons.

presence of light. Thls neurotrar?smltte_r yv_ould then bind to A number of GasNet variants inspired by different aspects
the receptor changing the agent's sensitivity to the hoNORy e real nervous systems have been explored in evolu-
level mediated by the proximity of the light source. tionary robotics [16] as controllers for autonomous mobile
I1l. M ETHODS robots. They have been shown to be significantly more
. . . . volvable (i.e., in terms of speed of evolution) than other
A simulated Khepera 11 robot equipped with an 'memaEgpes of artificial neural networks for a variety of robotkas

battery meter and with an internal fatigue meter has t : :
perform three coupled but distinct tasks: to explore th 1[17][23]. The model used here is the non-spatial GasNet

. . - iah" NSGasNet [14]. The transfer function of noden the

environment while avoiding obstacles, to search for a ligh wwork is aiven bv Eq. 7-
source when its fatigue meter is high (the light sourc& S or 9 y EQ- £
indicates the location of the resting place) and to search fo
a black stripe in the arena when its battery meter is low (the
black stripe indicates the location of the charging area).

The robot has two wheels with independent electric mo-
tors, 8 infrared sensors and a camera (see Fig.2). The sensehere(; is the set of nodes with connections to nade;;
measure the environmental luminosity (ranging from 65 tés the connection weight value (ranging froml to +1),
430 - 65 being the highest luminosity that can be sensed);(t — 1) is the previous output of neurofy I;(t) is the
and the obstacle distance (ranging from 0 to 1023 - thexternal input to neuron at timet, if the node has external
latter value represents the closest distance to an objEwt). inputs,b; is the bias of the neuron, ard;(¢) is a gain whose
camera provides a 36 degrees, 64 pixels gray-scale hagaizontalue is changed by the gases, thus causing modulation of
vision of an image placed in front of it. These 64 pixelghe transfer function.
are grouped into 3 mean inputs for the system: the meanThere are three NSGasNets previously and separately
value of pixelsO — 13 representing the left reading, theevolved to accomplish each of the three distinct and passibl
mean value of pixel4 — 39 representing the central readingconflicting behaviours, namely N1, N2 and N3 (Figure 1).

O;(t) = tanh

Ki(t) (Z w;i0;(t —1) +1i(t)) +bi] @)

JeC;



(b) (©)

Fig. 3. Scenarios for the evolution of NSGasNets. Obstaotédance (a), phototaxis (b) and black stripe search (c).

The networks genotype consists of an array of integer vanvhere the parameter (referring to sensory activation) is
ables lying in the rangf, 99] (each variable occupies a geneminimized when the robot is near the light, due to the sensory
locus). The decoding from genotype to phenotype adoptetiucture of the robot.
is the same as the original model [21]. The NSGasNet Network N3 is devoted to the search for black-stripe
model has six variables associated with each node plus obehaviour and has a structure similar to the previous ongs, b
modulator bias ¥/ bias;;) for each node, plus task-dependenhas three inputs related to the camera sensors. The training
parameters. The modulator bias is responsible for digatin scenario (Figure 3(c)) consists of the same previous square
what extent the node could be affected by the gases emittatkna, with a black stripe on the top side of it. The robot has
by all the other nodes. Therefore, here, networks N1, N&n initial random position and orientation in relation t@ th
and N3 (Figure 1) will have six Mbias for each node. Fostripe, but always the same distance to it. In each trial, the
a more detailed explanation of the mechanisms of GasNditess is scored similarly to the fitness of network N2 (Eq.
and NSGasNets, the reader should refer to [14][21]. 9), but now the parametér(referring to sensory activation)
Network N1 (Figure 1), which is responsible for theis minimized when the robot is near to the black stripe, and
exploration with obstacle avoidance behaviour, has fourot to the light source anymore.
inputs: the most sumulqt.ed left, right, front and .back dis- _ Evolving the Artificial Endocrine System
tance sensors. Two additional neurons were considered to be ) .
output neurons, so the network consists of six neurons. TheThe genotype of the AES to be evolved is described
output neurons correspond to the motor neurons. The fitnd2% 8 parameters (Egs. 1-3Yfatigues Ofatigue: Ofatigue,
function (Eq. 8) and the training scenario were inspired by fatigues Whungers Ohungers Chungers Thunger. The param-

the work of Nolfi & Floreano [16]: etersfyatigue = 0.005, Spunger = 0.008, Aratigue = 101.5
and Apunger = 56.25 were pre-definedByqtigue is the
p=V(1- /_Av)(l — i) (8) internal state [S) growing rate associate to the behaviour

of resting, andGyyunger IS the IS growing rate associate to
whereV is the sum of the instantaneous rotation speed of thae behaviour of charging (Eq. 2). Remember that in our
wheels (stimulating high speeds)v the absolute value of model, thel S¢..4u Of the artificial agent (Eq. 2) stands for
the algebraic difference between the speeds of the wheei® fatigue meter reading and tH&), 4. Stands for the
(stimulating forward movement), and is the normalized inverse of the battery meter reading, which implies that the
value of the distance sensor of highest activation (stitmga lower the battery level, the higher tHe), e 0 is thelS
obstacle avoidance). A trial is considered to be 800 itenati level threshold, above which hormone production starts at a
of the control algorithm. At the end of each trial, the robotate dictated byy. T is simply the half-life of the hormone.
is randomly repositioned in the environment. As the robot is always moving and getting “tired”, and

The structure of network N2, which is responsible for thehe battery is always dischargin@satigue and Brunger

phototaxis behaviour, is similar to the obstacle avoidandsoth should have predefined values associated with them.
network. Only the distance sensors were replaced by the ligBimilarly, the minimum camera vision intensity above which
sensors. The training environment consists of a squar@arethe robot could recharge\fu,4e-) and the minimum light
where the robot has a fixed initial position at the beginningntensity above which the robot could rest;(+;..) should
of each ftrial, and the light sources can appear in differemiiso be predefined. Remember that the presence of the black
parts of the scenario, close enough for the robot to perceigéripe here indicates a charging area and the presence of a
it. Each trial corresponds to 800 simulation steps. Thed#nelight source indicates a resting area.
function is given by Eqg. 9: Evolution starts with the robot exploring the arena, con-

trolled by the obstacle avoidance network. The AES is

p=V(1—1) (9) designed to sense the internal states of the robot (e.guéati



HLfatiguei HLhunger
high, high high, low low, high low, low
lightsensor | Oezplore MOre SENSItiVe,| Jdezpiore 1€SS SENSItiVe,| Jezpiore 1€SS SENSItiVE] eppiore MOre sensitive,
high Ofatigue 1€SS sensitive | 6 ratigue MOre SeNsitive| drqiigue 1€SS SeNsitivel 6 rqrigue 1€SS sensitive
dominant
N2 N3 N2 N1
NSGasNet
lightsensor Oeaplore 1€SS SENSItIVE, | Ceppiore MOre SENSItive, deupiore 1€SS Sensitive] dexpiore More sensitive,
low Ofatigue 1€SS Sensitive | 0 ¢4tigue 1€SS sensitive | drarigue 1€SS Sensitivel d¢qtigue 1€SS sensitive
dominant
N2 N1 N2 N1
NSGasNet
TABLE |

SUMMARY OF HORMONE/RECEPTOR INTERACTION AND THE CORRESPONDING NETWORK WHICHAY BE MORE EXPRESSIVE FOR EACH HORMONAL
(HLfqatigue OR HLpynger) AND ENVIRONMENTAL (light sensoj SITUATION, THE CORRESPONDING RECEPTOR STAT@ e, plore OR O fatigue) IS
PRESENTED

and hunger). If any of the internal states goes above 95, &ection IV. Eq. 13 shows the first fithess function and Eq.
a 0 to 100 scale, the robot is considered to be “dead”. Tb4 shows the second fitness function, which resembles the
obtain a successful performance the robot should be ablefttmess function adopted by [24].
efficiently switch between three distinct and conflicting be
haviours, i.e., to explore the arena while avoiding callis, ¢ =V(1—it/M (13)
to search a place to rest when its fatigue meter is high and to ,
search for the battery charger when its battery level is lo/here V. € [0,1] is the absolute value of the sum of
This switching of behaviour is expected to be due to thg’e instantaneous rqta‘uon speed. of the wheels (stllmglatm
production of the hormone related to the decrease of battig/vard movement); is the normalized value of the distance
level or due to the production of the hormone related to thaeNsor of highest activation (stimulating obstacle avooey,
increase of the fatigue level. t is the number of iterations in which the robot remains alive

There is a pre-established priority encoded on the AE%ndM is the maximum number of |terat|o.ns atrlal_caq have.
between the three behaviours which states that the seardh'S: @ good performance would consist of adjusting the
for a battery charger has the highest priority amongst tH%prmones_producnon thr_esh_olds and growt_h rate |n_order to
other behaviours. In this sense, after charging the batte‘?'}lJOW maximum exploration |_nterspersed with charging and
(associated with being close to the black stripe), which sting steps. Due to the env_lronment set-up, _the robo'dcqul
the mandatory behaviour, and resting (associated withgbeifi©t Stay close to the black stripe when performing explorai
close to the light), and the consequent decrease in eachoéfthe environment, as the black stripe is itself locatedelo
the related hormone levels, the robot should switch to i the wall.
original exploratory behaviour.

As stated previously, the outputs of the. NSGasNets are 4, — /(1 —4) + Bonusnunger + Bonus aigue  (14)
modulated by the hormone levels and mediated by receptors

sensitivity variabless when necessary as follows: where V' € [0,1] is the absolute value of the sum of
the instantaneous rotation speed of the wheels (stimglatin
Outputni = Output N1 X Oexpiore (10) forward movement); is the normalized value of the distance

sensor of highest activation (stimulating obstacle avoie;
Bonuspunger = 0 if the robot dies due to the battery level
Output e = Output no X H Lpynger (11) becoming too low orBonuspunger = 10 if the robot is
successful in charging when needd8iynusfqtigue = 0 if
the robot dies due to a high fatigue level Bonus qtigue =
Outputys = Outputns X HL jarigue X Ofatigue  (12) 10 if the robot is successful in resting when needed. Thus,
the main difference from the previous equation (Eq. 13) is
Table | summarizes the hormone/receptor interaction refhat now the robot receives a bonus when able to accomplish
atively to the robot position in the scenario and the correeither of the tasks (charging and resting), presenting an
spondent network which may be more expressive. For eafiftcremental shaping scheme.
hormonal {H L ¢atigue and H Lpynger) and environmental
(light sensoy situation, the correspondent receptor state IV. RESULTS
(Oexpiore N f4rigue) IS Presented. The first experiment analyses the resulting behaviour of the
Two fitness functions were employed during evolution andystem when evolved under different performance criteria,
thereafter separately investigated, as it will be disadisee i.e. two distinct fitness functions. The second experiment
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Fig. 4. EAHS variables and robot trajectory fr (a) and¢2 (b). The white doted lines indicate when both hormone leietke robot are low (exploring
behaviour), white lines indicate th&f Ly, 4e, i high (charging behaviour) and black doted lines indi¢ate H L ;4. is high (resting behaviour).

investigates the system performance when exposed to aitereach of the fitness functiong; and ¢, respectively. The
disruptions, conflicting situations and a changed envirorest evolved individual phenotypes for fithess functiton
ment. The experiments are an attempt to verify the perfoand ¢, are presented on Table Il. Notice that in both cases
mance of the EAHS in terms of the homeostatic regulatiothe robot is able to explore the scenario avoiding collision
process and robustness to changes in environmental con@vhite doted lines) while charging (white lines) or resting
tions. It is expected that such an endeavour will promote thlack doted lines). The swapping amongst the behaviours
automatic adjustment of variables under regulatory céntrocould also be spotted by the inferior peaks of the camera
and light sensors on Figures 4(a) and 4(c)) which mean the

A. Experiment 1 e . .
) . . . . proximity of the robot to each charging and resting area,
The first experiment is devoted to analyzing the eVOIUt'OF'espectively. Observe that both internal stak&§ g, and

of the muItl—hormong EAHS _accprdlng to fithess functlonsjsfatique grow until they overtake the correspondéntalue

¢1 and ¢». The main objective is to observe whether of,ints A and B). The hormone production is then started.
not the system is able to evolve the EAHS parameters (e the correspondent external stimulliE is greater than
such a way that a reasonable behaviour coordination arsgsa parameten and the hormone level is superior than
ensgring the exploration of the scenario while maintaining,« internal state tends to(points C and D). Therefore, this
th_e _mte_rngl states of the agentSarigue and IS’WTWGT) results show that the multiple hormone coordination sudsee
within limits. Remember that although the equations thah combining and switching the influence of each network in

define the sensitivity of the receptors were set by hang,q global behaviour for both performance criteria @nd
it is the EAHS evolved parameters which will dictate the

final global behaviour of the agent, directly modulating the 2

output of the NSGasNets by means of the production of the Some qualitative differences can be observed, considering

hormones mediated by hormone receptors. the phenotypes fog; and¢,. In the former case, the robot
Figures 4(a) and 4(c) present the EAHS variables dynampproaches the light more times than it approaches the-black

ics and Figure 4(b) and 4(d) show the robot trajectory fostripe, i.e. the hormone related to thesting behaviour is



Wfatigue ej'atigue A fatigue Tj’atigue Whunger ohunger Qhunger Thunger
01 67 48 0.0841 1 54 89 0.0761 11.1
02 67.5 89 0.0811 11.1 78.5 91 0.0871 111
TABLE Il

EAHS EVOLVED PARAMETER VALUES FOR FITNESS FUNCTION®1 AND ¢2 IN EXPERIMENT 1.
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Fig. 5. EAHS variables and robot trajectory foi (a) andg2 (b), when presented to internal and external disruptiom® White doted lines indicate
when both hormone levels in the robot are low (exploring biha), white lines indicate thatf Ly, 4er iS high (charging behaviour) and black doted
lines indicate thati L y444v. is high (resting behaviour).

L
0 100 200 300

released more frequently than the hormone related to tiecording to the pre-defined rules, this new scenario would
charging behaviour. It is important to highlight that the require the system to prioritize the charging behaviour.
charging behaviour not only grows faster than the restingloreover, the environment is changed by repositioning the
behaviour but also is encoded as a priority on the EAHSight source (or resting area) against one of the walls of the
Furhermore, even with the charging being prioritized by tharena at the right-hand side, aiming at preventing the robot
system’s rules, evolution drove the system towards a nefrom facing the light by chance. Therefore, this experiment
sequence of behaviours, i.e. resting more often than atargi promotes a disruption in the system thus causing conflicting
Although more experiments have to be carried out in orddrehaviours to occur in parallel (it changes the value of labth

to see whether this difference is solely due to the diffeeengarameters, simulating a faster battery discharge andex fas

on the fitness criteria. need for resting) as well as a change in the environment.

The new values for the IS growing factors are defined as

B. Experiment 2 . ) ‘
L follows according to each fitness function:
Considering the same evolved genotype of both best

individuals, thes parameter (associated with the internal ° ¢1 = Bratigue = 0.008, Bpunger = 0.008;
state growing rate) is altered in a way that both hormones are® #2 - Fratigue = 0.008, Bhunger = 0.013.
released at the same time, creating a conflicting situtation Figures 5(a) and 5(c) present the EAHS variables dynam-



ics and Figure 5(b) and 5(d) show the robot trajectories fateal with conflicting and unforeseen situations in dynainica
each of the fitness functiong; and¢,, respectively. environments.
Similar to what was observed in the previous experiment REFERENCES
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