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Abstract— This work proposes a biologically inspired system
for the coordination of multiple and possible conflicting be-
haviours in an autonomous mobile robot, devoted to explore
novel scenarios while ensuring its internal variables dynamics.
The proposed Evolutionary Artificial Homeostatic System, de-
rived from the study of how an organism would self-regulate
in order to keep its essential variables within a limited range
(homeostasis), is composed of an artificial endocrine system,
including two hormones and two hormone receptors, and also
three previously evolved NSGasNet artificial neural networks.
It is shown that the integration of receptors enhance the system
robustness without incorporating to the three evolved NSGas-
Nets more a priori knowledge. The experiments conducted also
show that the proposed multi-hormone evolutionary artificial
homeostatic system is able to successfully coordinate a multiple
and conflicting behaviours task, being also robust enough to
cope with internal and external disruptions.

I. I NTRODUCTION

One of the key and most challenging issues when de-
veloping autonomous systems which are able to adapt to
unforeseen situations and disruptions is how to coordinate
conflicting behaviours and to operate and remain adapted
within a viability zone.

One possible approach is to modify the weights of an
artificial neural network according to a performance criteria
at each set of iterations (hence modifying the response of the
network), with promising results being reported [1][2][3].
Another proposal, the so-called behaviour-based approach,
is to try to coherently coordinate pre-determined behaviours,
using some kind of specialist system to switch among them
[4][5].

In this work we present a further approach, which derives
from the study of how an organism would self-regulate in
order to keep essential variables within a limited range. This
search for an internal equilibrium, known ashomeostasis
[6][7], has motivated the synthesis of autonomous systems
in mobile robotics [2][8][9][10][11]. For instance, Dyke &
Harvey [8][12] have pointed out that in order to understand
real or artificial life it is necessary to first understand the
conceptual framework and basic mechanisms of homeostasis.

The architecture proposed here is an extension of previous
work by Vargaset al. [9][11] and Moioli et al. [10][13]. It
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is comprised of two main modules, an artificial endocrine
system (AES), which is synthesized by means of evolution
(under two different performance criteria), and three evolved
spatially unconstrained GasNet models, named non-spatial
GasNets (NSGasNets) [14]. The AES is responsible for
coordinating the output of the network, thus both modules are
dedicated to the control of actions in autonomous navigation
tasks giving rise to an automatic mechanism of coordination
of distinct and possibly conflicting behaviours.

Apart from being concerned with the development of a
more biologically plausible model of behaviour coordination
[15], we also tackled the reactive and non-reactive behaviour
issue [16], considered to be fundamental while devising
intelligent systems within the context of embodied cognitive
science. According to Arkin (1998) [4], purely reactive
systems and purely non-reactive systems have limitations
when considered in isolation. There is evidence that hybrid
versions, which incorporate both systems, are observed in
nature, showing hierarchical organization and action-reaction
planning.

The experiments conducted have shown that the proposed
multi-hormone evolutionary artificial homeostatic system
(EAHS) is able to successfully coordinate multiple and
conflicting behaviours, being also robust enough to cope with
internal and external disruptions.

This paper is organized as follows: section II presents the
basis of the approach adopted in this work, together with the
details of our proposal for a multiple hormone evolutionary
artificial homeostatic system. Section III describes the ex-
periments undertaken and their implementation procedures.
Section IV covers the simulation results of the artificial
homeostatic system subject to a novel environment and some
degrees of disruption. Section V closes the paper with final
remarks and some directions for future investigation.

II. M UTILPE HORMONE APPROACH- THE FRAMEWORK

Similar to previous models of the evolutionary artifi-
cial homeostatic system (EAHS) [9][10][11][13], the EAHS
proposed in this paper is particularly inspired by neuro-
endocrine interactions in biological organisms. The basisfor
these interactions comes from the production and release by
endocrine glands of chemical substances called hormones,
that can affect the nervous system, which in turn can transmit
nerve impulses affecting the production and secretion of
hormones, thus establishing a control loop mechanism. The
main objective of this interface is to maintain homeostasis,
metabolism and reproduction in the organism.



Fig. 1. The basic framework of the Evolutionary Artificial Homeostatic
System (EAHS).

Hormones are released in the blood stream and therefore
can reach almost any cell in the organism. Each cell in
our organism has protein molecules embedded in either the
plasma membrane or cytoplasm, named receptors, which will
mediate the cell response to specific hormones. The presence
of receptors is vital to control these cellular responses to
the signalling promoted by assorted types of hormones.
Hormones also act as ligand (from the Latin wordligare
= to bind) while binding to receptors.

Vargas et al. (2008b) [11] was the first to present an EAHS
model incorporating hormone receptors. The current paper
reports work that extends the approach by increasing the
number of ANNs, hormones and receptors and incorporating
new rules that govern the interaction between the AES and
the ANNs.

Basically, the EAHS is composed of an artificial endocrine
system (AES) employing two hormones, three separate NS-
GasNets (to be described later) and two kinds of hormone
receptor. The additional mediation provided by the recep-
tors is intended to enhance the system robustness without
explicitly incorporating morea priori knowledge into the
three evolved NSGasNets. The principal aim is to achieve
the control of conflicting behaviours leading to more stable
performance of the system as it will be presented on Section
IV. Figure 1 shows an overview of the EAHS.

The AES consists of three main modules: hormone level
(HL), hormone production controller (HPC), and endocrine
gland (EG). HL holds a record of the level of hormone in the
organism; the hormone production controller is responsible
for controlling the production of hormones in response to
variations in the internal state of the organism and to external
stimulation; and the endocrine gland receives inputs from
the HPC, being responsible for producing and secreting
hormones when required. The hormone productionHPi of

the ith hormone is updated as follows:

HPi(t+1) =







0, if ISi < θi

(100 − %ES) × αi(Max(HLi) − HLi(t)),
otherwise

(1)
whereθ is the target threshold of the internal stateIS; ES
is the external stimulus;α is the scaling factor;HL is the
hormone level; andt is the discrete time index. If the internal
state IS is greater than or equal to a target threshold, then
hormone will be produced at a rate that will depend upon
the level of the external stimulus received and the level
of hormone already present within the artificial organism.
Otherwise, hormone production will cease. The internal state
IS is governed by:

ISi(t+1) =

{

0, if (ES ≥ λi) and (HLi ≥ ωi)
ISi(t) + β(Max(ISi) − ISi(t)), otherwise

(2)
whereλ andω are pre-determined thresholds associated with
ES and HL, respectively, andβ is a gain value for the
rate of change of the internal state. The hormone levelHL
represents the amount of hormone stimulating the artificial
neural network (ANN), and is a function of its current value
and of the amount of hormone produced:

HLi(t + 1) = HLi(t) × e−1/Ti + HPi(t) (3)

whereT is the half-life variable.
The three NSGasNets (N1, N2 and N3 in Figure 1)

are previously and separately evolved to accomplish three
distinct and possibly conflicting behaviours. The NSGasNet
is a discrete-time artificial recurrent neural network derived
from the spatially embedded original GasNet model. The NS-
GasNet is spatially unconstrained and was shown to present
superior performance in terms of evolvability when compared
to the original GasNet model on a pattern generation task
and on a delayed response robot task [14][17] (the following
Section III describes with further details the NSGasNet
model).

The outputs of the NSGasNets are modulated by the
hormone levelsHLfatigue and HLhunger (Eq. 3), medi-
ated when necessary by two hormone receptors sensitivity
variables,δexplore (Eq. 4) andδfatigue (Eq. 5), giving rise
to the dynamical coordination of behaviours. Basically, the
AES is responsible for producing and secreting two types of
hormones, each associated to a different internal state of the
agent,ISfatigue and IShunger , respectively. In our model,
the ISfatigue of the artificial agent (Eq. 2) stands for the
fatigue meter reading and theIShunger stands for the inverse
of the battery meter reading, which implies that the lower the
battery level, the higher theIShunger .

The levels of the two hormones together with the external
environmental stimulus are responsible for determining the
sensitivity of the receptors. This sensitivity, represented by
the δ values, will in the end dictate the real output of three
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Fig. 2. Real Khepera II robot (a) and its schematic representation, including
the IR sensors and the camera (b).

NSGasNets and consequently the coherent coordination of
the agent’s behaviour.

δexplore = (1−HLfatigue×lightSensor)×(1−HLhunger) (4)

δfatigue = (1 − lightSensor) × (1 − HLhunger) (5)

lightSensor = 1 −
[min(lightSensorReadings) − MinR]3

(MaxR − MinR)3
(6)

From Eq. 6 min(lightSensorReadings) is the most
stimulated light sensor value. The parametersMinR and
MaxR assume the values65 and 450, respectively. The
parametersMinR andMaxR were devised empirically and
were specific for the chosen tasks [11].

It is important to highlight that the variablesδ, representing
the receptor sensitivity, are driven by the light source radi-
ance, thus regulating the agent’s response to the presence
of the hormones. From a biological perspective, one can
understand this sensitivity to the light source as if a fictitious
hypothalamus releases a neurotransmitter while sensing the
presence of light. This neurotransmitter would then bind to
the receptor changing the agent’s sensitivity to the hormone
level mediated by the proximity of the light source.

III. M ETHODS

A simulated Khepera II robot equipped with an internal
battery meter and with an internal fatigue meter has to
perform three coupled but distinct tasks: to explore the
environment while avoiding obstacles, to search for a light
source when its fatigue meter is high (the light source
indicates the location of the resting place) and to search for
a black stripe in the arena when its battery meter is low (the
black stripe indicates the location of the charging area).

The robot has two wheels with independent electric mo-
tors, 8 infrared sensors and a camera (see Fig.2). The sensors
measure the environmental luminosity (ranging from 65 to
430 - 65 being the highest luminosity that can be sensed)
and the obstacle distance (ranging from 0 to 1023 - the
latter value represents the closest distance to an object).The
camera provides a 36 degrees, 64 pixels gray-scale horizontal
vision of an image placed in front of it. These 64 pixels
are grouped into 3 mean inputs for the system: the mean
value of pixels0 − 13 representing the left reading, the
mean value of pixels24−39 representing the central reading

and the mean value of pixels48 − 63 representing the right
reading. The readings range from 50 to 175 - the first value
representing the maximum perception of a black stripe. The
KiKS Khepera robot simulator was used [18].

The evolution of the entire EAHS was divided in two
steps. First, the three NSGasNets are evolved independently
employing a distributed genetic algorithm [19][20](one NS-
GasNet evolved for each task). The AES is evolved thereafter
as a coordination module responsible for the swapping of
behaviours between the NSGasNets. No crossover is em-
ployed. A generation is defined as twenty five breeding
events, and the evolutionary algorithm runs for a maximum
of 50 generations. The fitness criteria are specific for each
task. There are two mutation operators applied to 10% of the
genes. The first operator is only for continuous variables.
It produces a change at each locus by an amount within
the [−10, +10] range. For the second mutation operator,
designed to deal with discrete variables, a randomly chosen
gene locus is replaced with a new value that can be any value
within the [0, 99] range, in a uniform distribution. For further
details about the application of the genetic algorithm to the
evolution of GasNet models, the reader should refer to [21].

A. Evolving the NSGasNets

GasNets are a class of artificial neural networks that makes
use of an analogue ofvolume signalingin the human brain,
whereby neurotransmitters freely diffuse into a relatively
large volume around a nerve cell, potentially affecting many
other neurons [22]. They are essentially standard discrete-
time recurrent artificial neural networks augmented by a
chemical signaling system between neurons using diffusing
virtual gases which can modulate the response of other
neurons.

A number of GasNet variants inspired by different aspects
of the real nervous systems have been explored in evolu-
tionary robotics [16] as controllers for autonomous mobile
robots. They have been shown to be significantly more
evolvable (i.e., in terms of speed of evolution) than other
types of artificial neural networks for a variety of robot tasks
[21][17][23]. The model used here is the non-spatial GasNet,
or NSGasNet [14]. The transfer function of nodei in the
network is given by Eq. 7:

Oi(t) = tanh



Ki(t)





∑

j∈Ci

wjiOj(t − 1) + Ii(t)



 + bi



 (7)

whereCi is the set of nodes with connections to nodei, wji

is the connection weight value (ranging from−1 to +1),
Oj(t − 1) is the previous output of neuronj, Ii(t) is the
external input to neuroni at timet, if the node has external
inputs,bi is the bias of the neuron, andKi(t) is a gain whose
value is changed by the gases, thus causing modulation of
the transfer function.

There are three NSGasNets previously and separately
evolved to accomplish each of the three distinct and possibly
conflicting behaviours, namely N1, N2 and N3 (Figure 1).
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Fig. 3. Scenarios for the evolution of NSGasNets. Obstacle avoidance (a), phototaxis (b) and black stripe search (c).

The networks genotype consists of an array of integer vari-
ables lying in the range[0, 99] (each variable occupies a gene
locus). The decoding from genotype to phenotype adopted
is the same as the original model [21]. The NSGasNet
model has six variables associated with each node plus one
modulator bias (Mbiasij) for each node, plus task-dependent
parameters. The modulator bias is responsible for dictating to
what extent the node could be affected by the gases emitted
by all the other nodes. Therefore, here, networks N1, N2
and N3 (Figure 1) will have six Mbias for each node. For
a more detailed explanation of the mechanisms of GasNets
and NSGasNets, the reader should refer to [14][21].

Network N1 (Figure 1), which is responsible for the
exploration with obstacle avoidance behaviour, has four
inputs: the most stimulated left, right, front and back dis-
tance sensors. Two additional neurons were considered to be
output neurons, so the network consists of six neurons. The
output neurons correspond to the motor neurons. The fitness
function (Eq. 8) and the training scenario were inspired by
the work of Nolfi & Floreano [16]:

φ = V (1 −
√

∆v)(1 − i) (8)

whereV is the sum of the instantaneous rotation speed of the
wheels (stimulating high speeds),∆v the absolute value of
the algebraic difference between the speeds of the wheels
(stimulating forward movement), andi is the normalized
value of the distance sensor of highest activation (stimulating
obstacle avoidance). A trial is considered to be 800 iterations
of the control algorithm. At the end of each trial, the robot
is randomly repositioned in the environment.

The structure of network N2, which is responsible for the
phototaxis behaviour, is similar to the obstacle avoidance
network. Only the distance sensors were replaced by the light
sensors. The training environment consists of a square arena,
where the robot has a fixed initial position at the beginning
of each trial, and the light sources can appear in different
parts of the scenario, close enough for the robot to perceive
it. Each trial corresponds to 800 simulation steps. The fitness
function is given by Eq. 9:

φ = V (1 − i) (9)

where the parameteri (referring to sensory activation) is
minimized when the robot is near the light, due to the sensory
structure of the robot.

Network N3 is devoted to the search for black-stripe
behaviour and has a structure similar to the previous ones, but
has three inputs related to the camera sensors. The training
scenario (Figure 3(c)) consists of the same previous square
arena, with a black stripe on the top side of it. The robot has
an initial random position and orientation in relation to the
stripe, but always the same distance to it. In each trial, the
fitness is scored similarly to the fitness of network N2 (Eq.
9), but now the parameteri (referring to sensory activation)
is minimized when the robot is near to the black stripe, and
not to the light source anymore.

B. Evolving the Artificial Endocrine System

The genotype of the AES to be evolved is described
by 8 parameters (Eqs. 1-3):ωfatigue, θfatigue, αfatigue,
Tfatigue, ωhunger, θhunger , αhunger , Thunger. The param-
etersβfatigue = 0.005, βhunger = 0.008, λfatigue = 101.5
and λhunger = 56.25 were pre-defined.βfatigue is the
internal state (IS) growing rate associate to the behaviour
of resting, andβhunger is the IS growing rate associate to
the behaviour of charging (Eq. 2). Remember that in our
model, theISfatigue of the artificial agent (Eq. 2) stands for
the fatigue meter reading and theIShunger stands for the
inverse of the battery meter reading, which implies that the
lower the battery level, the higher theIShunger . θ is the IS
level threshold, above which hormone production starts at a
rate dictated byα. T is simply the half-life of the hormone.

As the robot is always moving and getting “tired”, and
the battery is always discharging,βfatigue and βhunger

both should have predefined values associated with them.
Similarly, the minimum camera vision intensity above which
the robot could recharge (λhunger) and the minimum light
intensity above which the robot could rest (λfatigue) should
also be predefined. Remember that the presence of the black
stripe here indicates a charging area and the presence of a
light source indicates a resting area.

Evolution starts with the robot exploring the arena, con-
trolled by the obstacle avoidance network. The AES is
designed to sense the internal states of the robot (e.g. fatigue



HLfatigue, HLhunger

high, high high, low low, high low, low
lightsensor δexplore more sensitive, δexplore less sensitive, δexplore less sensitive, δexplore more sensitive,
high δfatigue less sensitive δfatigue more sensitive δfatigue less sensitive δfatigue less sensitive
dominant
NSGasNet

N2 N3 N2 N1

lightsensor δexplore less sensitive, δexplore more sensitive, δexplore less sensitive, δexplore more sensitive,
low δfatigue less sensitive δfatigue less sensitive δfatigue less sensitive δfatigue less sensitive
dominant
NSGasNet

N2 N1 N2 N1

TABLE I

SUMMARY OF HORMONE/RECEPTOR INTERACTION AND THE CORRESPONDING NETWORK WHICH MAY BE MORE EXPRESSIVE. FOR EACH HORMONAL

(HLfatigue OR HLhunger ) AND ENVIRONMENTAL (light sensor) SITUATION, THE CORRESPONDING RECEPTOR STATE(δexplore OR δfatigue) IS

PRESENTED.

and hunger). If any of the internal states goes above 95, on
a 0 to 100 scale, the robot is considered to be “dead”. To
obtain a successful performance the robot should be able to
efficiently switch between three distinct and conflicting be-
haviours, i.e., to explore the arena while avoiding collisions,
to search a place to rest when its fatigue meter is high and to
search for the battery charger when its battery level is low.
This switching of behaviour is expected to be due to the
production of the hormone related to the decrease of battery
level or due to the production of the hormone related to the
increase of the fatigue level.

There is a pre-established priority encoded on the AES
between the three behaviours which states that the search
for a battery charger has the highest priority amongst the
other behaviours. In this sense, after charging the battery
(associated with being close to the black stripe), which is
the mandatory behaviour, and resting (associated with being
close to the light), and the consequent decrease in each of
the related hormone levels, the robot should switch to its
original exploratory behaviour.

As stated previously, the outputs of the NSGasNets are
modulated by the hormone levels and mediated by receptors
sensitivity variablesδ when necessary as follows:

OutputN1 = OutputN1 × δexplore (10)

OutputN2 = OutputN2 × HLhunger (11)

OutputN3 = OutputN3 × HLfatigue × δfatigue (12)

Table I summarizes the hormone/receptor interaction rel-
atively to the robot position in the scenario and the corre-
spondent network which may be more expressive. For each
hormonal (HLfatigue and HLhunger) and environmental
(light sensor) situation, the correspondent receptor state
(δexplore andδfatigue) is presented.

Two fitness functions were employed during evolution and
thereafter separately investigated, as it will be discussed in

Section IV. Eq. 13 shows the first fitness function and Eq.
14 shows the second fitness function, which resembles the
fitness function adopted by [24].

φ1 = V (1 − i)t/M (13)

where V ∈ [0, 1] is the absolute value of the sum of
the instantaneous rotation speed of the wheels (stimulating
forward movement),i is the normalized value of the distance
sensor of highest activation (stimulating obstacle avoidance),
t is the number of iterations in which the robot remains alive
andM is the maximum number of iterations a trial can have.
Thus, a good performance would consist of adjusting the
hormones production thresholds and growth rate in order to
allow maximum exploration interspersed with charging and
resting steps. Due to the environment set-up, the robot could
not stay close to the black stripe when performing exploration
of the environment, as the black stripe is itself located close
to the wall.

φ2 = V (1 − i) + Bonushunger + Bonusfatigue (14)

where V ∈ [0, 1] is the absolute value of the sum of
the instantaneous rotation speed of the wheels (stimulating
forward movement),i is the normalized value of the distance
sensor of highest activation (stimulating obstacle avoidance);
Bonushunger = 0 if the robot dies due to the battery level
becoming too low orBonushunger = 10 if the robot is
successful in charging when needed;Bonusfatigue = 0 if
the robot dies due to a high fatigue level orBonusfatigue =
10 if the robot is successful in resting when needed. Thus,
the main difference from the previous equation (Eq. 13) is
that now the robot receives a bonus when able to accomplish
either of the tasks (charging and resting), presenting an
incremental shaping scheme.

IV. RESULTS

The first experiment analyses the resulting behaviour of the
system when evolved under different performance criteria,
i.e. two distinct fitness functions. The second experiment
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Fig. 4. EAHS variables and robot trajectory forφ1 (a) andφ2 (b). The white doted lines indicate when both hormone levelsin the robot are low (exploring
behaviour), white lines indicate thatHLhunger is high (charging behaviour) and black doted lines indicatethat HLfatigue is high (resting behaviour).

investigates the system performance when exposed to internal
disruptions, conflicting situations and a changed environ-
ment. The experiments are an attempt to verify the perfor-
mance of the EAHS in terms of the homeostatic regulation
process and robustness to changes in environmental condi-
tions. It is expected that such an endeavour will promote the
automatic adjustment of variables under regulatory control.

A. Experiment 1

The first experiment is devoted to analyzing the evolution
of the multi-hormone EAHS according to fitness functions
φ1 and φ2. The main objective is to observe whether or
not the system is able to evolve the EAHS parameters in
such a way that a reasonable behaviour coordination arises,
ensuring the exploration of the scenario while maintaining
the internal states of the agent (ISfatigue and IShunger)
within limits. Remember that although the equations that
define the sensitivity of the receptors were set by hand,
it is the EAHS evolved parameters which will dictate the
final global behaviour of the agent, directly modulating the
output of the NSGasNets by means of the production of the
hormones mediated by hormone receptors.

Figures 4(a) and 4(c) present the EAHS variables dynam-
ics and Figure 4(b) and 4(d) show the robot trajectory for

each of the fitness functions,φ1 and φ2, respectively. The
best evolved individual phenotypes for fitness functionφ1

andφ2 are presented on Table II. Notice that in both cases
the robot is able to explore the scenario avoiding collisions
(white doted lines) while charging (white lines) or resting
(black doted lines). The swapping amongst the behaviours
could also be spotted by the inferior peaks of the camera
and light sensors on Figures 4(a) and 4(c)) which mean the
proximity of the robot to each charging and resting area,
respectively. Observe that both internal statesIShunger and
ISfatigue grow until they overtake the correspondentθ value
(points A and B). The hormone production is then started.
When the correspondent external stimulusEE is greater than
the parameterλ and the hormone level is superior thanω,
the internal state tends to0 (points C and D). Therefore, this
results show that the multiple hormone coordination succeeds
in combining and switching the influence of each network in
the global behaviour for both performance criteria (φ1 and
φ2).

Some qualitative differences can be observed, considering
the phenotypes forφ1 andφ2. In the former case, the robot
approaches the light more times than it approaches the black-
stripe, i.e. the hormone related to theresting behaviour is



ωfatigue θfatigue αfatigue Tfatigue ωhunger θhunger αhunger Thunger

φ1 67 48 0.0841 1 54 89 0.0761 11.1
φ2 67.5 89 0.0811 11.1 78.5 91 0.0871 11.1

TABLE II

EAHS EVOLVED PARAMETER VALUES FOR FITNESS FUNCTIONSφ1 AND φ2 IN EXPERIMENT 1.
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Fig. 5. EAHS variables and robot trajectory forφ1 (a) andφ2 (b), when presented to internal and external disruptions. The white doted lines indicate
when both hormone levels in the robot are low (exploring behaviour), white lines indicate thatHLhunger is high (charging behaviour) and black doted
lines indicate thatHLfatigue is high (resting behaviour).

released more frequently than the hormone related to the
charging behaviour. It is important to highlight that the
charging behaviour not only grows faster than the resting
behaviour but also is encoded as a priority on the EAHS.
Furhermore, even with the charging being prioritized by the
system’s rules, evolution drove the system towards a new
sequence of behaviours, i.e. resting more often than charging.
Although more experiments have to be carried out in order
to see whether this difference is solely due to the difference
on the fitness criteria.

B. Experiment 2

Considering the same evolved genotype of both best
individuals, theβ parameter (associated with the internal
state growing rate) is altered in a way that both hormones are
released at the same time, creating a conflicting situtation.

According to the pre-defined rules, this new scenario would
require the system to prioritize the charging behaviour.
Moreover, the environment is changed by repositioning the
light source (or resting area) against one of the walls of the
arena at the right-hand side, aiming at preventing the robot
from facing the light by chance. Therefore, this experiment
promotes a disruption in the system thus causing conflicting
behaviours to occur in parallel (it changes the value of bothβ
parameters, simulating a faster battery discharge and a faster
need for resting) as well as a change in the environment.

The new values for the IS growing factors are defined as
follows according to each fitness function:

• φ1 - βfatigue = 0.008, βhunger = 0.008;
• φ2 - βfatigue = 0.008, βhunger = 0.013.

Figures 5(a) and 5(c) present the EAHS variables dynam-



ics and Figure 5(b) and 5(d) show the robot trajectories for
each of the fitness functions,φ1 andφ2, respectively.

Similar to what was observed in the previous experiment
(Figures 4(a) and 4(c)), the hormone associated with the
resting behaviour is produced before the hormone associ-
ated with the charging behaviour (Figures 5(a) and 5(c)).
However, However, due to the altered environmental char-
acteristics, the robot needs to explore more (i.e., behaviour
associated with network N1) while searching for the resting
area (i.e. the light source). Meanwhile, the hormone associ-
ated with the recharging behaviour is released as well and
starts to grow. As a result, the robot starts searching for
the battery charging area. When it finds and approaches it,
HLhunger decreases and then the robot is able to continue to
seek and approach the resting area, signalled by the decrease
of HLfatigue.

The experiments have shown that the proposed multi-
hormone EAHS is able to successfully coordinate a multiple
and conflicting behaviours task, being also robust enough to
cope with internal and external disruptions.

V. D ISCUSSION ANDFUTURE WORK

Relatively recent findings in neuroscience speculate that
the nervous system builds upon coordination of previous,
simpler behaviours, incrementally increasing its complexity
[25]. In this sense, the present work is a step towards
the development of a biologically inspired system for the
coordination of multiple and possible conflicting behaviours,
employing a multiple hormone and hormone receptors ap-
proach to the coherent coordination of three previously
evolved NSGasNet artificial neural networks.

Each NSGasNet has a different evolved behaviour, N1
performs exploration and obstacle avoidance, N2 moves the
robot towards a black stripe in the arena and N3 performs
phototaxis. The artificial endocrine system then affects each
network output, based on hormone and hormone receptor
levels, which reflect the agent’s internal and external state.
It is important to stress that the evolutionary process is
responsible for setting how hormones are produced as well
as their half-lives, allowing the system to self determine the
resulting behaviour of the robot.

Two different fitness functions were proposed to evaluate
the agent. The results indicate that the system robustly
evolved under both functions and was able to perform well
after being submitted to internal and external disruptions.
It has been shown that the coupling between hormone
production and hormone receptors is vital to successfully
coordinating the multiple conflicting NSGasNet behaviours,
hence driving the robot to charge and rest when necessary.

We are currently investigating whether there is a fitness
correlation to the evolved behaviour in an attempt to obtain
possible insights on its implications to the diversity of
solutions obtained and the global performance of the system.

Future work would include the development of a mech-
anism to automatically establish the rules of interaction
between hormones and receptors, continuing the endeavour
for the development of homeostatic robot controllers able to

deal with conflicting and unforeseen situations in dynamical
environments.
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