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Abstract. We describe a comparison between Simulated Annealing
(SA), Dispatch Rules (DR), and a Coevolutionary Distributed Genetic
Algorithm (DGA) solving a random sample of integrated planning
and scheduling (IPS) problems. We found that for a wide range of
optimization criteria the DGA consistently outperformed SA and DR.
The DGA finds 8-9 unique high quality solutions per run, whereas
the other techniques find one. On average, each DGA solution is 10-
15% better than SA solutions and 30-35% better than DR solutions.

1. Introduction
This paper describes a comparison of SA, DR, and a Coevolutionary DGA
applied to a highly generalized class of job-shop scheduling problems.
These problems involve the simultaneous optimization of a number of
flexible manufacturing plans. The application of Coevolutionary GAs to
this class of problems has been investigated in [Husbands P and Mill F,
1991, Husbands P, 1993]. Prior to that Khoshnevis and Chen used DR to
solve problems from a restricted subset of the class [Khoshnevis B and
Chen Q, 1990]. Recently Palmer applied SA to a range of industrial
problems of this sort [Palmer G, 1994]. To date the relative performance of
all three approaches has not been measured. In his Ph.D. thesis Palmer
[Palmer G, 1994] detailed algorithms for generating random IPS problems.
He used these to compare his SA method with Khoshnevis and Chen’s
approach on sets of 100 industrially realistic problems.

A comparison of the results obtained with a coevolutionary DGA with
those in Palmer's thesis is reported here. His problem generation
algorithms have been reimplemented, as have his evaluation criteria:
makespan, mean flow time, total tardiness and proportion of tardy jobs.
The coevolutionary approach was found to significantly outperform the
two other techniques on all these measures. This work involved adapting
an earlier ‘ecosystems’ model of integrated production for use with a new
set of problems and cost functions. This turned out to be relatively
straightforward, supporting the claim that the coevolutionary model is
very general [Husbands P, 1993].
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Section 2 explains IPS more fully, followed by an overview of each
technique used in this study. Problem, cost function and implementation
details are then given before the results of the comparison are presented.

2. Integrated Manufacturing Planning and Scheduling
The traditional academic view of job-shop scheduling (JSS) is shown in
Figure 1 [French S, 1982; Zweben M and Fox M, 1994]. A number of fixed
plans, one for each component to be manufactured, are interleaved by a
scheduler so as to minimize some criteria such as total schedule length.
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A problem that would often be more useful to solve is that illustrated in
Figure 2. Here the intention is to optimize the individual manufacturing
plans in parallel, taking into account the numerous interactions between
them resulting from the shared use of resources. This is a much harder
and far more general problem than the traditional JSS problem.

In many manufacturing environments there are a vast number of legal
component plans. These vary in the number of manufacturing operations,
the ordering of the operations, the machines used, the tool used for an
operation and orientation of the work-piece (setup) given the machine and
tool choices. All these choices are subject to constraints on the ordering of
operations, and technological dependencies between operations.
Optimizing a single process plan is an NP-hard problem [Husbands P and
Mill F, 1991]. Optimizing several in parallel requires a powerful search
technique. It is this class IPS with which we are concerned.

3. Approaches to Integrated Planning and Scheduling.
Section 3 reviews the three approaches to IPS investigated in this study.

3.1 Simulated Annealing

SA is a stochastic search technique fully described in the literature [Aarts
E and Korst J, 1989; Kirkpatrick S, Gelatt C D, Vecchi M P, 1983]. By
sometimes allowing temporary jumps to worse solutions using the
Boltzman  distribution the technique tends to avoid local minima.

Fig 1: Traditional Scheduling Fig 2: Emergent Scheduling



In order to apply SA to a problem it is necessary to have a solution
representation and a set of operators to move from the current solution to
new candidate solutions. Palmer chose to represent solutions to the IPS
problem as digraphs [Palmer G, 1994]. Such a graph is shown in Fig 3
and the schedule it represents is shown in Figure 4. The solid arrows
represent ordering constraints between operations and the shaded arrows
represent particular linearisations of the process plans which are
combined in parallel to form the overall schedule.

Figure 4: Gantt Chart of Schedule

He implemented three plan change
operations. Each of these respected
problem ordering and operation-
machine combination constraints:
reverse the order of two sequential
operations on a machine; reverse
the order of two sequential

operations within a job; change the machine performing an operation.
Each move was generated by one randomly chosen operator from the set
above. The annealing schedule reduced the temperature by 10% every 10N
moves, or after N moves without any improvement since the last drop in
temperature, whichever came first. N is the number of problem variables.

3.2 Khoshnevis and Chen's Dispatching Rules Approach

Dispatching (priority) rules are a popular heuristic used in constructing
schedules in classical JSS problems [French S, 1982]. Typically used
within simple constructive search algorithms to choose the next operation
to process, the most common are: SPT, Shortest Processing Time; FCFS,
First Come First Served; MWKR, Most Work Remaining; LWKR, Least
Work Remaining; MOPNR, Most Operations Remaining; RDM, Random.

[Khoshnevis B and Chen Q, 1990] use a dispatching rule based on slack
time (the difference between time remaining to due date and anticipated
total process time). Whenever a machine becomes available, the job chosen
to be processed next is the one with least slack time (LST). Their approach
allows process plan flexibility in the order of operations within a job and

Figure 4: Digraph  Representation of Schedule 
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the machine chosen for each operation. In order to decide between
candidate operation-machine combinations in the next job to be processed,
they use the SI (Shortest Imminent processing time) rule. Thus the IPS
problem is tackled using a LST rule to choose between jobs, and the SI
rule to choose an operation-machine combination within a job.

3.3 Distributed GAs & the Coevolutionary Ecosystem Model

The DGA model is fully described in [Husbands P, 1992; McIlhagga M,
Husbands P, Ives R, 1996]. In the basic DGA [Collins R and Jefferson D,
1991] a population of chromosomes is kept in a non-ordinal data structure
similar to that of a traditional GA [Goldberg D E, 1989]. However a
landscape grid (a 2D torus) is maintained, allowing geographically local
selection and replacement strategies. That is, members of the population
mate with other members nearby on the 2D grid and their offspring are
placed in the same ‘neighbourhood’. The advantages of a DGA are: low
variance in best solutions found over multiple runs; high variance in good
solutions represented in the population at the end of a run; better quality
and quantity of solutions found and faster decent to very good solutions
[McIlhagga M, Husbands P, Ives R, 1996; Collins R and Jefferson D, 1991].

In the ecosystems model for
handling the IPS problem, a
number of different species
coevolve on the 2D grid. Each
cell on the grid contains one
member of each  species. This
is illustrated in Fig 5. The
genotype of each species
represents a plan for a
component to be
manufactured in the machine
shop. Separate populations
evolve under the pressure of

selection to find near-optimal plans for each component. However, their
costs account for shared resources in their common world (a machine shop
model). This means that without the need for an explicit scheduling stage,
a low cost schedule will emerge as the plans are being optimized.
Manufacturing data is used to randomly construct populations of plan
structures, one for each component. Arbitrator chromosomes, who resolve
conflicts between members of the other populations, are an important part
of this model—their fitness depends on how well they achieve this. Each
population, including Arbitrators, evolve under the influence of selection,
crossover and mutation [Husbands P, 1993].

Selection works by using a ranking scheme within a 12 chromosome
neighbourhood: the fittest individual is twice as likely to be selected as the
median. Offspring replace individuals from their parents' neighbourhood.
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Fig 5: Distributed Set of Species



Replacement is probabilistic using the inverse scheme to selection. Genetic
material remains spatially local and a robust and coherent coevolution
(particularly between Arbitrators and process plans) is allowed to unfold.

The cost, hence selection, functions for plan organisms involve two
stages: i) population specific criteria (machining costs), and ii) takes into
account interactions between populations. Arbitrators are only evaluated
at the second stage, their fitness depending on how well they reduce
conflicts between plans. The second stage of the plan cost function involves
simulating the simultaneous execution of several plans, one for each
component manufactured. These plans (plus an Arbitrator) are taken from
the same cell on the grid—an important factor in allowing coherent
coevolution. Any waiting time due to interactions between plans (resource
conflicts) are added to manufacturing costs to give the total plan cost.

4. Description of the Problems
The test problems were generated from data collected from David Brown
Vehicles Ltd. [Palmer G, 1994]. The statistics shown later are mean
figures taken from 100 sample problems. A problem is a number of jobs (1-
14), each of which requires a plan scheduled for a specific shop-floor. A job
represents the manufacture of one or more identical parts which (usually)
remain together as they move through the shop. Each part can have 1-14
processes. A process plan may be either fixed or flexible, it describes the
processes that are carried out (including possible ordering constraints) for
a specific set of features to appear on a work piece. The shop-floor does not
alter between problems. It comprises 25 machines which vary in the
number and diversity of processes that they can carry out.

Each plan is generated from a representation of a part (descriptions of
its features and operation order constraints) and the possible processes
that can generate those features on the work-piece; in this case there are
1-2 processes per feature. Most can be carried out on a large selection of
machines, greatly increasing the search space for this IPS problem.

4.1 Problem Generation

The problems used were generated according to plan templates as detailed
in [Palmer G, 1994]. A template forms the basis of a job, giving possible
operations, machine options and ordering constraints. The number of
operations for an instance of a job is chosen at random within the limits
defined in the template. The ordering constraints and machine options in
the generated (flexible) plans form the basis for the IPS search space. The
major problem parameters were as follows:

1-14 operations per job (generated at random from a plan template)
5-10 jobs per problem (generated at random)
1-2 applicable methods per operation (generated from a  plan template)



There were 24 available operation methods. The earliest availability date
for each machine was randomly generated from an appropriate range.
Release and due dates, set-up and machine times, were generated in
accordance with lookup tables and random functions [Palmer G, 1994].
Operation times were calculated using the company’s estimation program.

4.2 The Cost Function

In addition, machine utilization, U, for each machine can be calculated:

Where ai is the initial availabe date of machine i.
All of Palmer’s results reproduced here were found using the compound
cost function ‘mean flowtime plus twice the total tardiness’ (MFTT2). The
more distributed coevolutionary GA approach uses slightly different cost
functions. These were adapted from Palmer’s to fit the coevolutionary
architecture. It should be pointed out that results from the two methods
were compared over exactly the same set of statistical evaluation criteria.

Below we show the results for two cost functions used with the
coevolutionary DGA: Grp. and Cont. The difference between these two
costing criteria is as follows. Cont. stands for contribution. Here the plan
chromosomes have a cost that is in part proportional to it’s own efficiency
and in part proportional to the efficiency of the group that is belongs to.
Each cell on the DGA grid contains a single group comprising one unique
plan for each part being planned plus an arbitrator. The evaluation of an
individual may be tardiness or plan cost (includes machine set-up and
machining costs). Grp. stands for group, here each chromosome in the
group is given the same cost: a weighted sum of the efficiency of all of the
chromosomes in a cell. Below, PG and PC are the Grp. and Cont. process
plan chromosomes cost functions respectively. AG and AC are the Grp. and
Cont. arbitrator cost functions respectively.

PC = (flowtime + 2*tardiness)*N (N is No of plans),
AC = total wait time + 2*total tardiness.

The following cost functions can
then be calculated:

• makespan: maxC
• mean flowtime:

F =
1

N
. jF

j =1

N

∑

• total tardiness: jT
j =1

N

∑
• proportion of tardy jobs.

Each job j has the following data
associated with it:
• release date rj
• due date dj
• completion time Cj
• flowtime Fj = Cj - rj
• lateness Lj = Cj - dj
• tardiness Tj = max (0, Lj)
• processing time of job j on machine i,
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5. The Coevolutionary DGA Implementation
Section 5 describes problem specific details of the DGA implementation.

5.1 Plan Encoding

• Each job is encoded in a separate fixed
length of (varies between jobs) chromosome.

• Chromosomes have two sections, the first
deals with method (machine) choices, the
second with sequence (ordering) choices.

• Currently, all methods that do have a
choice have two options and are therefore
represented in binary. Lookup tables
translate these values into a machine
choice. Method choices are held on the
genome in an order which maps to a set of
known operations (1-N).

• For each job, the cost function maintains a
tree containing the space of legal sequences
of operations. Sequence choices on the

chromosome are interpreted as routes down the tree for that job. The default
sequence is always legal, so in cases where the problem description constrains
the genome to only one legal sequence, the sequencing information is implicit.

• The evaluation function is a set of routines that traverse a given tree, following
a given route, returning with a necessarily valid operation sequence.

The sequence choices may be much larger than the method choices,
depending simply on the branch rate of the tree. Thus, a separate data
structure is maintained to hold the maximum possible value of each gene.
Legal crossover is made trivial with this representation, provided it only
occurs at gene boundaries. Translocation is not possible with this scheme.

5.2 Arbitrator Encoding

An arbitrator is a series of lookup tables, flattened into a bit string, used to
resolves resource (machine) conflicts between different plans. The Nth

table encodes preference relationships for the Nth manufacturing
operations. Relationships for every possible component pairing are
represented. See [Husbands P, 1994] for details. The event-processing in
the cost function responds to a request for the use of a machine as follows:

1. If machine is unoccupied, provisionally put the operation on that machine.

2. If the machine is already provisionally occupied by another operation, an
arbitrator will decide whether the new operation is placed on the machine
instead, and the first operation placed in a waiting state, or whether the
second operation should wait until the machine is released.

One job per Chromosome
 chromosome

Second section encodes
theoperation ordering choices
0 for left branch &
1 for right branch

1, 9, 5, 7, 3, 8, 2 1, 1, 0

Operation choices code for paths through
the tree where a choice exists

First section Encodes
the machine
choices

Termination

Cost Function
Tree:

m1

m5

m9

m7

m8

m3

m2

Operation  choice

Fig 6: Chromosome



The provisional status of an operation placement is lost when the time in
the event-processing routines reaches the operation completion time. As
operations cannot be performed in part, an operation taken off a machine
is said to have been waiting all along. No consideration is made for the
time an operation has provisionally occupied a machine when conflict
arises. The binary table encodes which of the two plans wins machine-use.

6. Results
The results for the SA and dispatch rule algorithms presented here are
reprinted from [Palmer G, 1994]. Due to time constraints, we chose not to
re-implement these algorithms. The results in [Palmer G, 1994] show the
mean results over a set of 100 problems. Here we present our results along
side those shown in his thesis. Statistics were derived from 100 problems.
The number of objective function calls per run was 525,000.

Algorithm Make
span

Proportion
Tardy

Total
Tardiness

Total Time
Machining

Machine
Utilization

Mean
Flowtime

GPDGA cont 81.22 0.14 5.84 171.75 0.18 34.86
GPDGA grp 80.40 0.15 5.47 172.23 0.18 34.63
SA 89.09 0.18 8.87 191.22 0.18 36.10
DR 95.96 0.31 30.28 218.13 0.19 41.37

Table 1: Problem Set Comparison Over Assorted Cost Functions

The DGA outperforms SA and DR for all
optimisation criteria (Table 1). Mean
improvements over SA, averaged over all
optimization criteria (not machine
utilization), were 16.58% and 15.75% for
GPDGA cont. and grp. respectively. The
mean improvements over DR, averaged
over the optimization criteria, were

37.60% and 39.00% for GPDGA cont. and grp. respectively. See section 4.2
for an explanation of the two GPDGA cost functions. The DGA performs
≈1% better when the cost function reflect the efficiency of an individual
and not just the group that it came from.

One advantage of using the coevolutionary DGA over SA is that in one
run it is capable of generating more than one solution to the problem at
hand. Table 3 shows the mean number of chromosomes within 5% of the
best found. The figures are averages over 100 problems. The data is taken
from the same set of experiments used to generate Table 1. This
emphasizes the fact that the DGA is not only finding good solutions to  an
NP-Hard problem, but is finding multiple different near optimal solutions.
It is impossible to make a detailed comparison of the solutions found by
different techniques (other than mean costs over 100 problems) because
Palmer does not include problem solutions in his thesis [Palmer G, 1994].

Objective
function:

CONTRIBUTI
ON, GROUP

popsize: 1500.
Evaluations
per problem:

525,000 (1.5
hours on an
Sparc ipx).

Table 2: Parameters



Further analysis indicated the
presence of a few aspects which
significantly swung the results
for the Total Tardiness criterion.
These occur in cases where a
problem includes a number of
plans generated from the same
templates-section. In such cases,

the due-dates turn out to be similar for a number of jobs which largely
demand the same machines (i.e. the method flexibility required to avoid
waiting-times turns out to be particularly limited). Because there are 14
job-types, and 5-10 different jobs per problem, the probability of getting
three or more jobs from the same job-type class is ≈0.071 (given 105 jobs,
an average of ≈7.5 jobs would be the same as at least two others). This
aspect adds to the difficulty of the problem by making the total tardiness
hard to minimize. Table 4 shows the results for two identical DGA runs,
differing only in the problems used: i.e. two different sets of 100 problems.

Algorithm Makespan Proportion
Tardy

Total
Tardiness

Total time
Machining

Machine
Utilization

Mean
Flowtime

GPDGA 1st 62.75 0.18 16.67 112.86 0.16 23.93
GPDGA 2nd 63.50 0.16 12.89 117.22 0.16 23.99
SA 89.09 0.18 8.87 191.22 0.18 36.10
K&C 95.96 0.31 30.28 218.13 0.19 41.37

Table 4: Comparison of Two sets of 100 Problems (GPDGA Cont. cost function)

The results stay reasonably constant except for tardiness factors. Thus the
effect of the MFTT2 in Table 5. This suggests that, although 100 problems
would provide statistical significance for most of the optimization criteria,
the sample may not be large enough to give a fair comparison of tardiness.

7. Conclusions
We found that for all the optimization criteria described in [Palmer G,
1994] the coevolutionary DGA consistently outperformed the SA algorithm
and the DR algorithm. Results suggest that variance in costs due to
sample size should be calculated in this sort of comparative study. It is
clear that some optimisation criteria are more sensitive to this effect than
others. A larger sample than that provided by Palmer would have been
desirable. Both DGA cost function configurations investigated improved on
the performance of the SA by a factor of over 15%, and on the dispatching

rule by more than 35%. The results
suggest that a cost function that
includes factors that are related to both
its individual performance as well as
it’s group performance will outperform,

Algorithm Mean Flow
time + Total
Tardiness * 2

Mean No.
Competing
Solutions

GPDGA Cont. 46.54 8.76
GPDGA Grp. 45.56 9.74
SA 53.84 N/A
DR 101.93 N/A

Table 3: MFTT2 Comparison

Algorithm MFTT2
GPDGA 1st 57.27
GPDGA 2nd 49.77
SA 53.84
K&C 101.93

Table 5: MFTT2



by about 1%, one which only accounts for the group performance. Unlike
the other techniques, the DGA produced a number of unique, high quality
solutions, to the problem on each run (typically 8 or 9).
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