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used both to simplify control problems and to lead to adaptive
reflexive behavior when engaged with the environment in the
sensorimotor loop. By revisiting an experiment introduced by
Beer and replacing the continuous-time recurrent neural network
therein with reservoir computing networks abstracted from compliant
bodies, we demonstrate that adaptive behavior can be produced by
an agent in which the body is the main computational locus. We
show that bodies with complex dynamics are capable of integrating,
storing, and processing information in meaningful and useful ways,
and furthermore that with the addition of the simplest of nervous
systems such bodies can generate behavior that could equally be
described as reflexive or minimally cognitive.

1 Introduction

The importance of embodiment in both generating and understanding adaptive behavior has been
increasingly recognized over recent years [6, 7, 28, 29]. This has resulted in a renewed focus on the
form and function of the body. Repeated successes in the exploitation of inherent, often passive
dynamics in automata and robots have demonstrated that much can be gained, in efficiency and
simplification of control, when body–brain–environment interactions are balanced and harmonious
[24, 15, 32, 36, 31]. Pfeifer and Iida [30] introduced the term morphological computation to refer to the
way in which a judiciously selected body morphology can be shown to simplify the task of a
controller and might therefore be considered to be performing a function analogous to the com-
putational work it renders redundant. An interesting, and as yet underexplored, extension of this line
of thought is to consider how much explicit and active information processing the body might be
capable of, further blurring the line between the nervous system and the body. This article describes
research intended as a first step towards exploring the information-processing potential of networks
of simplified muscle-like units acting within an embodied agent engaged in adaptive behavior. In
this work we follow Hauser et al. [11, 12], who have reframed morphological computation in com-
pliant bodies as a branch of reservoir computing (RC) [22, 20], an approach they demonstrated with
simulations of recurrent networks of mass–spring–damper (MSD) elements.
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The passive dynamic walker [24] is an early exemplar of what later became known as morpho-
logical computation. McGeerʼs automaton was capable of walking down a gentle incline under the
sole force and control of gravity by means of a pendulum-based design. While the walker can only
perform one action, and that only in a narrow niche, it still stands out in that it exhibits action
entirely without control. Since the notion of morphological computation was introduced, the major-
ity of robotic studies in this area have been in a similar vein and have focused on minimization of
control and increase in robustness via the exploitation of carefully designed bodily dynamics. Often
this is achieved by designing the robot morphology to be both compliant and self-stable [15, 30, 31].

An issue still at large is whether what is referred to as morphological computation should prop-
erly be considered computational. The basis of morphological computation is not formal logic, nor,
except in special and rare cases [27, 33], does it operate in a binary domain. It is in no way in keeping
with Turingʼs definition of what is computable and has no affinity with classical automata theory
[10]. However, running parallel to what has, perhaps irreversibly, become the mainstream of comput-
ing is a tradition of analogue computing [21, 18]. For decades, analogue computation was the only
feasible option for the simulation and control of complex systems in applications such as aeronautics
and space flight [18]. In general, analogue electronic computers are dynamical systems and therefore
suitable for the simulation and control of other dynamical systems. We believe that morphological
computation, as first presented by Pfeifer and Iida [30], is of the same kind and so legitimized as
computational as long as it is clear which tradition we refer to. In fact the name “analogue electronics”
is derived from analogy, due to the isomorphism between a mass–spring–damper system and an RLC
electronic circuit (a circuit including a resistor, capacitor, and inductor) [18, 1]. Therefore there is a direct
connection between an MSD network and the very origin of analogue computing. In the remainder
of this article, where we use the word “computation,” we will be referring to analogue computation.

Hauser et al. [11] presented networks of mass–spring–damper elements, and showed that with
the addition of a simple linear readout, theoretically consistent with reservoir computing, these
spring networks can perform complex computation requiring nonlinear transformation and inte-
gration, such as the approximation of filters and inverse kinematics for robot control. These net-
works are of special interest because they are physically realizable and because of their similarity to
biomechanical muscle models [13, 9, 2].

In Hauser et al. [12] it was further shown that when the model was extended to include a feedback
loop, the networks could be trained to perform pattern generation without the need for external stim-
ulation. Nakajima et al. [26] extended the spring network to a biologically inspired three-dimensional
structure, and it was shown that this body could also approximate filters and generate limit cycles.
Finally, Zhao et al. [36] replaced the spring network with the body of a spine-driven quadruped robot,
referred to as Kitty, and used it to generate both locomotion and its own control signals. This robot
stands out because the reservoir consists of force sensors embedded within the spine—the element
of the body that is actuated—thereby negating any meaningful distinction between body and control.

In the above examples, morphological computation has been demonstrated to make difficult problems
such as locomotion both easier and cheaper. However, filtering, pattern generation, and gait control have a
character that ismore automatic than intelligent. For example, although different gaitsmay be programmed
into Kitty, it is still essentially an automaton—its gait may be robust to some variation in the environ-
ment, but it is incapable of responding to any stimuli that do not reach its proprioceptive force sensors.

We will show that morphological computation can go further. If continuous-time neural net-
works (CTRNNs) [35], GASNets [14], and other dynamical neural models can generate adaptive
behavior, then why not these dynamical networks also? And if these networks, constructed of
muscle-like units, can do so, then we are led to interesting speculations about the extent of muscle
properties in determining behavior, rather than merely being in the service of a central controller.

In order to test whether MSD networks can generate adaptive behavior, we selected an exper-
iment introduced by Beer [3], in which an agent controlled by a small CTRNN was shown to be
capable of discriminating between objects of different shapes through active perception. We replaced
the bilaterally symmetric CTRNN used by Beer with a symmetrical pair of MSD networks. Previously
the minimal cognitive aspect of the task had been made much of [4, 8, 25]. We consider this a point
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well enough made, and approach the experiment from a specifically morphological computation point
of view. The MSD network is essentially an abstracted passive compliant body, and the readout can be
interpreted as analogous to either a primitive or a peripheral nervous system. In this context we con-
sider the behavior exhibited by our agents as being of the reflexive variety, with the choice made by
the agent being to either initiate escape behavior or not, in response to different patterns of stimuli.

In the rest of the article we show that we can evolve MSD networks that are capable of gen-
erating adaptive behavior, and through a number of analyses we show that, in principle, bodies are
capable of integrating, storing, and processing information in meaningful and useful ways. In what
follows it will be made clear that the domain of MSD networks affords a broad variety of behaviors
for this task and that the evolutionary process exploits an informational structure in the agentʼs
visual field. However, we will also demonstrate that a distinction must be made between the quantity
and quality of information. We will close with an examination, using perturbation and lesion tests,
of how the networks actually perform their function, and with case studies of two controllers that
generate behavior that is representative of the two far ends of the observed behavioral spectrum.

2 Methods

2.1 The Experiment
The simulated experiment is closely based on that described by Beer [3, 4]. The required behavior is
to dynamically discriminate between a circular object and a diamond-shaped object. Discrimination
is manifested as catch and avoidance behaviors for circles and diamonds, respectively (see Figure 1
for a depiction of the agent and its controller ).

The arena is a rectangular area 200 wide by 275 high. Circular objects are of diameter 30, and
diamonds have side length 30. Objects fall straight down from the top of the arena towards the
agent with speed 3. In theory both behaviors are tested at 24 equispaced points in the x-axis interval
[−50, 50]. However, the use of a symmetrical controller means that only the left-hand 12 tests need
be conducted, as behavior on the right-hand side of the arena is identical to that on the left. The
agent has an antagonistic motor pair aligned with the horizontal axis. The network outputs set the
two motor speeds, and the agentʼs horizontal velocity is the sum of the two opposing motor out-
puts. The transfer function for the motor pair is given by

5 j Nr þ uð Þ−j Nl þ uð Þ½ � (1)

j xð Þ ¼ 1= 1þ e−xð Þ (2)

where Nl and Nr are the outputs from the left and right MSD network readouts, respectively, and
u is a constant that biases the motor activation points. Due to the use of the logistic function j,
each motor saturates at 0 for its minimum and 1 for its maximum. This, together with the use of
a multiplier of 5 on the result of the sum, specifies a horizontal velocity in the range of [−5, 5].

The agentʼs sensors are seven rays uniformly spaced across an angle of k/6 and centered about
the vertical axis. A sensor is activated if the sensor ray intersects an object. The sensor transfer func-
tion, I, is an inverse linear one between the distances of 220 and 0, with its output in the range [0, 10].
Objects are not detected beyond distances of 220. To reduce evaluation time, the sensor model was
used to construct lookup tables, which were then used in the simulation. The sensor neuron activa-
tions lag behind the values of the linear function, as determined by the sensory layer function:

Hi _si ¼ −si þ Ii x; yð Þ; i ¼ 1;…;7 (3)

where s is the sensor neuron activation, H is the time constant for the sensor response, I is the
sensor function, and (x, y) is the vector from sensor to object.
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Network states, sensor activations, and the position of the agent are all integrated using forward
Euler integration. As in Beerʼs original experiment, an interval of 0.1 is used to integrate sensor
activations and the agentʼs position. In their experiments Hauser et al. used an interval of 0.001
and made use of a solver function to integrate the spring network activity. However, the computa-
tional cost of such an approach is prohibitive when evaluating large numbers of candidate controllers
in evolution, so a compromise was made here. We found that an interval of at most 0.01 is required to
achieve stability in the network model with the parameters used here, so the spring network is inte-
grated 10 times for each 0.1 interval.

2.2 Mass–Spring–Damper Networks
Although the elements in these networks are in fact modeled mass–spring–damper systems, for the
sake of convenience they will henceforth be referred to simply as springs.

The spring networks used here are based upon those in Hauser et al. [11] (Figure 2). The springs
are connected to each other in a two-dimensional plane. Effects such as gravity and friction are
neglected in order to simplify the model. The two outermost nodes on a selected axis are fixed
while the rest move freely. A subset of the free nodes receive inputs in the form of applied forces.
Input forces are applied along a single axis, although this is also for simplification and is by no

Figure 1. The agent–environment coupled dynamical system. The agent in the environment, including falling objects, is
shown in the panel, and the connected controller is shown below. The agent moves left and right, to catch objects that
are circle-shaped and avoid those that are diamond-shaped. Falling objects are detected by seven sensor rays. Seven
sensor neurons each receive an input from a single sensor, and output to a single node in the MSD network. The
weighted sum, �, of the network spring extensions, and in some cases also the spring extension velocities,
represents a networkʼs output. That output is passed through a motor neuron with a sigmoidal transfer function, j,
followed by a gain of 5. An identical pair of networks receive their inputs from the sensor neurons in reverse order to
one another, and the output of each drives one of an antagonistic pair of motors. Note that the circle-shaped object,
shown superimposed on the diamond-shaped object, is narrower than its counterpart from the agentʼs point of view.
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means a requirement of the model. Reservoir elements were modeled as nonlinear springs, defined
by the state equations:

x2 ¼ _x1 (4)

p x1ð Þ ¼ k3x
3
1 þ k1x1 (5)

q x2ð Þ ¼ d3x
3
2 þ d1x2 (6)

_x2 ¼ −p x1ð Þ− q x2ð Þ þ u (7)

where x1 is the spring extension, k1 and k3 are linear and nonlinear stiffness coefficients, respec-
tively, d1 and d3 are the corresponding damping coefficients, and u represents an input unused in
this experiment. In this work we followed the network model of Hauser et al. [11] in all respects,
except that the above nonlinear spring model was not used in all networks. In some networks a
linear second-order spring model was used, with the state equations

x2 ¼ _x1 (8)

_x2 ¼ − k
m x1− d

m x2 þ 1
m u (9)

where k is a stiffness coefficient, d is a damping coefficient, m is the mass on the end of the
spring, and, as in Equation 7, u is an unused input term. For convenience all nodes are given
m = 1 kg. This means that, from Newtonʼs second law of motion F = ma, forces and acceler-
ations may be treated as equivalent in this network model and Equation 9 is simplified to a form
similar to Equation 7.

At the beginning of each simulation step the spring extensions are obtained by calculating the
distances between the nodes they connect. The rates of change of spring extensions are estimated
by the difference between the current extensions and those at the previous step. From these states
the instantaneous forces applied to the nodes by the springs can be found, by the use of either
Equation 7 or Equation 9. The spring forces and input forces are then summed for each node,
and the node positions are updated by integration of the resultant accelerations. Inputs are applied
to nodes as vertical forces, as shown in Figure 2. In this experiment each network had a total of nine
nodes, with two fixed nodes and seven free nodes, which each received an input from one of the

Figure 2. AnMSD network . The nodes of the network are point masses, connected by parallel springs and dampers. The twomost
distant nodes, marked with squares, are fixed, while other nodes are free to move. Inputs to the network take the form of forces
applied to all or a subset of the free nodes, parallel to the vertical axis. (Dampers and some springs and nodes are omitted for clarity.)
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sensor neurons (Figure 1). An untreated input range of [0, 10] from the sensor neurons was found to
give poor results, and so the sensor neuron outputs were scaled and shifted to be in the range [−0.5,
0.5]. The spring network output is a weighted sum of the extensions of all springs in the network,
and in some cases also the extension velocities. There are two departures from Hauser et al. [11]
here. We use the spring extension in the output sum, where they used the overall length, and we
added extension velocities as a computationally cheap way to potentially increase the information
encoded in the network output. The outputs of the two networks are fed into the motor function
(2) in the same way as the CTRNN motor neuron outputs were in Beer [3]. The CTRNN controller
in Beer [3] was bilaterally symmetric. In this case symmetry of control is achieved by having two
identical networks of springs, one of which receives its inputs from the sensory neurons in the re-
verse order to the other. The CTRNN controller consisted of a layer of five fully interconnected
recurrent interneurons, and two feedforward motor neurons. The spring network pair replaces these
seven neurons.

2.3 The Evolutionary Search Algorithm
Some network parameters are generated randomly, and others are set through a search with a macro-
evolutionary algorithm (MA) [23]. The MA was selected over a genetic algorithm (GA) because it
was found to be less prone to premature convergence to local optima in the search space for this
task. In short, whereas a GA models microevolution, with individual pitted against individual, the
MA models macroevolution, at the level of species. Each member of the population of the MA is a
species, and selection proceeds not just based on fitness, but also on the similarity between the
species. Essentially, the more similar a pair of species are, the more they are in competition. On
every generation a matrix is built of the scores of all members of the population against each other,
using the following function:

Wi ; j ¼ f ð piÞ − f ð pj Þ
pi − pj
�� �� (10)

where Wi, j is the score for individual i against individual j, pi = ( pi
1,…, pi

d ) are the genes of the i th
individual, and f ( pi) is the fitness of the phenotype that is mapped from pi. The overall score for a
species is the sum of its scores against all other species, and all species with a negative total score
become extinct. This means that the number of evaluations per generation is dynamic; often as
small a proportion as around 1

4 of the population will be selected for replacement.
With probability H, an extinct species pi is replaced with a randomly generated one. Otherwise it is

replaced with a species recombined from the genes of the extinct species and a randomly selected
survivor, pb. The function for replacement by recombination is

pi t þ 1ð Þ ¼ pb tð Þ þ UE pb tð Þ − pi tð Þ½ � (11)

where E 2 [−1, 1] is selected randomly, and U sets the radius around the extinct species in parameter
space for placement of the new species.

The algorithm was implemented as described in [23], except for the setting of the two dynamic
constants, U and H. The genetic radius for reproduction, U, was set by the function U = 0.3(1 − fmax ),
where fmax is the current maximum fitness, subject to a minimum value of U = 0.1. The temperature
parameter H was set by the function H = (1 − fmax ), subject to a minimum value of H = 0.2. In
addition, a constraint was set such that at least one of each generational offspring was randomly
generated, in order to promote diversity in later stages. For the same reason, a mutation operator
was added such that on average one gene per genotype would be mutated. Mutated genes are moved
by a random amount drawn from a uniform distribution in the range of ±10% of the total genetic
interval with a probability of 0.9, and replaced with a random value from a uniform distribution
across the entire range of the gene with a probability of 0.1.
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A single network topology generated at random at the beginning of each run of the MA is
employed by all members of the population. The node coordinates are generated randomly in an
area 10 × 10, and then connected with springs by the use of a Delaunay triangulation [19]. The use
of this triangulation method tends to maximize the triangle angles, but also leads to a variable num-
ber of springs in the network. Parameters that may be determined by the search are: spring coeffi-
cients for stiffness and damping, weights on the sensory inputs to the networks, weights on the
spring states for the linear readout, feedback gains, and the bias term for the motor function in
Equation 2. All parameters are evolved as double-precision real numbers in the interval [0, 1] and
scaled to appropriate values in the genotype-to-phenotype mapping. Genotype length is highly vari-
able, as will be explained in Section 3.

For the purpose of evaluation, the horizontal distance di between the agent and the object is
clipped to a maximum of 45 and then normalized between 0 and 1. Hence for a catch trial the
controller scores 1 − di , and for an avoid trial di . The final score for a controller is the mean of
its individual trial scores. The horizontal distance is clipped to prevent success in one behavior from
dominating a controllerʼs score at the expense of the other.

The MATLAB IDE (The Mathworks, Inc., Natick, MA) was used for all aspects of agent
simulation, evolution, and later analysis.

3 Results

In this section we will look more closely at the means of setting the parameters of the networks and
their readouts. In the reservoir computing paradigm, network parameters are typically generated
randomly and only readout weights are adapted. However, because the networks used here are much
smaller than is usual, it was not immediately obvious whether the same template should be followed
here or whether all available parameters should be placed under evolutionary control. We will begin
by describing the options we built into the process to be able to find an answer to this question,
and then follow with a record of refinements, which ultimately led to a much improved success rate.

A set of controller features may be enabled or disabled at the beginning of each evolutionary run. These
features are: whether to use the linear or nonlinear springmodel, whether to use spring extension velocity in
the linear readout, whether to evolve real-valued weights on the inputs or to use random integers, whether to
use a single random set of spring parameters across the population or to evolve those parameters, whether to
employ node position feedback, and whether to evolve or to use a constant value for the motor bias in
Equation 2 (Table 1, column 1). The ranges of all evolved parameters are given in Table 2.Due to the use
of different configurations of which features to evolve, and because the use of theDelaunay triangulation
leads to a variable number of MSDs in the network, the genotype length is highly variable. Approximate
lengths for some configurations that led to a number of successful controllers are given in Table 3.

When node position feedback is employed, it is applied as an xy force vector based on a nodeʼs
displacement from its resting position. Where the motor bias is not evolved, a constant value of
2.5640, taken from a successful CTRNN controller that was found when developing the simulation,
is used. Where input weights are not evolved, one set of weights is randomly drawn from the set
{−1, 1} and applied to the entire population. These unit weights are of both signs in order to avoid
the entire network being pushed in a single direction. When spring parameters are not evolved, they
are randomized as reported in Hauser et al. [11]. Briefly, nonlinear spring coefficients are drawn
from a uniform distribution in the interval [100, 200], and linear spring coefficients are drawn from
a log-uniform distribution in the interval [1, 100]. The use of the log-uniform distribution biases
samples towards the lower end of the interval.

It was initially unclear which configuration of features was most appropriate, so a set of 20 evo-
lutionary runs, each with a single randomly generated configuration applied across the population,
was executed. A population of size 400 was evolved over a short run of 100 generations. While the
MA favors larger populations, note that the proportion of the population replaced, and therefore
requiring evaluation, is variable and typically much less than the population size. A success threshold
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of ≈98% of the perfect score was determined to be sufficient to ensure the correct behavior for
all trials, and 5 out of 20 runs resulted in viable controllers. Table 1 shows the configurations of
these 5 controllers. Although this is a small set of results, the variety is striking—the configurations
of controllers A and E are similar, but otherwise there is no evidence of a particular configuration
that is required for success. However, it can be seen that the use of velocity in the linear readout is
favored, being used in 4 out of 5 controllers. Of the remaining features, only whether or not to
evolve the motor bias stands out, being selected in only one result.

Table 1. The first winning combinations discovered.

Controller A B C D E

Fitness(%) 99.6 98.9 99.5 98.4 97.8

Number of springs 20 18 18 18 18

Velocity 1 1 1 0 1

Weighted inputs 1 0 1 1 1

Evolved springs 1 0 0 0 1

Nonlinear springs 1 0 0 1 1

Bias motors 1 0 0 0 0

Feedback 0 1 0 1 1

Notes. The features of velocity in the readout sum, weighted inputs, evolved springs, nonlinear springs, evolved motor
function bias, and node position feedback are all optional. 20 evolutionary runs of 100 generations with a population size of
400 were run with random selection of optional features. Five runs generated successful controllers, each with a unique
configuration.

.

Parameter Lower limit Upper limit

Position −10000 10000

Velocity −10000 10000

Input weights −2 2

Linear stiffness coefficients 1 100

Linear damping coefficients 1 100

Nonlinear stiffness coefficients 100 200

Nonlinear damping coefficients 100 200

Motor function bias −5 5

Feedback gains −1 1

Table 2. Limits placed on evolved parameters for configurations A through E.
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Following these results, a further 20 evolutionary runs were executed with the configuration of
controller A, selected because it gives the highest-dimensional search space without using feedback.
While in many search algorithms increasing dimensionality is a problem, in evolutionary algorithms it
can be advantageous in that it may introduce more pathways to success [5]. Runs continued until the
search could be seen to have either succeeded or effectively halted at a local optimum, up to a
maximum of 1000 generations. In this case only four runs met the success criterion, but the average
fitness was high, as can be seen in Table 3.

Sets of evolutionary runs with configurations based on that of controller A were later conducted in
an attempt to improve upon the evolutionary success rate of configuration A (Table 3). The first set
of 20 was with a configuration, referred to as J, which had the input weight range doubled to [−4, 4].
This change was based on an observation that controllers that just failed to succeed always did so
because they did not respond correctly to the most distant falling objects, which are initially detect-
ed only by the outermost sensors, and only briefly so if the correct response is not immediately
produced. Adjusting the range of sensory weights seems to have made it possible for agents to
respond more strongly, and correctly, in these most difficult trials. The configuration of the second
set of 20, referred to as S, was based on configuration J, but in this case spring parameters were not
evolved and spring velocities were not used in the readout. This process is more faithful to the res-
ervoir computing paradigm, and was surprisingly successful given the low dimensionality for control-
ler tuning. The final set of 20, referred to as W, was also based on configuration J, but was modified so
that instead of each sensory input driving only a single node in each MSD network, each free node
received a weighted input from every sensory neuron.

The boxplot in Figure 3 shows the distribution of fitness scores found for the four sets of evo-
lutionary runs. Configurations J, S, and W are all more successful than A in terms of mean fitness.
This plot by itself makes J and W look strongest, but when we look at other statistics, such as the
number of runs that succeed according to the 98% criterion, and how long it takes to obtain those
successes (Table 3), a slightly different picture is painted. Configuration S, perhaps because it has a

Table 3. Statistics of evolutionary runs for configuration A and derived configurations.

Configuration A J S W

Number of genes (approx.) 120 120 26 160

Mean fitness 0.93 0.95 0.95 0.96

Percentage of results with fitness >0.98 20 35 50 35

Mean time to success (generations) 243 390 288 271

Notes. The statistics are calculated from the results of 20 runs for each configuration.

Figure 3. Fitness distributions for controllers with configurations A, J, S, and W, over 20 evolutionary runs for each
configuration.
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far smaller search space than all others, has a 50% success rate, considerably the best of the four.
The reader will be reminded that the proportion of the population replaced in every generation
varies, so not much can be drawn from the mean time to success for all configurations, but they
seem comparable. It may be that a further improvement may be made by merging configurations
S and W, which will still give a relatively small search space, although with the advantage of a number
of weights to be tuned for each input. However, we have yet to see how the various configurations
cope with evolution in noisy conditions, which will be the ultimate test. We have also yet to conduct
a proper investigation into the best evolutionary algorithm for this task.

In summary, a number of different configurations of MSD networks and network layouts (Figure 4)
have proven effective. Interestingly, there is also considerable variety in the behavior of success-
ful controllers, and, from a high-level point of view, various strategies are possible. Broadly speak-
ing, three distinct strategies have been observed. In Figure 5 we show an example of each. The
individual graphs plot the horizontal distance between agent and object over time. When the agentʼs
behavior is viewed from this perspective, it can be seen that controller A inches towards objects
until it can distinguish between them, controller A5 finds objects quickly and then oscillates around
their position until making a decision, and controller A1 scans back and forth.

Understanding how these different behaviors arise will help us to understand how compliant net-
works can generate adaptive behavior. The following section will thus analyze the behavior of MSD
networks in this task in general, and finally we will analyze two specific controllers in detail in Section 5.

4 Analysis

In order to uncover the principles of operation of successful MSD networks, we conducted a
number of analyses. We test the hypothesis that controllers actively maximize information from
the sensors. We examine the capacity of the networks for memory in order to determine if it is
possible that the agent can integrate the inputs from its sensors over time, and we disrupt the normal
operation of networks in a variety of ways in order to gain some knowledge from the effects.

In all of the following analyses, except that of perturbation analysis, we will examine two results,
for comparison and contrast. The first is controller A, from our first evolutionary run, and is selected
because its behavior is characteristic of the results as a whole. The second, denoted A1, is a result
from an evolutionary run with configuration A and is selected because it is unique: It is the only

Figure 4. Topologies of the first successful evolved controllers. From left to right, the top row shows controllers A, B,
and C, and the bottom row shows controllers D and E. (Dampers and some springs and nodes are omitted for clarity.)
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successful MSD controller that we have yet seen that scans objects in a similar fashion to Beerʼs
CTRNN [3, 4].

Before continuing to more detailed scrutiny of individual controllers, certain observations can be
made regarding the problem and the results in general.

In each trial there is an initial period where the falling object is out of range of the agentʼs sensors.
Because sensory input is normalized and scaled, in this period the sensory neurons receive a constant
input of −0.5. Thus the MSD networks are driven into a biased configuration, which will affect the
response to stimuli from the object when it falls into range. The MSD networks have nonzero out-
put throughout this period, but due to the symmetry of the network pair and the antagonistic motor
configuration, the agent does not move until the object is detected.

In general, as the objects fall towards the agent, the sensory inputs to the networks rise along a
ramp from −0.5 towards 0.5 (see, for example, Figure 14c). The initial biased configuration takes the
form of energy stored in the networks, and so, as the inputs rise to zero and beyond into positive
values, energy is released from the networks and then imparted to them again. However, as some
sensors are never activated or are activated only at certain times, there will always be some energy
stored in the networks. Figure 5c gives an example of this. Both extended and compressed springs

Figure 5. (a), (b), (d), (e), (g), (h): agent trajectories throughout all evaluation trials. Trajectories from catch trials are
shown on the left, and those from avoid trials on the right. Trajectories from three controllers are shown: from top to
bottom, controllers A, A5, and Al. In all cases the behavior may be split into two phases, the first where the agent moves
to keep the object in its visual field, and the second where it catches or avoids appropriately. (c) Spring extensions from
one network of controller A in trial 7 (catch). (f) Spring extensions from one network of controller A5 in trial 5 (catch).
(c) and (f) both show examples of energy stored in the networks throughout the trial. (i) Spring extension velocities
from one network of controller Al in trial 19 (avoid). Note that the agent is in motion for most of the trial, as seen in (h),
but the spring velocities are very close to zero.
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indicate stored energy, and in this case the total energy rises quickly, then falls gradually as the sen-
sory stimuli approach zero, and then rises again close to the end.

The behavior of the agent over the remainder of the trial can be split into two phases (Figure 5).
In the first phase the agent positions itself under the object, not necessarily centrally or statically, as
we shall see in Section 5, and in the second phase the agent responds to the type of the object in
either catch or avoid actions.

A point worth noting is that the two objects are of different widths (Figure 1). Circular objects
are 30 units wide, but although diamonds are squares 30 units wide, they are so oriented that the
agent sees the length of their diagonal, which is approximately 42. This means that if the agent sits
below the object, at some point more sensors will be activated for diamonds than for circles, some-
thing that may be exploited by evolution.

Finally, while it is not impossible that a network with fading memory could exploit some transient
effect as a temporary timer, we do not consider it likely that networks as small as those herein, with a
high degree of coupling throughout, could isolate such an effect over the period of the trial. How-
ever, as already noted, for all successful agents the sensory inputs rise along a ramp. Hence, while the
pattern of sensors that are actually activated may vary across trials and across agents, there will still
be a strong correlation between the magnitude of stimuli and the present point in time, a feature that
is ripe for exploitation by the evolutionary process in producing successful behavior.

4.1 Information Analysis
In this section we consider an information-theoretic explanation for the behavior of the agent. Mo-
bile adaptive agents do not only process information from their sensors, they also move to generate
it. In this case all successful controllers moved the agent so that the falling object was kept in its visual
field until the decisive moment of selecting the appropriate action for the object type. This is of
course an obvious strategy, but when the visual field is examined through an information-theoretic
lens, it becomes evident that some controllers have evolved to achieve this by maximizing sensory
information, for at least some of the time. In the following we explore how far this is the case,
and over what time scale this adaptation takes place.

For each trial we subject our agents to, what the agent will see at any particular point in space and
time is predetermined, as the horizontal position and vertical velocity of the object are constant,
unaffected by the agent, and their apprehension is unaffected by noise. The lookup tables we used
for the sensor model essentially extend over the entire space and time of the trial, and so can be
easily analyzed for informational content. We quantized the stimulus in the tables to 200 distinct
levels. For each location in space-time we treat the combination of seven stimuli as a single event,
and then calculate the probability of occurrence, over all space-time, for each event. From this prob-
ability mass function we then compute the self-information, I, of each location (x, t ), using the
following equation:

I x; tð Þk
� � ¼ − log2 pkð Þ (12)

where pk is the probability of the pattern of stimuli at point k.
In this context, patterns of stimuli that have low probability have high informational con-

tent, because they have low ambiguity as to the position of the agent relative to the object. The
self-information of the agentʼs visual field, as a function of its horizontal distance from the object
and simulation time step, can then be viewed as a kind of map across space and time (see Figure 6a
and b), where the ambiguity of the pattern of stimuli falls as the self-information rises.1 The maps we
show here were built with the assumption that the agent could not know the current time. As noted

1 To clarify, although entropy is the expected value of self-information, we do not consider the entropy of the space-time map, as its
structure is fixed. In addition, we do not consider the entropy of the signals from the sensors over time, as it is not guaranteed that this
entropy will be correlated with paths of high information through space-time.
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in Section 4, there is an indication of simulation time available in the environment due to the objects
falling, so as a control we also built maps based upon the opposite assumption: that the agent knew
exactly what time it was. In this case, rather than having a single probability mass function over all
time, we constructed one for each simulation step and so calculated the self-information instant by
instant. The resultant maps had roughly the same structure as the ones we show here, and so for all
following analyses we use only the maps based on the first assumption.

Beer [4] identified a structure in the visual field of the agent. Cells of continuously varying levels
of sensory stimulation are divided by edges, which delineate the boundaries between individual
sensors detecting and not detecting the object, as the relative position of object and agent is varied
(Figure 6). When we converted the visual fields for both catch and avoid into maps of the self-
information of sensory events over space-time, we found that the informational structure has a
certain amount of correspondence with the already noted structure, shown in Figure 6c and d,
but also that the aforementioned edges have particularly high informational content (Figure 6a
and b). Furthermore, when we overlaid the trajectories of agents onto these maps, we saw that some
controllers, for catch trials in particular, appeared to closely follow these edges (Figure 7). As noted
in Section 4, the behavior of agents can generally be split into two phases: moving to get a good view
of the object, and then moving to catch or avoid as appropriate once the object type is identified.
Visual inspection of the trajectories across these maps suggests that agents may be following a route
of high information in phase 1, but it is not clear if this is also the case in phase 2.

Figure 6. Representations of the visual field of the agent. As the object falls at a constant rate over all trials, there is an
equivalence between its position and time, plotted on the y-axis. The horizontal distance between agent and object is
plotted on the x-axis. The same cells, bounded by edges where sensors switch on or off, can be seen in both
representations. (a) The self-information of the visual field for catch trials. (b) The self-information of the visual field
for avoid trials. (c) The summed intensity of stimuli over the visual field for catch trials. (d) The summed intensity of
stimuli over the visual field for avoid trials.
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The analysis reported here is related to empowerment, an information-theoretic measure introduced
by Klyubin et al. [17], which essentially quantifies the effect of an agentʼs action upon its own ap-
prehension of its environment. They define empowerment as the channel capacity between the ac-
tion of an agent at time t and the state of its sensors at time t + 1. The underlying idea is that it is in
the agentʼs interests to maximize this informational return from its actions, and that this “em-
powers” it. Trajectories such as that for controller A on catch trials (Figure 7a) suggest that the
evolutionary process has identified and exploited paths of high information, but it is unclear to what
extent. It is also unclear whether the evolved controllers have any capacity for the detection and
measurement of information, or whether they simply follow evolutionarily predetermined routes.

We are able to shed some light on this subject by considering the extreme case: an agent with the
policy of, at each simulation step, moving to the position of highest information in its reach. As we
can see in Figure 8a and b, this is an effective policy for phase 1, but is not sufficient for phase 2,
when the object must be identified and responded to appropriately. Therefore we can rule out the
simple policy of always maximizing information at the evolutionary time scale and at the level of
individual controllers. In fact a policy of simply maximizing the summed amplitudes of stimuli
compares well in performance with maximizing information (Figure 8c and d). This is also the case
when noise is added to the information map or the visual field for the two scenarios, respectively
(Figure 9). Although we have not yet identified it in any controllers, we believe that in general it will

Figure 7. Trajectories for controllers A and A1 overlaid on the self-information maps. (a) The trajectories of controller
A for catch trials overlaid upon the self-information map. (b) The trajectories of controller A for avoid trials overlaid
upon the self-information map. (c) The trajectories of controller A1 for catch trials overlaid upon the self-information
map. (d) The trajectories of controller A1 for avoid trials overlaid upon the self-information map. Controller A clearly
follows an edge of high information in catch trials, and controller A1 appears to use the outside edge where information
suddenly drops to almost zero to decide when to turn back towards the object during its scanning motion.
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be easier for both evolution and individual agents to follow this second policy, and also that it will be
more robust at the evolutionary time scale. For example, in preliminary tests with noisy sensors it
appeared that controller A, which has clearly evolved to follow a path of high information in phase 1,
was too tuned to specific patterns of stimuli and failed dramatically with even low noise levels.

In summary, while evolution has exploited the structure of the information space, the policy of
simply maximizing information suffers from a lack of distinction between the quantity of informa-
tion and its value. While we may expect a certain correspondence between the quantity and quality
of information in biological organisms, where sensory systems are coevolved with behavior, this
should not be taken for granted. In systems such as this, where the sensory morphology is hand-
designed and fixed throughout evolution, it is even more likely that a certain amount of received
sensory input will be redundant. As we shall see in Section 4.4, performance is more impacted upon
by certain sensory disruptions than by others, which lends further support to this idea.

4.2 Capacity for Memory
We turn next to measuring the capacity for memory of networks A and A1. As with the analysis of
the preceding section, this question is of interest in that it gives clues as to how the controllers

Figure 8. Testing simple agent policies. The first policy, shown in (a) and (b), is for the agent to move so as to maximize
the self-information appearing to its sensors. The second policy, shown in (c) and (d), is for the agent to move so as to
maximize the sum of stimulus intensities appearing to its sensors. In both cases, 100 trials are shown, starting from
random positions in the same interval as the trials used in evolution. (a) Maximizing self-information for catch trials.
(b) Maximizing self-information for avoid trials. (c ) Maximizing summed stimulus intensity for catch trials. (d)
Maximizing summed stimulus intensity for avoid trials. Note that maximizing stimulus intensity is optimal for catching
objects, but shows no distinction between object types. On the other hand, maximizing information, while suboptimal
for both catch and avoid, does lead to distinct behaviors.
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perform their functions. In acquiring our measures, we follow a method based on that described by
Maass et al. [22]. They devised an input stream with zero mutual information (and therefore also
zero correlation) between different segments. Then, to obtain a measure of network memory, read-
out neurons were trained to reproduce segments of the input stream from earlier periods, and seg-
ments of the output signal were correlated against the input segments they should have reproduced.
A similar approach is taken here, although we chose not to measure general memory capacity, but
rather to see if these networks can retain information of the sensory inputs they are evolved to deal
with. For this reason the readout was trained to recover the simplest combination of the input sig-
nals over the course of a single trial: the sum of their intensities. In this case many segments of the
input stream have high correlation with one another because, due to the tendency of agents to
position themselves under an object until it can be recognized, the general trend is for sensory input
to increase along a ramp. Therefore, as a baseline, the same series of correlations was performed for
input segments against one another. Where the readout shows no more correlation with earlier input
stream segments than its corresponding input segment does, there can be considered to be no mem-
ory. On the other hand, a stronger correlation between the output of the readout and the delayed
input it is trained to reproduce than between input and delayed input is indicative of a capacity for
memory in the network. The same test is performed for readouts that receive only spring extensions
as inputs, readouts that receive only spring velocities, and readouts that receive both. Previously we

Figure 9. The policies of maximizing self-information and maximizing summed intensity of stimuli are tested under
conditions of noisy sensors. The visual fields are subjected to white noise, with a signal-to-noise ratio of 5 : 1.
(a) Maximizing self-information for catch trials under noisy conditions. (b) Maximizing self-information for avoid
trials under noisy conditions. (c) Maximizing summed stimulus intensity for catch trials under noisy conditions. (d)
Maximizing summed stimulus intensity for avoid trials under noisy conditions. In this case both strategies are still
successful in maintaining attention on the object in phase 1, but lead to no distinction between object types.
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conducted this test with a small set of consecutive segments of the input and output streams [16].
Here we modify this approach so that the compared segments are still of the same length and re-
lationship to one another in time, but we compare all possible segment pairs over the course of a
trial. The segment lengths are 10 s, or 100 simulation steps, long, and the output segment starts
where the input segment ends. The two segments are then moved as a pair of sliding windows
across the entire time series and the relevant correlations are calculated at each point.

The results of some of these tests are shown in Figure 10. It can be seen that, in general, spring
extensions encode more relevant information than spring velocities, but that the combination of
the two encodes more than either alone. In Figure 10a and b we see that controller A shows some
signs of memory capacity, although in general the baseline is already very high. For the avoid trial
(Figure 10b) there is a period, starting from around step 550, where the correlation of input segment
against input segment is of the opposite sign to that of readout segment against input segment, but
the magnitudes are roughly equal. While a negative correlation still indicates a relationship, for the
sign of the correlation to change introduces ambiguity, which the trained readout has been able to
resolve. However, it appears unlikely that this controller exploits memory capacity. As shown in
Figure 5a and b, for both catch and avoid behaviors, initially this controller gradually creeps towards
the object as it falls, suggestive of a purely reactive network. The result for controller A1 also in-
dicates a degree of memory capacity, with the network being able to recover more information about
earlier input segments than the input stream itself, as shown in Figure 10c and d, and again to resolve
the ambiguity we see in the baseline. This is consistent with the general strategy. Unlike all other
results, this controller drives away from the object and then returns to it, a behavior that seems of a

Figure 10. Measuring memory capacity. The linear readout is trained to recover inputs from 10 s ago. Then the input
stream and the controller output are split into 10-s segments, and the correlation of each output segment with the prior
input segment is calculated at all available points in time. The correlation of the input streams from the two periods is
also shown as a baseline. The legend for all four plots is shown in (a). (a) Controller A, trial 5 (catch). (b) Controller A,
trial 18 (avoid). (c) Controller Al, trial 5 (catch). (d) Controller Al, trial 18 (avoid). In all plots the baseline trace indicates
the zero-memory case, and the memory is the difference between network outputs and this baseline. Typically the
baseline is high and the network memory is therefore small, but it should be noted that both networks successfully
disambiguate the case when the baseline correlation switches sign and successfully track the sign of past inputs.
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more proactive character and implies memory of at least which side of the agent the object is on. It
should be pointed out that this controller does not make use of feedback. Any present memory is
only transient, fading memory.

4.3 Perturbations
We can learn something more about these controllers and the difficulty of the search problem by
examining the effect on performance of adjusting the evolved parameters. This analysis has only
been conducted for controller A1. Parameters are perturbed by adjusting genes and then mapping
to phenotypes to evaluate performance. We adjusted genes, one at a time, with a two-part scheme:
with fine increments near to the existing value, and larger increments covering the entire possible
range.

In our first test (see Figure 11) we used an increment of 0.2 across the whole range, and 0.1 in the
range of [−0.2, 0.2] centered about the value already optimized by evolution. At this scale we see a
fairly smooth fitness landscape, with few local optima, although as far as only adjusting a single gene
at a time goes, there seems to be no possibility of improvement upon this result, from this location
in parameter space. However, that does not rule out the possibility of improvement by adjusting
multiple parameters simultaneously.

At this scale certain characteristics of controller A1 become clear. When varied individually, the
nonlinear spring coefficients, encoded in genes 80 to 115, have very little bearing on the perfor-
mance of the agent, with fitness remaining high throughout. This seems to be because the exten-
sions and velocities of the springs are very low (Figure 5c, f, and i). As can be seen in Equation 7, the
nonlinear effects are proportional to the cubes of these states. As the states are already well below
zero, cubing them leads to only micro effects. It is worth mentioning here that this task may not
even require nonlinearity in the network, although, as noted by Hauser et al. [12], the couplings
between the MSDs in the network will introduce a certain amount of nonlinearity regardless of
which spring model is used.

One discovery that is slightly more surprising is that the genes that encode for the weights ap-
plied to the velocities of springs in the linear readout, genes 19 to 36, also have a relatively low effect
on fitness. A possible reason for this is that in general the inputs to the network increase along a
ramp. The MSD elements will typically have highest velocity shortly after sensors are switched on or
off, which can provoke a sharp change followed by a transient vibration; but gradual change at the
inputs also drives gradual (i.e., low-velocity) change in the network. As exampled in Figure 5i, the
velocity states will, on average, be low, and so the weights applied to them will be of small impor-
tance. On the other hand, in our tests for memory capacity in this controller, we have seen that
velocity encoding is advantageous in recovering memory effects. The other side of this coin is that

Figure 11. Each gene was perturbed one at a time for controller A1. The entire range of values for each gene is explored
with resolution 0.2, and the interval of [−0.2, 2] about the evolved gene value is explored with resolution 0.1. Evolved
gene values are marked with white asterisks. For many genes the surface contains one or more plateaus, indicating large
regions with no cues for evolution to determine which way to move parameters towards their optima. The values of
many genes, particularly on the right-hand side of this plot, can be seen to have very little effect on fitness.
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incorrect velocity encoding will be disruptive of memory effects appearing at the network outputs,
and indeed of behavior in general. At this point we can only speculate, but it may be that although
we see little effect when we perturb these weights individually, the effect of adjusting several simul-
taneously will be deleterious.

Also unexpected is the discovery that genes 62 to 79, which encode the MSD linear damping
coefficients, may in most cases also be varied without too much effect. This is surprising because
the character of the response of an individual MSD can vary dramatically with the damping coef-
ficient. We believe the relative neutrality of individual damping coefficients is due to two causes:
Firstly, the damping effect is proportional to the velocity of the spring, which we have already seen
is often close to zero. Secondly, and more importantly, due to the coupling of MSDs through
nodes, damping may be a property that is local more to a node than to a single MSD. Therefore
the effect of changing the damping coefficient for a single element may be partly absorbed by
adjoining elements.

When we repeated the test using an increment of 0.1 across the entire gene range and an increment
of 0.01 in the range of [−0.1, 0.1] centered about the existing value, we discovered that the fitness
landscape is in fact not as smooth as it originally appeared (see Figure 12b). We performed this test
for genes 1 to 79 only, as we had already observed that genes from 80 upwards were not critical. Fi-
nally we varied gene 1 over the full possible range, at a resolution of 0.001 (see Figure 12a). This one-
dimensional fitness landscape is extremely difficult to negotiate, with a large plateau over much of its
range and a highly disrupted surface in the region of the global optimum. It appears that the results given
here are fairly characteristic, and that this explains the difficulty of obtaining successful controllers.

4.4 Lesions
As with perturbations to the system parameters, we have learnt something about out controllers by
recording changes in agent performance as parts of the network are disabled. Four experiments,
illustrated in Figure 13 for controllers A and A1, were conducted. In the first three experiments
changes were made to the springs, one at a time, and the performance scores for the modified net-
work for all 24 trials were recorded. In the fourth experiment, one sensor at a time was disabled and
performance scores were recorded. In order, the modifications for springs were: to disconnect them
from the linear readout, to remove them from the network completely, and to set their nonlinear
coefficients to zero.

Various observations can be made from these plots. It can be seen that in general adjustments to
the network elements for controller A (Figure 13a–c) tend to cause failure in catching circles far

Figure 12. (a) The one-dimensional fitness landscape for gene 1 of controller A1, where all other genes are held at the
evolved values. Here it becomes clear that not only are plateaus in the fitness landscape a problem, but the surface is
increasingly noisy in the region surrounding the optimum value. (b) Each gene from 1 to 79 was perturbed one at a time
for controller A1. The entire range of values for each gene is explored with a resolution of 0.1, and the interval of
[−0.1, 0.1] about the evolved gene value is explored with resolution 0.001. Evolved gene values are marked with
white asterisks.
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more often than in avoiding diamonds, as though this controller is predisposed to avoidance. To
support this conclusion, this agent also shows low dependence on all but the outermost sensors for
avoidance, but depends on all sensors except sensor 5 for catching (Figure 13d).

Complete removal of springs from the network causes high failure in both agents, although con-
troller A1 (Figure 13e–h) is more robust to this than controller A. That this should cause a high
failure rate comes as no surprise, given the tightly coupled nature of the network dynamics. Neither
controller shows a strong dependence on spring nonlinearity; that is in accord with observations in
the previous section on perturbation tests for controller A1.

The plots in Figure 13 suggest that for both of these agents the most difficult trial is trial 12, the
last where catching behavior is required. This is surprising, as at the beginning of this trial the object
is only slightly offset from the agentʼs position. The reason for this has not yet been uncovered, but
it seems probable that it is connected to the large weights in the linear sum, as relatively small dif-
ferences in sensory input are amplified into high velocity, which could lead to a sudden loss of the
objectʼs position.

5 Case Studies

In this section we will consider the controllers A and A1 separately, scrutinizing their behavior over
representative trials in some detail. What we can observe at this level will be supplemented by the
observations of the previous analyses, and so we will build as complete an understanding of these
two controllers as we are yet able to. As these two seem to represent the opposite extremes of the
range of behaviors we have seen in our collection of results, the two together may be considered
broadly representative of the class of controllers under the evolutionary conditions we employed.

Figure 13. Lesion experiments. The top row of plots shows results for controller A, and the bottom for controller
A1. The rows in plots show the performance on a trial-by-trial basis. The color of a grid element shows the fitness
of the controller following the lesion. Trials 1 to 12 are the catch trials, and trials 13 to 24 are the avoid trials. From
left to right: One spring at a time is disconnected from the readout; one spring at a time is removed from the
network; one spring at a time is linearized; one input at a time is disconnected. It can be seen, here as in the
perturbation tests, that the performance for both networks is relatively robust to the adjustment of many
parameters.
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5.1 Controller A1
As can be seen in Figure 14b, agents tend to operate their motors in the regions of cutoff and
saturation, a consequence of using a sigmoid operation between network output and motor (Equa-
tion 2). Figure 14a shows the network outputs that produced the velocity shown in Figure 14b. The
two red lines show the point at which individual motors switch off and saturate. Because the net-
works drive an antagonistic motor pair, the agent stops at every point where the network outputs
coincide. It also stops whenever the motors are either both saturated or both switched off. From the
point of view of dynamics the network outputs appear complex and nonlinear, especially as sensory
input tends to rise linearly and show high correlation not only between past and present but also
between different sensors. From the point of view of information, the sigmoid in the motor func-
tion operates as a filter, rejecting redundant information from the network outputs.

In the case of this controller, it can be seen that throughout most of the trial there is a certain
degree of symmetry between the network outputs. Spikes tend to indicate short-term effects of
events in the sensory streams, whereas divergences and convergences occur relatively periodically
(suggesting a certain indifference to many stimuli) until close to the end of the trial. In tests with
white noise added to sensory input, the controller represented in these plots showed the highest
degree of robustness to white noise yet seen.

It is often difficult to attribute causality in the sensorimotor loop. For this controller, the trajectories
across the information maps shown in Figure 7c and d suggest that this controller is averse to a lack of
information, turning back towards the object at the point where the last sensor switches off. But if we
look at t ≈ 300 in Figure 14b and c, where the agent makes such a turn, we discover that the last sensor

Figure 14. Network outputs, agent velocity, and sensory stimuli of controller A1 over trial 9 (catch). (a) Network
outputs. (b) Agent velocity. (c) Sensory stimuli. Note that the sensory stream here and in following figures is recorded
after being normalized and shifted to the interval [−0.5, 0.5], but prior to the delaying effect of the sensory neurons.
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in fact did not go off for trial 9. We can also see that there is no easily discernible effect of the previous
sensor switching off. Therefore we conclude that, for this sensor on this trial and at at least some points,
the causal relationship between sensor and agent velocity is the reverse of our expectation—the sensor
output is determined by an inevitable turn rather than being its trigger.

It is still of interest why evolution has selected a controller that produces a trajectory that appears
to respond to edges in the information map by changing direction (Figure 7c and d). Perhaps the
ancestors of this controller responded to those edges, but at some point the relationship changed
from reaction to prediction. Another striking pattern in the trajectories is the apparent constancy of
the magnitude of the gradient throughout the period where the agent is scanning, caused by the fact
that in this period, while the agent changes direction a number of times, its magnitude of velocity is
generally at the maximum possible. Another question to be asked here is this: Given a lack of fast
reactions to sensors and an apparent scanning behavior, how far does the network integrate sensory
input? This is not an easy question to answer—generally speaking, the sensory input is constantly
growing for any successful agent—this is a kind of environmental integration that can potentially be
exploited by evolution. It is unclear how far this controller exploits sensory input simply as an energy
source to drive its oscillation, and how far it is responding to particular sensory patterns.

However, the controller is capable of distinguishing between the two objects, so it is clear that at
least at some point the sensory input is more closely observed. The point of decision would appear
to be soon after t ≈ 600, where the network outputs diverge in a way that shows no symmetry. In
trial 9, which is a catch trial, the motors switch off at this time and the agent stops to perform a
catch. However, as can be seen in Figure 15a and b, for the corresponding avoid trial, there is some

Figure 15. Network outputs, agent velocity, and sensory stimuli of controller A1 over trial 21 (avoid). Note that in this
trial the object falls from the same position as in trial 9 (Figure 14). (a) Network outputs. (b) Agent velocity. (c) Sensory
stimuli.
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delay between decision and action. The network outputs diverge soon after t ≈ 600, but as both
networks are well within the cutoff region at that time, the effect is delayed and it takes until t ≈ 670
for the right motor to switch on (Figure 15b) and the escape behavior to be initiated.

5.2 Controller A
Whereas controller A1 tends to switch on both motors, the general pattern for controller A is to
keep the left motor at full power until late in the trial and so control its velocity by switching the
right motor on and off (Figure 16b). In catch trials it inches towards the object by pulsing the right
motor. In avoid trials it is still the right motor that effectively controls the velocity, but its action can
be smoother and more prolonged than in catch trials (Figure 17b).

In general sensory effects on network outputs are easier to detect for this controller than for A1.
The first sensor to activate for the catch trial number 7, sensor 3 (see Figure 16c), appears to provide
the energy for the left motor, with the network output tracking the ramp of that input and therefore
staying well in saturation until the decisive moment. For this network the effects of other sensors are
superimposed upon that ramp in the output, but in the right network there appears to be little or no
effect of sensor 3, with the underlying form of the output in phase 1 being initially flat and not far
into saturation. There is a distinctive curve superimposed upon the effect of sensor 3 in both net-
works; this is the effect of sensory stream 4.

In this trial sensor 2 has a repulsive effect on the agent throughout phase 1. Each time it comes
on, it is followed by a negative spike in the right network, which briefly deactivates the right motor

Figure 16. Network outputs, agent velocity, and sensory stimuli of controller A over trial 7 (catch). (a) Network outputs.
(b) Agent velocity. Note that, in contrast to controller A1, this controller tends to pulse motors. (c) Sensory stimuli.
Note that the sensory ramp for this controller has a remarkably constant gradient compared to other controllers. In
phase 1 this gradient corresponds to an edge of high information in the visual field (Figure 7a).
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so that the left motor moves the agent until the sensor also switches off. It appears that the acti-
vation of sensor 5 at t ≈ 540 changes the predisposition to move away when sensor 2 is activated.
The decisive moment in catching occurs when sensor 6 switches on, at around t ≈ 633; the sensory
input balances and the two network outputs rapidly converge (see Figure 16c and b for sensors and
velocity, respectively, over this trial).

The main points to be made here are that sensory effects on the network outputs are almost
always immediate for this controller, and that their effects are precariously balanced. In the descrip-
tion above we have emphasized the importance of sensors 2 and 6 in centering and catching, re-
spectively, and yet in the lesion tests of Section 4.4 it emerged that in the case of trial number 7, the
most detrimental lesions were for sensors 3, 4, and 5 (Figure 13d). A closer look at Figure 16a and c
reveals that although sensor 2 seems to drive motion, it is the combination of its effect and that of
sensor 4 that ensures that each time sensor 2 switches on, the velocity response is only a short pulse.
This intricate balance of sensory input corresponds to the path of high information that this agent
was seen to follow in Section 4.1 and has been discovered not to be a robust solution.

In trial 19, the corresponding avoid trial to trial 7, the response to individual sensors appears
somewhat different. Presumably because sensors 2 and 4 are activated almost simultaneously, the
effect of sensor 2 is somewhat muted, with a low velocity moving the agent towards the object
between t ≈ 200 and t ≈ 400. As before, the activation of sensor 5, at around t ≈ 409, signals
the end of phase 1 and stops motion. This time the decisive event appears to be the late activation
of sensor 1, at t ≈ 556. When this happens, the network outputs, already divergent, both change
direction, eventually causing the agent to drive away at around t = 700.

Figure 17. Network outputs, agent velocity, and sensory stimuli of controller A over trial 19 (avoid). Note that in this
trial the object falls from the same position as in trial 7 (Figure 16). (a) Network outputs. (b) Agent velocity. Note that
although there is still a tendency to pulse motors, in the avoid trials the velocity occasionally varies more smoothly, as
can be seen here between t ≈ 200 and t ≈ 400. (c) Sensory stimuli.
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In lesion tests it emerged that sensor 1 is important to both catch and avoid behaviors for con-
troller A. In the pair of trials we have examined here, a decisive effect was observed for avoidance,
but no effect was observed in the catch trial. This is because in the catch trial the inputs to the
networks were already balanced by the time sensor 1 was activated. In this trial the removal of sensor
1 will cause an imbalance in the inputs to the networks at the point of activation for sensor 7, and
therefore have a detrimental effect on performance.

5.3 Summary
We have seen that a certain behavioral variety is possible in the networks used here, but as with
controllers A and A1, there are various features that all results seem to have in common. Due to
the production of large signals in the network readouts and to the sigmoidal transfer function be-
tween readout and motors, agents tend to switch between being static and moving at maximum
velocity. The effect of the sigmoidal function in this case could be construed as a rejection of re-
dundant information. That said, although switching motors may appear crude, evolution has clearly
exploited certain regularities in the visual field to produce controllers that switch at appropriate times
across all the trials. In many cases, such as that of controller A, this behavior may not be very robust
to disturbance, but we have seen from controller A1 that a more robust controller is possible, and
that this appears to be because it reacts to stimuli over longer time scales.

6 Discussion

The controller in this experiment is analogous to a body with the simplest of nervous systems:
weighted connections from sensory neurons to the body and weighted outputs from the body
to two simple summing nodes. Hence the body performs the lionʼs share of the computation
involved in producing adaptive behavior, which could be thought of as a reflexive response to dif-
ferent patterns of stimuli. Throughout most of this article it has been convenient to describe the
two responses as catch and avoid, but, for example, we could equally conceive of this behavior
as active perception in order to distinguish between friend and foe, resulting in stay or escape
responses.

Due to the fading memory property, the networks used in this experiment have some capacity to
store information about past inputs, but as yet there is no definitive evidence that this is exploited.
While the state of the network certainly does play a central role in determining behavior, it appears
that most controllers, like controller A, are tuned to react immediately to sensors being switched on
and off. In the case of controller A1, its scanning motion implies integration of the streams from
multiple sensors in a way that is unique in all our results. Closer scrutiny of input and output
streams reveals that this controller does not respond to all sensory events, and that in some cases
it actually seems to predict them and change direction just before its last sensor is switched off. The
lack of a clear causal relationship between the various input streams and the network outputs for
this controller suggests, at least, that the transient effects of inputs are longer-lived than in other
controllers.

When the agentʼs visual field is given an information-theoretic interpretation, it appears that some
controllers exploit paths of high information. In behavioral phase 1, where agents position them-
selves under the falling object, maximizing the information received by the sensors appears to be a
sufficient and robust strategy, but for the decisive period of phase 2 it is not sufficient. This rules out
the possibility of a controller that measures and acts to maximize the information at its inputs, and
makes it clear that this is an adaptation at the evolutionary time scale. For example, the path of
controller A in catch trials is such that a specific group of sensors are on during phase 1, and fur-
thermore such that the gradient of increase of those stimuli is remarkably constant.

The information received from the visual field is first projected into the high-dimensional state
space of the MSD networks; then there is a drastic two-stage reduction in information, first where
the network state is reduced to a single readout output, and secondly when that output is fed
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through the sigmoidal motor neuron, which thresholds the output and effectively rejects most of the
information in that stream. An interesting line of enquiry that has not yet been addressed is to what
extent this last stage is necessary for success.

It appears from the results of both perturbation and lesion tests that for this task there is no need
to use a nonlinear MSD model. However, in biological materials, nonlinearity is the norm [34], so
it would be interesting to adjust the nonlinear terms in Equation 7 so that nonlinear effects are
magnified and see if successful controllers are still obtained. Our intuition is that this would in fact
pose no problem, as the coupling between the MSD elements in the networks already leads to a high
degree of nonlinearity.

7 Conclusion

According to Pfeifer and Bongard [29, p. 20], intelligence is “distributed throughout the organism”
and not solely in the brain. The evidence for this is ever-growing, and we believe the work reported
on here constitutes a significant addition to it. We have shown that compliant bodies with complex
dynamics can integrate, store, and process information in meaningful and adaptive ways. If an ab-
stracted model of a body and primitive nervous system can successfully perform adaptive reflexive
behavior with the body as the main computational locus, then it seems reasonable to hypothesize
that biological soft bodies could perform a similar function. Furthermore, if this behavior is of the
nature of what has previously been described as minimal cognition, then the result challenges no-
tions of brains as the ultimate and sole seat of intelligence and cognition.
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