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Abstract. This paper presents recent work in computational modelling of
diffusing gaseous neuromodulators in biological nervous systems. It goes on to
describe work in adaptive autonomous systems directly inspired by this: an
exploration of the use of virtual diffusing modulators in robot nervous systems
built from non-standard artificial neural networks. These virtual chemicals act
over space and time modulating a variety of node and connection properties in
the networks. A wide variety of rich dynamics are possible in such systems; in
the work described here, evolutionary robotics techniques have been used to
harness the dynamics to produce autonomous behaviour in mobile robots.
Detailed comparative analyses of evolutionary searches, and search spaces, for
robot controllers with and without the virtual gases are introduced. The virtual
diffusing modulators are found to provide significant advantages.

1 Introduction

This paper describes some of the main thrusts of an ongoing interdisciplinary study of
diffusing neuromodulators in real and artificial systems. After explaining the
motivations and biological background of the project, the key results from recent
detailed computational models of nitric oxide (NO) diffusion from neural sources are
discussed. This leads to a description of work on more abstract artificial neural
systems heavily inspired by the biology. These so-called GasNets are used as artificial
nervous systems for mobile autonomous robots. Detailed comparative studies of
evolutionary robotics experiments involving GasNets and non-GasNets are
introduced. These include investigations into the formal evolvability of such systems.
The paper closes with a sketch of current and future directions of the project.

2 Biological Background and Motivation

As the Brain Sciences have advanced is has become more and more clear that nervous
systems are electrochemical devices of enormous complexity and subtlety [8,15].
While the transmission of electrical signals across neuronal networks is regarded as a
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fundamental aspect of the operation of nervous systems, neurochemistry adds many
dimensions to the picture. Cells can respond to chemicals that they themselves
synthesize (autocrine signaling), to chemicals that diffuse from very nearby sources
(paracrine signaling) or to chemicals that  diffuse over greater distances or are carried
by blood and tissue fluids [15,16]. The responses that these chemicals elicit are legion
and can vary according to the internal and environmental states of the cells involved.
Important classes of chemicals involved in the functioning of nervous systems
include: neurotransmitters, receptors, neuromodulators and  second messengers.
Traditionally, chemical  signaling between nerve cells was thought  to  be mediated
solely by messenger  molecules or  neurotransmitters which  are released  by neurons
at synapses [16] and flow from the presynaptic to postsynaptic neuron.  Because most
neurotransmitters are relatively large and polar molecules (amino  acids, amines and
peptides), they  cannot diffuse through cell  membranes and do  not spread far  from
the release  site.  They  are also  rapidly  inactivated  by various reactions. Together
these features  confine the spread of such neurotransmitters to be very close to the
points of release and ensure that the transmitter action  is transient. In  other words,
chemical  synaptic transmission of the classical kind operates  essentially two-
dimensionally  (one  in space and one  in time). This  conventional interpretation is
coupled to  the idea that neurotransmitters  cause either  an increase  or a  decrease in
the electrical excitability of the target neuron. According to a traditional  view of
neurotransmission therefore,  chemical information transfer  is limited  to the points
of connection between  neurons and neurotransmitters can simply  be regarded as
either excitatory or inhibitory.

In recent years a number of important discoveries have necessitated a
fundamental revision of this model. It is now clear that many  neurotransmitters,
perhaps the majority,  cannot be simply classified as excitatory or inhibitory [8].
These messenger molecules are best regarded  as `modulatory' because  among other
things  they regulate or  modulate the  actions  of conventional  transmitters.
Modulatory neurotransmitters are also ‘indirect’ because they cause medium- and
long-term changes in the properties of neurons by influencing the rate of synthesis of
so called ‘second messenger’  molecules. By altering  the properties of  proteins and
even by changing the pattern  of gene expression, these second  messengers cause
complex  cascades of  events  resulting in  fundamental changes  in  the properties of
neurons. In this way modulatory transmitters greatly expand  the diversity and the
duration  of actions mediated by  the chemicals released  by neurons. The action of
neurotransmitters also depends on the receptors they bind to. Although most receptors
are highly selective, responding to a single transmitter only, most transmitters can
bind to a variety of receptors, with different consequences for different transmitter
receptor pairings, even in the same cell [16]. There are a great variety of receptors on
different types of cells suggesting the possibility of a combinatorially explosive range
of pairings and effects. However, when coupled with this expanded picture of the
nervous system, it is the recent  discovery  that  the  gas  nitric  oxide is a modulatory
neurotransmitter that has opened  entirely unexpected dimensions in  our thinking
about neuronal chemical signaling  [5,6,10]. Because NO is a very small and nonpolar
molecule it diffuses isotropically within the brain regardless of intervening cellular
structures [25]. NO  therefore violates some of the key tenets of point-to-point
chemical transmission and is the first  known member of  an  entirely new  class  of



transmitter,  the  gaseous diffusable modulators (carbon monoxide is another
example). NO is generated in the brain by specialised neurons that contain the
neuronal isoform of the calcium activated enzyme, nitric oxide synthase or nNOS  [1].
NO synthesis  is triggered  when  the calcium concentration  in  nNOS-containing
neurons  is  elevated,  either  by electrical activity or  by the action  of other
modulatory  neurotransmitters. The  existence  of  a  freely  diffusing  modulatory
transmitter   suggests a radically  different  form  of  signalling  in  which  the
transmitter   acts four-dimensionally  in  space  and  time,  affecting  volumes  of  the
brain containing many neurons and synapses [1]. NO cannot be contained by
biological membranes, hence its release must  be coupled  directly  to its  synthesis.
Because  the  synthetic enzyme nNOS can be distributed throughout  the neuron, NO
can be generated and released by the whole neuron.  NO is therefore  best  regarded as
a  ‘non-synaptic’ transmitter  whose  actions moreover cannot be confined  to
neighbouring neurons  [9,18].

The emerging picture of nervous systems sketched above -- as being highly
dynamical, with many codependent processes acting on each other over space and
time -- is thoroughly at odds with simplistic connectionist models  of neural
information  processing. Importantly, the discovery  of diffusible  modulators shows
that neurons  can interact  and  alter  one  another's  properties  even  though  they  are
not synaptically connected. Indeed, all this starts to suggest that rather than thinking
in terms of fixed neural circuits, a picture involving shifting networks – continually
functionally and structurally reconfiguring – may be more appropriate. Of course
many Alife practitioners reject the simple information processing models, but even so,
by far the most popular kind of system used as artificial nervous systems are networks
of nodes connected by virtual ‘wires’ along which inhibitory or excitatory ‘electrical’
signals flow. Although few would claim these are adequate models of the brain, their
origins are in principles abstracted from the neuroscience of several decades ago.
Although there are many possible levels of abstraction, new styles of artificial
nervous systems directly inspired by contemporary understandings of brains as
electrochemical machines may be a very fruitful avenue in our quest to develop
artificial systems capable of more interesting and useful adaptive behaviours than we
can currently manage. At the same time, the study of such systems should bring us
deeper understandings of the principles underlying the functioning of real brains.

Given the limitations of current technology, if implemented versions of such
systems are to act in real time as sensorimotor control systems for autonomous agents,
they must necessarily abstract away much of the detailed complexity of real nervous
systems. However, we believe that enough will be left behind to make this a
worthwhile endeavour. In tandem with this kind of biologically inspired investigation,
there is another far more detailed, more direct, form of modelling that can also be
very useful. It is, as yet, very difficult to gather detailed empirical findings on such
phenomena as the diffusion dynamics of NO in different parts of the nervous system,
because the necessary experimental apparatus has not yet been developed. However,
it is possible to build detailed  computational models that capture certain salient
features of these phenomena in an accurate way. These models are computationally
expensive and do not run in real time, but the data they produce can make important
contributions to our understanding of the biological processes.



 This paper discusses examples of both kinds of work; two aspects of our
ongoing investigation of the role of diffusing neuromodulators.

3 Modelling NO Diffusion in Real Neuronal Networks

In the previous section the role of NO in neuronal volume signalling was sketched.
NO spreads in three dimensions away from the site of synthesis regardless of
intervening cellular or membrane structures [25]. Another very important feature of
NO signalling follows from the fact that nitric oxide synthase is soluble and thus
highly likely to be distributed throughout a neuron’s cytoplasm. This means that the
whole surface of the neuron  is a potential release site for NO, in marked contrast to
conventional transmitter release. These properties suggest that the 3D structure of the
NO source, and of any NO sinks, will have a profound influence on the dynamics of
NO spread. Hence an accurate structure-based model of neuronal NO diffusion is an
indispensable tool in gaining deeper insights into the signalling capacity of the
molecule.

Figure 1 shows the results generated by the first accurate model of NO diffusion
from continuous biologically realistic structures [19]. The source is an irregular
neuron-like structure where the main cell body is a hollow sphere (NO is synthesized
in the cell walls but not in the interior of the sphere). A sink has been placed just to
the right of the cell body. Diffusion was modelled using accurate difference equation
methods on a fine grid [19]. The figure shows the evolution of NO concentration
during and after a 100ms burst of synthesis. Two very interesting observation are that
the concentration remains high near the centre of the cell body long after synthesis
has finished and that there is a significant delay between the start of synthesis and a
rise in concentration for points distant from the main cell body. These observations
follow from a ‘reservoir effect’ where NO diffuses into the centre of the hollow
structure and is then ‘trapped’ there by a pressure gradient resulting in a slow time-
delayed release [19]. Such a phenomenon, with its possible functional implications,
would not have been observed in a less accurate point-source type model [25].

NO is also synthesized in another kind of irregular structure – namely a mesh of
fine neuronal fibres in the mammalian cerebral cortex [20]. This mesh, or plexus,
arises from a small population of neurons. As one of the biological affects of NO is to
dilate the walls of blood vessels, the plexus might mediate the link between increased
neural activity and increased blood supply to the same volume of the cortex.
However, the vast majority of fibres in the plexus have been shown to be too small to
generate above (biological) threshold concentrations of NO. This situation is again
ripe for investigation with computational models. Using the same techniques as for
the study illustrated in Figure 1, Philippides et al. have modelled the diffusion of NO
from plexus structures [20]. Figure 2 shows results from a model investigating the
volume over which NO concentrations are above threshold for sources made from
regular arrays of very fine tubular structures. We see that once the density of fibres
rises above a certain limit, the concerted effect of several very fine sources is to raise
concentrations to significant levels. Further computational studies have shown how a
random mesh of fine (rather than course) fibres is an ideal structure to ensure a



uniform concentration over the plexus [20]. This is exactly the kind of structure found
in the cortex, hence these models may point towards an important mechanism for
allowing highly targeted NO ‘clouds’ in the brain.

Fig. 1. Diffusion of NO from an irregular neuron being influenced by a nearby sink. NO
concentration is shown at several time intervals following the initiation of a 100ms burst of
synthesis. A 2D slice through the structure is illustrated here. See text for further details.



 

Fig. 2. Different numbers of very fine tubular NO sources arranged in regular
arrays affect different volumes of tissue.

4 GasNets: From Neuroscience to Engineering

This section describes one style of artificial neural network from a class of networks
whose operation is strongly inspired by those parts of contemporary neuroscience that
emphasize the complex electrochemical nature of real nervous systems. So-called
GasNets incorporate virtual diffusing gaseous neuromodulators and are used as
artificial nervous systems for mobile autonomous robots. They are being investigated
as potentially useful engineering tools and as a way of gaining helpful insights into
biological systems. While a number of authors have incorporated global analogues of
chemical signalling systems into agent control systems [2,7], as far as we are aware
this work, which dates back to several years ago [11,13], is the first to concentrate on
local processes, with virtual modulators diffusing over space and time.

The basic GasNet networks used in many recent experiments [13] are discrete time
step dynamical systems built  from units connected  together by links  that can  be
excitatory (with a  weight of +1)  or inhibitory  (with a weight  of -1).  The output, Oi

t,
of node i at time step t is a function of the sum  of its inputs, as described by Equation
1. In addition to this underlying network in  which  positive and  negative  `signals'
flow  between  units,  an abstract process loosely analogous to  the diffusion of
gaseous modulators  is at play.  Some  units  can emit  virtual ‘gases’  which  diffuse
and  are  capable  of modulating the behaviour of other  units by changing their
transfer  functions in ways described in detail  later. This form of  modulation allows
a kind  of plasticity in  the network  in which  the intrinsic  properties of  units  are
changing as the network operates. The  networks function in a 2D plane;  their



geometric layout is a crucial element in the way in which the ‘gases’  diffuse and
affect the  properties of network  nodes, as illustrated in Figure 3. This aspect  of the
networks  is described in more detail later.

Fig.3. GasNet operation depends on the geometric layout of the nodes in a 2D plane.
The righthand side of the diagram shows how the shape of the tanh transfer function
depends on the gain parameter ki

t , see text for further details.

Oi
t = tanh[ki

t ( wjiOj
t −1 + Ii

t) + bi ]
j ∈Ci

∑ (1)

Where Ci is the set of nodes connected to node i, Ii
t is the external (sensory) input to

node i and bi is a genetically set bias. Each node has a genetically set default transfer
function gain k i

0. The right hand side of Figure 3 shows the shape of the function
tanh(kx) over the range [-5,5] for a discrete set of values of k between  –4 and 4. It is
this gain parameter that is modulated by the diffusing virtual gases in the networks.
This means that while the gases are active  the shapes of the node transfer functions
are being altered from time step to time step. The mechanism for this is explained in
the next section.

 4.1 Diffusion and modulation

The virtual diffusion process is simple in order to be computationally fast so that
GasNets can be used to control robots in real time. For mathematical convenience
there are two gases, one whose modulatory effect is to increase the transfer function
gain parameter and one whose modulatory effect is to decrease it. It is  genetically



determined  whether or  not any given   node will  emit one  of  two ‘gases’ (gas 1 and
gas 2), and under  what circumstances emission will  occur (either when the
‘electrical’ activation of  the node exceeds a threshold,  or the concentration of  one of
the gases (genetically determined)  in the  vicinity of  the node exceeds a threshold).
The electrical threshold used in the experiments described later was 0.5, the gas
concentration threshold 0.1. Allowing these two highly biologically inspired
possibilities [6,10] is important – it provides a mechanism for rich interaction between
two processes, the ‘electrical’ and the ‘chemical’. A very abstract model of gas
diffusion is used. For an emitting node, the concentration of gas at distance d from the
node is given by Equation 2. Here, ri is the genetically determined radius of influence
of the ith node, so that concentration falls to zero for d>ri. This is loosely analogous
to the length constant of the natural diffusion of NO, related to its rate of decay
through chemical interaction. Ti(t) is a linear function that models the build up and
decay of concentration after the node has started/stopped emitting. The slope of this
function is individually genetically determined for each emitting node, C0 is a global
constant. For full details see [13].

Ci(d ,t) = C0e
−2d / ri × Ti(t) (2)

At each time step the gain parameter, ki
t , for the node transfer function at each

node (see  Equation 1), is changed (or modulated) by the presence of gases at the site
of the node. Gas 1 increases the value of ki

t in a concentration dependent way, while
gas 2 decreases its value. Concentration contributions from nodes within range of any
given site are simply added together. The modulatory effects of the two gases are then
summed to calculate the value of ki

t  at each time step. Each node has its own default
rest value for the gain parameter, the virtual gasses continually increase or decrease
this value. Referring to the right-hand side of Figure 3, this modulation can potentially
have drastic effects on a nodes’s transfer function, dramatically increasing or
decreasing, or even flipping the sign of, its slope. This means that the networks are
usually in flux, with rich dynamical possibilities.

Since there were no pre-existing principles for the exact operation and design of
such networks, it was decided to allow most of their detailed properties to be
genetically specified, giving the possibility of highly non-uniform dynamically
complex networks. Hence, in most experiments to date nearly everything is up for
grabs: the number of nodes in a network; the way they are connected; the position of
the nodes on the 2D plane; the individual properties of each node controlling when (if
at all) they emit a gas; which gas is emitted and how strongly; how and if nodes are
connected to sensors or motors, as well as various properties of the sensors and
motors themselves [13]. About 20 variables per node are needed to describe all this.
Our experience has been that a well setup evolutionary search algorithm is a good tool
for exploring the space of such systems [12], looking for interesting and useful
examples that deepen our understanding of autonomous adaptive systems or provide
practical engineering advantages such as robustness and reliability [12,17]. The next
section gives an example of using GasNets in such an evolutionary robotics setting.



5  Experimental Comparison

Various forms of GasNet have been used as robot controllers for a variety of tasks and
robots [11,13]. A very large number of runs of one particular experimental setup have
been carried out, giving us enough data to be able to make statistically significant
claims. In this series of experiments GasNets were evolved to control a robot engaged
in a visually guided behaviour involving shape discrimination. A simple robot with a
fixed CCD camera as its main sensor moved in an arena as illustrated in Figure 4.
Two light coloured shapes, a rectangle and a triangle, were placed against a darker
background on one of the walls. The task was to reliably move to the triangle, while
ignoring the rectangle, from a random initial orientation and position under highly
variable lighting conditions. The relative positioning of the shapes, in terms of which
was on the left and which on the right, was made randomly.

As well as network size and  topology, and all the parameters controlling virtual
gas diffusion and modulation, the  robot  visual morphology, i.e.  the way  in which
the camera  image was  sampled, was also under unconstrained genetic control. This
was achieved by allowing the evolutionary search algorithm to specify the  number
and position  of  single pixels from the camera image to use as visual inputs. The grey
scale intensity value of these  pixels (normalised into the range [0.0,1.0]) were fed
into the  network, one  for each  genetically specified visual  input  node  in  the net.
This  is  illustrated  in  the bottom left quadrant of Figure 4. Note  that this  means
that  the  evolved  control  systems  were operating with  extremely minimal  vision
systems, just  a few  single  pixel values. Given the very noisy lighting conditions and
the minimal visual input, the shape discrimination task  becomes  non-trivial.

All the evolutionary runs were carried out using a Jakobi minimal simulation of the
robotic setup. The methodology behind these ultra-lean ultra-fast simulations was
developed by Jakobi [14] to address one potential problem with evolutionary
approaches to exploring classes of robotic control systems: the time taken to evaluate
behaviours over many generations. Through a careful use of noise and important
decisions about what not to model, a minimal simulation will run very fast but
behaviours evolved in them will transfer to the real robots. For full details of the
minimal simulation used for the triangle rectangle task see [14]. In the experiment
described here, all successful evolved controllers crossed the reality gap: they
generated the same behaviours on the real robot as in simulation. Success was defined
as being able to move to the triangle and stay there 30 times in direct succession from
random starting positions and orientations, under very noisy lighting conditions and
irrespective of the relative positioning of the shapes on the same wall. The great
advantage of using minimal simulations in this work is that we were able to perform
many complete evolutionary runs and hence derive meaningful statistics.



Fig. 4. The visualisation tool used with the minimal simulation of the shape discrimination task.
The top right quadrant shows the view through the robot’s camera, the bottom right gives a
bird’s eye view of the robot moving in the arena. The left-hand side of the screen illustrates the
structure (including visual morphology) and functioning of the GasNet controlling the evolved
robot. The shading in the network representation at extreme bottom left shows the gas
concentrations in the network plane at the instant the snapshot was taken. The darker the
shading the higher the concentration. See text for further details.

The initial set of evolutionary GasNet experiments with this task resulted in highly
robust controllers emerging about 10 times faster than in earlier runs with
conventional connectionist networks [13]. Subsequent comparative runs have
concentrated on identifying whether or not the virtual gas modulation mechanism was
at the root of this speed up. The key result is illustrated in Figure 5. In all experiments
the genotypes were strings of integers encoding the various properties of the
controllers and coupled visual morphologies, a geographically distributed genetic
algorithm was used with a population of 100 [4], a number of different mutation
operators were used in tandem, including node addition and deletion operators. The
fitness function was based on a weighted average of final distances to the triangle
over a set of evaluations from different initial conditions and different relative
positioning of the shapes. Poor scores were weighted more heavily than good scores,
encouraging  robustness by requiring uniformly high scores across the whole
evaluation set.



Fig.5. The average number of generations needed to find controllers giving perfectly successful
behaviour on the triangle rectangle problem. The dark columns are for networks with the gas
mechanism turned on. The light columns are for networks with the gas mechanism turned off.
The figure illustrates two sets of 20 runs in each condition; the difference between the left and
right-hand sets is the way in which the network connectivity was encoded. See text for further
details.

It can clearly be seen in Figure 5 that controllers based on networks with the virtual
gas diffusion and modulation mechanisms turned on evolve significantly faster than
those that are identical in every respect (including genotypes and all the evolutionary
machinery) except that the gas mechanisms are rendered inoperative. This result has
been repeated under various different encoding schemes and for a wide range of
mutation rates [23]. The clear implication is that GasNets are more evolvable – their
search space is more amenable to the form of evolutionary search used – than the
various other forms of network explored. Obviously this could be a potentially very
useful property and it is looked at in more detail in the next section.

Nearly all the successful GasNet controllers that were examined in detail exhibited
surprisingly simple structures (a typical  example is shown in Figure 6) relying on a
very small number of visual inputs, although their internal dynamics, supported by
interwoven ‘chemical’ and ‘electrical’ processes, were often intricate [13]. A number
of interesting sub-networks, such as oscillators making use of spatial aspects of the
modulation and diffusion processes [13], were independently evolved in several runs,
suggesting that they are easily found building blocks that the evolutionary process can
make good use of.



Fig. 6. A typical evolved GasNet controller for the triangle rectangle task illustrating the kind
of structural simplicity often found in highly robust solutions. See text for further details.

6 Evolvability and Search Space Properties

The key result illustrated by Figure 5, that, for a particular evolutionary search
algorithm, it is easier to find GasNet controllers for the triangle-rectangle task than
non-GasNet controllers, tells us that there must be differences in the properties of the
two search spaces. Understanding more about what this difference is may help us gain
some valuable insights into the dynamics of artificial evolution and the nature of
complex search spaces, as well as understanding more about the potential of GasNets.
Smith et al. have published a number of papers working towards this goal [21,22,23].
The earliest studies in this series applied a whole range of standard search space
‘complexity’ and ‘smoothness’ metrics to the two spaces. These all failed to predict
any difference between the spaces [22]. However, the research revealed a number of
likely reasons for this: the spaces both appeared to be highly anisotropic, there is
strong evidence for large neutral networks permeating the spaces, and a very large
percentage of genotypes have negligible fitness. These and other properties combine
to make the standard metrics useless for describing the pertinent differences between
the spaces. Another (probably interrelated) reason is illustrated by the left-hand
graphs in Figure 7 which show the median number of generations needed to reach a
given fitness level for GasNets and non-GasNets. There is no difference in the two
graphs for fitnesses of less than about 0.5. Fitnesses greater than this value are
extremely unlikely to be found in random samples on which most of the basic metrics
are based. Hence the focus of the work has shifted to the notion of evolvability and
ways to measure it [23]. Evolvability is related to the ability of an individual or
population to generate fit variants [24]. A useful measure of this is this transmission
function which gives the distribution of all possible offspring for a given individual or



population [3]. In the work described here, a variety of mutation operators are used,
but no crossover operator is employed. This has allowed transmission functions to be
approximated through massive sampling of mutated populations saved from many
evolutionary runs, so that many levels of initial fitness are represented. Smith has
devised a number of evolvability metrics based on the transmission function [23]. The
right-hand graphs in Figure 7 show plots of one of these measure (explained in the
caption). The small, but significant, difference reveals that at higher fitnesses the
GasNet space has fewer deleterious mutations than the non-GasNet space. This will
lead to a larger variety of good solutions in the GasNet populations. While this is very
likely not to be the whole story, and further investigations of search dynamics are
underway, it must aid evolution. This discovery means the  investigations are starting
to bear fruit and we hope to soon have a full explanation of the differences in search
performance on the two spaces.

Fig. 7. The left-hand graphs show the median number of generations needed to reach a given
fitness score for a large set of evolutionary runs. The right-hand graphs show a small, but
significant, difference in the expected fitness of the bottom 50% of mutations applied to
solutions of a given initial fitness. See text for further details.

7 Future Directions

There are many extensions to all aspects of the work described in this paper, some
planned and some already underway. A number of these will be briefly discussed
here.

As far as the computational modelling of the volume signalling roles of NO is
concerned, obvious candidates for further work are: modelling diffusion from larger
more complex structures and groups of structures, and introducing functional roles for
the gas in detailed simulations of the behaviour of small neuronal networks. Both of
these present non-trivial technical challenges and would require significant computing
resources. However, given how much has been learnt from the studies carried out to
date, as outlined in Section 3, it is important that such work is carried out.



The details of the ‘electrical’ and ‘chemical’ aspects of GasNets are, to some
extent, rather arbitrary. There are numerous other forms that the modulations, node
internal dynamics and virtual diffusion processes could take. Many of these are very
worthwhile investigating in order to gain a deeper understanding of a whole class of
systems. Such insights should usefully inform development in autonomous adaptive
systems as well as systems level neuroscience. A number of interesting alternative
modulation schemes being investigated include:

• Site specific modulations. The modulation depends on the presence of a
‘receptor’. Virtual gases can trigger a range of modulations in a single network,
depending on which receptors are present.

• Modulation of other adaptive processes (such as Hebbian synaptic changes). This
could add a very powerful dimension to the evolution of adaptive mechanisms as
advocated by Floreano et al. [17].

• Modulations at many different time scales, including permanent changes, are
common in biology and are likely to play an important role in artificial systems.

Of course investigations into autonomous adaptive systems cannot focus solely on
specific behaviour generating mechanisms. A bigger picture, involving overall
architectures, body and sensor morphologies, developmental processes and a host of
other issues surrounding embodied behaviour in the world, must be borne in mind.

The search space analyses outlined in the last section are part of an on-going
investigation and in the future we wish to incorporate analyses of robot behaviours
and their underlying controllers into the story.

8 Conclusions

The sciences of the real and the artificial have much to offer each other. This seems
especially true in the study of adaptive behaviour and the mechanisms underlying it.
This paper has outlined a multi-stranded interdisciplinary project that has striven to
exploit the synergies at the interface between neuroscience and contemporary
AI/Alife, and in so doing has advocated a shift towards rich electrochemical models
and analogies. While the kind of creative exploratory work favoured by many Alife
researchers are regarded as very important, and some of the work described here falls
into that category, the authors stress the need for strong theoretical underpinnings and
detailed analysis wherever possible. Without these, significant progress is unlikely.
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