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1. INTRODUCTION

T his article describes investigations into the evolvability
of a style of artificial neural network strongly inspired by
those parts of contemporary neuroscience that empha-

size the complex electrochemical nature of biological ner-
vous systems. In particular, they make use of an analogue
of volume signalling, whereby gaseous neurotransmitters
freely diffuse into a relatively large volume around a nerve
cell, potentially affecting many other neurons irrespective of
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whether or not they are electrically connected [1]. This exotic
form of neural signalling does not sit easily with classical con-
nectionist (point-to-point) pictures of brain mechanisms and
is forcing a radical re-think of existing theory [2–7].

The class of artificial neural networks developed to explore
artificial volume signalling are known as GasNets [8]. They
comprise a fairly standard artificial neural network aug-
mented by a chemical signalling system based on a diffus-
ing virtual gas, which can modulate the response of other
neurons. A number of GasNet variants, inspired by different
aspects of real nervous systems, have been explored as arti-
ficial nervous systems in an evolutionary robotics context.
They were introduced to explore their potential as robust
“minimal” systems for controlling behavior in very noisy
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environments. They have been shown to be significantly
more evolvable, in terms of speed to a good solution, than
other forms of neural networks for a variety of robot tasks
and behaviors [8–12]. In two interrelated strands of work,
they are being investigated as potentially useful engineering
tools, while more detailed modelling work is aimed at gaining
helpful insights into biological systems [3, 5].

Reasons for the enhanced evolvability and performance
of these networks are explored. In particular, the roles of the
spatiotemporal properties of the modulatory processes, and
the form of modulation used, are probed through a compar-
ative study of a number of variants of the basic GasNet. The
results of this study are discussed in the light of related work
before drawing conclusions.

2. THE BASIC GASNET
By analogy with biological neuronal networks, GasNets incor-
porate two distinct signalling mechanisms, one “electrical”
(which henceforth refers to direct point-to-point synaptic
connections) and one “chemical” (which henceforth refers
to diffusional volume signalling). The underlying “electrical”
network is a discrete time step, recurrent neural network with
a variable number of nodes. These nodes are connected by
either excitatory or inhibitory links with the output, Ot

i , of
node i at time step t determined by Eq. (1).

Ot
i = tanh


kt

i


∑

j∈�i

wjiOt−1
j + I t

i


 + bi


 (1)

where �i is the set of nodes with connections to node i and
wji = ±1 is a connection weight. I t

i is the external (sensory)
input to node i at time t , and bi is a genetically set bias. Each
node has a genetically set default transfer function gain para-
meter, k0

i , which can be altered at each time-step according
to the concentration of the diffusing “gas” at node i to give kt

i
(as described later).

In addition to this underlying network in which positive
and negative“signals” flow between units, an abstract process
loosely analogous to the diffusion of gaseous modulators is at
play. Some units can emit virtual“gases” which diffuse and are
capable of modulating the behavior of other units by chang-
ing their transfer functions. The networks occupy a 2D space;
the diffusion processes mean that the relative positioning of
nodes is crucial to the functioning of the network. Spatially,
the gas concentration varies as an inverse exponential of the
distance from the emitting node with spread restricted by a
parameter, r, genetically set for each node [Eq. 2 and Figure 1].
The maximum concentration at the emitting node is 1.0, and
the concentration builds up and decays linearly as dictated
by the time course function, T (t), defined by Eq. (3).

C(d, t) =
{

e−2d/r × T (t) d < r
0 else

(2)

FIGURE 1

A basic GasNet showing positive (solid) and negative (dashed) “elec-
trical” connections and a diffusing virtual gas creating a “chemical”
gradient. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

T (t) =




0 t = 0

min
(

1.0,
(
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s

))
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(

0.0,
(

T (t − 1) − 1
s

))
not emitting

(3)

where C(d, t) is the concentration at a distance d from
the emitting node at time t and s (controlling the slope of
the function T ) is genetically determined for each node. The
range of s is such that the gas diffusion timescale can range
from 1

2 to 1
11 of the timescale of “electrical” transmission

(i.e., a little slower to much slower). The total concentration
at a node is then determined by summing the contributions
from all other emitting nodes (nodes are not affected by their
own emitted gases to avoid runaway positive feedback). The
diffusion process is modeled in this simple way to provide
extreme computational efficiency, allowing arbitrarily large
networks to be run very fast (detailed modeling of 2D or 3D
diffusion from multiple sources is very expensive [5] and,
until very recently, could not be run in real-time without
dedicated parallel hardware).

For mathematical convenience, in the original basic Gas-
Net there are two “gases,” one whose modulatory effect is to
increase the transfer function gain parameter [kt

i from Eq. (1)]
and one whose effect is to decrease it. It is genetically deter-
mined whether or not any given node will emit one of these
two gases (gas 1 and gas 2), and under what circumstances
emission will occur (either when the “electrical” activation of
the node exceeds a threshold, or the concentration of a genet-
ically determined gas in the vicinity of the node exceeds a
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threshold; note these emission processes provide a coupling
between the “electrical” and “chemical” mechanisms). The
concentration-dependent modulation is described by Eq. (4),
with transfer parameters updated on every time step as the
network runs.

kt
i = k0

i + αCt
1 − βCt

2 (4)

where k0
i is the genetically set default value for ki , Ct

1 and
Ct

2 are the concentrations of gas 1 and gas 2, respectively, at
node i on time step t , and α and β are constants such that
kt

i ∈ [−4, 4]. Thus, the gas does not alter the electrical activ-
ity in the network directly but rather acts by continuously
changing the mapping between input and output for individ-
ual nodes, either directly or by stimulating the production of
further virtual gas. The general form of the diffusion is based
on the properties of a (real) single source neuron as modelled
in detail in [3]. The modulation chosen is motivated by what
is known of nitric oxide (NO) modulatory effects at synapses
[13]. For further details, see [8, 11].

A number of extended forms of GasNet have been devel-
oped and will be mentioned later. However, this article is
mainly concerned with a study of variants of the basic GasNet
which implement a range of constraints on spatio-temporal
properties to probe the effect of such factors on evolvability.

3. EVOLVABILITY AND OPERATION OF GASNETS
When they were first introduced, GasNets were demonstrated
to be significantly more evolvable than a variety of standard
ANNs on some noisy visually guided evolutionary robotics
tasks [8]. Typically, the increase in evolvability, in terms of
number of fitness evaluations to a reliable good solution, was
an order of magnitude or more.This trend was repeated with a
wider range of robot tasks in later work [9, 10, 12], where Gas-
Nets were found to be more evolvable than many other forms
of ANN. The solutions found were often very lean with few
nodes and connections, typically far fewer than was needed
for other forms of ANN [8]. But the action of the modulatory
gases imbued such networks with intricate dynamics: they
could not be described as simple. Oscillatory subnetworks
based on interacting “electrical” and “gas” feedback mecha-
nisms acting on different timescales were found to be very
easy to evolve and cropped up in many forms, from CPG cir-
cuits for locomotion [9, 14] to noise filters and timing mech-
anisms for visual processing [8, 15]. GasNets appeared to be
particularly suited to noisy sensorimotor behaviors which
could not be solved by simple reactive feedforward systems,
and to rhythmical behaviors (on which they often performed
as well as or better than CTRNNs [16] with complex internal
dynamics).

Two recent extensions of the basic GasNet, the receptor
and the plexus models, incorporated further influence from
neuroscience [11]. In the receptor model, modulation of a
node is now a function of gas concentration and the quan-
tity and type of receptors (if any) at the node. This allows a

range of site specific modulations within the same network.
In the plexus model, inspired by a type of NO signalling seen
in the mammalian cerebral cortex [5], the emitted gas“cloud,”
which now has a flat concentration, is no longer centred on
the node controlling it but at a distance from it. Both these
extended forms proved to be significantly more evolvable
again than the basic GasNet [11].

3.1. What is the Trick?
The question naturally arises as to why the GasNet and vari-
ants are more evolvable. Intriguingly, in a comprehensive
study Smith et al. [10], found no explanation for increased
GasNet evolvability in terms of fitness landscape properties
(neutrality, epistasis, etc.) apart from at high fitness val-
ues. There it was argued that the key to understanding the
improvement of the GasNet was to analyze its behavior at a
higher level of abstraction. In particular, it was shown that
the temporal dynamics of the GasNet seemed to make it rela-
tively easy to tune the networks to the time-scales needed in
the task [15]. Similar high-level analyses of the spatial struc-
ture of successful GasNets and variants, led to the hypothesis
that it was the level of coupling between the electrical and gas
signalling systems that was key. In particular that successful
evolution came through the systems being flexibly coupled:
neither independent of each other nor too tightly bound,
allowing one system to be “tuned” against the other without
causing catastrophic destructive interference [11]. Through-
out, however, it was clear that these factors did not act in
isolation and that it is the modulatory effect of the gas that
lends the networks their adaptivity. This leads to three linked
hypotheses on why the GasNets evolve faster:

1. The action of gas over multiple different timescales from
the electrical activity introduces rich dynamics which can
be exploited.

2. The spatial embedding of the networks serves to (flexibly)
couple two interacting signalling systems.

3. The particular modulatory effects are key to evolvability.

In this article, these hypotheses are examined in the light
of empirical studies, focusing on a comparison of variants of
the basic GasNet formed by imposing various constraints on
spatial, temporal, and modulatory properties.

4. COMPARATIVE STUDY
A thorough comparative study of the evolvability of variants
of the basic GasNet was carried out on a noisy robotic visual
discrimination task.This task has been used before in detailed
comparisons between the GasNets and other styles of ANN
[8, 11], allowing some comparison to be made across the
studies. The study used variants of the basic GasNet, rather
than of extended forms of GasNet, to avoid confusing the
issue while trying to sift out which factors are most important
to evolvability.
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FIGURE 2

The simulated arena and robot. The bottom right view shows the robot position in the arena with the triangle and rectangle. Fitness is evaluated on how close
the robot approaches the triangle. The top right view shows what the robot “sees,” along with the pixel positions selected by evolution for visual input. The
bottom left view shows how the genetically set pixels are connected into the control network whose gas levels are illustrated. The top left view shows current
activity of nodes in GasNet. A validated simulation of the robot shown in Figure 3 was used.

4.1. GasNet Types
Nine variants of the basic GasNet were compared with probe
the questions raised in the previous section. Each of these
employed different constraints on spatial, temporal, or mod-
ulatory properties of the network. Referring to the labels
used in the later results section (section 4.3), these were:
gnet, the basic GasNet as described in section 2; nchem, the
basic GasNet with all chemical effects turned off, so effec-
tively a simple recurrent connectionist network; gnetN, the
basic GasNet with no diffusion dynamics [i.e., T (t) = 1, ∀t ,
where T (t) is the time course function of Eq. (3)]; gnetNw,
the same as gnetN but with T (t) = w where w ∈ {0, 1, 2} is
a “gas weight” genetically set for each node; flatR, same as
basic GasNet except the gas concentration within the genet-
ically set radius for each emitter is flat with no gradient [the

term e−2d/r in Eq. (2) is replaced by e−1]; flatRN, same as
flatR except without diffusion dynamics (T (t) = 1, ∀t); flatE,
same as flatR except the influence of the gas is not confined
to the genetically set radius of influence for a node but now
extends everywhere; flatEN, same as flatE but without diffu-
sion dynamics; AddMod, the most radical variant where the
multiplicative modulation of the basic GasNet is replaced by
an additive modulation as described by Eq. (5) (i.e., the gas
no longer modulates the transfer function gain parameter but
instead modulates an additional additive bias term).

Ot
i = tanh


k0

i


∑

j∈�i

wjiOt−1
j + I t

i


 + bi + γi

(
Ct

1 − Ct
2

) (5)
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where Ct
1 and Ct

2 are gas concentrations, γi ∈ [0, 2] is a
genetically set parameter and all other terms are as in Eq. (1).

4.2. Robotic Visual Discrimination Task
Starting from an arbitrary position and orientation in a black-
walled arena, a robot equipped with a forward facing camera
must navigate under extremely variable lighting conditions to
one shape (a white triangle) while ignoring the second shape
(a white rectangle). The relative position of the shapes varied
from trial to trial, as did their size within a variation of 10%
in both dimensions. Because of the noise and variation, and
limited sensory capabilities, this task is challenging, result-
ing in a complex rugged search space for all network types
studied. Both the robot control network (one or other Gas-
Net variant) and the robot sensor input morphology, i.e., the
number and position of the camera pixels used as input and
how they were connected into the network, were under evo-
lutionary control. This is illustrated in Figures 2 and 3. Fitness
was measured using the function F given in Eq. (6), a weighted
sum of values from 16 trials of the controller from different
random initial conditions:

F = 2
N (N + 1)

i=N∑
i=1

i

(
1 − DF

i

DS
i

)
(6)

where DF
i is the distance to the triangle at the end of the

ith trial, and DS
i the distance to the triangle at the start of

the trial, and the N (= 16) trials are sorted in descending
order of DF

DS . Thus good trials, in which the controller moves
some way toward the triangle, receive a smaller weighting
than bad trials — this form of fitness punishment encourag-
ing robust behavior on all 16 trials. Success in the task was
taken as an evaluated fitness of 1.0 (perfect score) over 10
successive generations of the evolutionary algorithm. Evalu-
ations took place using a validated minimal simulation of the
robot as described in [8]. Controllers developed in the simu-
lation successfully transferred to reality generating behaviors
in the actual physical robot at least as well as in the simu-
lation. The noisy lighting conditions, varying positions and
sizes of the shapes, and other properties of the simulation
meant that highly robust solutions developed, generalized to
the variations experienced during evolution [8].

A geographically distributed asynchronous updating evo-
lutionary algorithm was used [8], with a population size of
100 arranged on a 10 × 10 grid. Parents were chosen through
rank-based roulette-wheel selection on the mating pool con-
sisting of the eight nearest neighbors to a randomly chosen
grid-point. A mutated copy of the parent was placed back
in the mating pool using inverse rank-based roulette-wheel
selection. In what follows, a “generation” in such an algorithm
occurs every 100 reproduction events.

The robot controllers were encoded as a variable length
string of integers, with each integer lying in the range [0, 99].
Each node in the network was coded for by 19 parameters

FIGURE 3

The gantry robot used in this study. A CCD camera head moves at
the end of a gantry arm allowing full 3D movement. In this study, 2D
movement was used, equivalent to a wheeled robot with a fixed forward
pointing camera.

controlling such properties as node positions on the 2D grid
in which GasNets operate, “electrical” connectivity, whether
or not the node has sensor input, and if so, where it comes
from in the camera field of view, and all gas diffusion and
modulation parameters. Connections were formed using a
spatial scheme as described in [8], with each node connect-
ing to nodes lying within two genetically specified connection
segments (one for excitatory and one for inhibitory con-
nections). Hence, each genotype consists of N blocks of 19
integers coding for the properties of the nodes, where N is
the number of nodes in a particular network (this varies from
genotype to genotype).

Three mutation operators were applied to solutions dur-
ing evolution. Each integer in the string had a 10% probability
of mutation in a Gaussian distribution around its current
value (for certain genes, 20% of its mutation will be random
jumps within the full possible range). There was also an addi-
tion operator, with a 4% chance per genotype of adding one
neuron to the network by inserting a block of random values
describing each of the new node’s properties. Finally, there
was a deletion operator, with a 4% chance per genotype of
deleting one randomly chosen neuron from the network.

4.3. Results
Results of the comparative study are summarized in Figure 4.
A quick glance suggest that the basic gasnet (group 1) is the
most consistently evolvable with group 9 (AddMod) clearly
the worst (no runs were successful). Group 2 (nchem), in
which gas effects are turned off, performs poorly on most
runs, although, like most other variants, some runs produce

© 2010 Wiley Periodicals, Inc.
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FIGURE 4

Boxplot summarising results of the comparative study.The X axis refers
to the network groups as discussed in the text. The Y axis shows gen-
erations to success as defined by the stopping criteria explained in
the text. The horizontal line within each box is the median, the top,
and bottom of the box show the 75th and 25th percentiles, respec-
tively, the whiskers extend to extreme points of the data not considered
outliers (as defined by Rosner’s test), with outliers plotted individually.
[Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

good solutions relatively quickly. Most other network types
without diffusion dynamics, thereby robbed of rich temporal
properties, including multiple timescales, perform relatively
poorly (groups 3, 4, 6). However, the relatively good perfor-
mance of group 8, without dynamics, especially compared
with group 7, which has dynamics, suggests that the story
is not quite as simple as it might at first appear. Because it
is not possible to assume the data distributions are normal,
nonparametric statistical procedures were used to test for

significant differences between the network types. A Kruskal-
Wallis test performed on the whole data set (all 9 groups)
revealed highly significant differences between the distri-
butions (p < 10−14). Pair-wise Wilcoxon rank-sum tests,
adjusted for multiple comparisons using the Dunn-Sidak
procedure for controlling type-1 statistical errors [17], were
used to further probe the differences between the distribu-
tions. These tests showed that all network types, except group
6 (flatRND), were significantly more evolvable (in terms of
generations to consistent success) than group 9 (AddMod).
Because the Dunn-Sidak procedure is necessarily conserva-
tive and becomes more so as the number of groups increases,
pairwise comparisons were recalculated for all network types
except AddMod (i.e., groups 1–8). The results of these com-
parisons are shown in Table 1. Comparisons between smaller
independent subgroups are shown in Tables 2 and 3; these
reveal further significant differences within the context of a
smaller number of comparisons. Further discussion of these
results, including insights from other related work, is given in
the next section.

5. DISCUSSION
This section draws together conclusions from the com-
parative study. It proceeds by considering in turn each of
the factors identified in section 3, before turning to other
phenomena that might help to explain the results.

5.1. Dynamics and Timescales
The figures and tables of section 4.3 reveal the importance
of the dynamics conferred by the diffusing gases. The basic
GasNet (group 1) is significantly more evolvable than the
variant with the gas turned off (group 2) as well as the vari-
ants with the gas operating but without dynamics (groups 3
and 4). It is also significantly more evolvable than the vari-
ant with the gas operating but with neither a concentration
gradient nor dynamics (group 6). However, there is one group

TABLE 1

Summary of Tests for Differences Between Evolvability (Generations to Consistent Success)

Sig Diff? (1) gnet (2) nchem (3) gnetN (4) gnetNw (5) flatR (6) flatRN (7) flatE (8) flatEN

(1) gnet n Y Y n n Y n n
(2) nchem Y n n n n n n n
(3) gnetN Y n n n n n n n
(4) gnetNw n n n n n Y n n
(5) flatR n n n n n Y n n
(6) flatRN Y n n Y Y n Y Y
(7) flatE n n n n n Y n n
(8) flatEN n n n n n Y n n

Distributions for network types 1–8 were tested against each other using pair-wise Wilcoxon rank-sum tests adjusted for multiple comparisons using the

Dunn-Sidak procedure. Cell entries state whether or not there is a significant difference between the two distributions in question (p < 0.05).
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TABLE 2

Pairwise Comparison Tests for Subgroup of Standard GasNet and its
Simple Variants with no Diffusion Dynamics

Sig diff? (1) gnet (3) gnetND (4) gnetNDw

(1) gnet n Y Y
(3) gnetND Y n n
(4) gnetNDw Y n n

Methodology as in Table 1.

without gas dynamic that the basic GasNet is not significantly
more evolvable than group 8 (flatEN), of which more later.
The version of the GasNet with diffusion dynamics but with-
out a concentration gradient (group 5, flatR) performs fairly
well with a low minimum and median, but the fairly high
spread of results means that it is not as reliably evolvable as
the basic GasNet. There is a similar story for group 7 (flatE)
but its reliability is even worse; it should be noted that this
restricted form of GasNet has similarities with various net-
work models of neuromodulation that use global modulator
signals [18].

Although these results suggest there is more to the Gas-
Net’s evolvability than the multiple timescales provided by
the gas diffusion dynamics, they do add a certain amount
of weight to previous suggestions that their easily tunable
dynamics is an important part of their success (as well as to
more general claims about the importance of dynamics in
the generation of behavior [19]). These suggestion came from
Smith et al.’s work [15] on taking GasNet and NoGas (equiva-
lent to nchem, group 2) networks successfully evolved for the
same robot visual discrimination task used in this article and
re-evolving them in versions of the robot simulator where the
natural timescales have been radically altered by making the
motor speeds much slower or much faster. It was found that
the GasNet was able to successfully re-evolve significantly
faster. Analysis of networks showed how the frequency of
crucial oscillatory circuits, involving gas diffusion and used
to time active visual scanning movements central to the suc-
cessful behavior, could be easily changed by moving nodes
(so the time taken for gas concentration to build up at its tar-
get was increased/decreased) and/or changing the slope of
the diffusion timecourse function T (t) [Eq. (3)]. These results
were backed up by a further study of GasNets on a simple
pattern generation task. Four simple test-patterns were used,
all consisting of a number of ones followed by a number
of zeros, repeating for the entire 200 time-steps of fitness
evaluation. Networks were scored according to how closely
they produced the required pattern [20]. In this case, a fixed
architecture of four fully connected nodes was used; although
the positions of the nodes and the spatial aspects of the

gas diffusion were under evolutionary control, the architec-
ture of “electrical” connectivity was not (although connection
weights were). Again GasNets were shown to be more adapt-
able to changed timescales. The pattern generation study was
only intended as a minor addition to the robot studies, but
its computational simplicity has prompted others to use it;
although its very simplicity and its architectural constraints
do not necessarily make it ideal for studying GasNets, which
were originally intended for the generation of sensorimotor
behaviors in noisy environments.

5.2. Modulation
Even more obvious is the role of the type of modulation used
— additive modulation proved to be useless (group 9). The
multiplicative modulation employed in all other variants is
able to assert a much more drastic influence on a node, being
able to radically change the transfer function by altering the
gain kt

i [Eq. (1)] — for instance flipping the slope from positive
to negative or making it flat. These kinds of radical changes
were dynamically employed in most successful GasNets and
were at the heart of mechanisms, such as oscillators, used
to produce stable reliable behavior in the face of significant
noise [8, 15]. Additive modulation, which acts at the same
level as a node input or bias, could not produce strong enough
effects to generate stable behavior. An earlier study on the
simple pattern generation task mentioned above also showed
that multiplicative modulation was significantly better than
additive in a form of GasNet similar to the basic one used
here [21]. When GasNets were first introduced [22], an alter-
native node transfer function was successfully used. This had
the form Oi(Si) = (Sa

i + Sb
i )/2, where Si is the normalized

input to the ith node, and the parameters a and b were mod-
ulated by the gases. This form of modulation also allowed
potentially large alterations to the transfer function, which
seems to be necessary for effective evolution. These kinds of
(multiplicative or exponential) modulations may well con-
fer evolutionary advantages by allowing network nodes to be
sensitive to different ranges of input (internal and sensory) in
different contexts. For instance, in one (behavioral) context

TABLE 3

Pairwise Comparison Tests for Subgroup of all GasNet Variants with no
Diffusion Dynamics

Sig Diff? (3) gnetN (4) gnetNw (6) flatRN (8) flatEN

(3) gnetN n n Y n
(4) gnetNw n n Y n
(6) flatRN Y Y n Y
(8) flatEN n n Y n

Methodology as in Table 1.
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an input node may need to be sensitive to a range of low sen-
sor values, whereas in another, it is required to be sensitive to
a range of high values. Changing a node’s gain through multi-
plicative modulation allows its sensitivity to be adjusted in an
appropriate way. It has been shown that “calibrating” sensor
inputs into suitably exploitable ranges is far from straight-
forward for most forms of evolved neurocontroller and that
additional mechanisms are needed [23]. It seems that Gas-
Nets have a triple advantage in that such a mechanism is not
only available but it can be applied adaptively throughout the
task and is not confined to sensory inputs.

5.3. Spatial Embedding and Coupling
The comparative study does not give such a strong indica-
tion of the impact of the spatial properties of the GasNet. The
flatR (group 5) variant is identical to the basic GasNet, except
the gas concentration within the radial extent of the emitter is
flat. Although the evolvability of this group is good (not signif-
icantly different from the basic GasNet), the larger spread of
generations to success suggests a slight advantage in utilizing
a concentration gradient (group 1).The relative performances
of flatR and flatE (group 7), although not significantly dif-
ferent, again suggests a slight advantage in constraining the
spatial extent of the gas signal. These observations are backed
up by results using a nonspatial variant of the basic GasNet.
In that case, the network does not reside in a 2D space, and
there are explicitly coded “electrical” and “gas” weighted con-
nections between nodes; the gas connections have the same
dynamics and modulatory effect as in the basic GasNet [24].
On the simple pattern generation task mentioned above, it
was shown that there was no significant difference in evolv-
ability between the basic GasNet and the nonspatial GasNet
[24]. A similar independent study came to the same conclu-
sion [21]. Subsequently, it has been demonstrated that a range
of robot behaviors can be readily evolved using nonspatial
GasNets [12].

These results suggest that the dynamic modulatory
processes at play in the GasNet are the important thing
rather than the exact details of their implementation. The
very abstract computationally cheap diffusion model used
could just as easily be implemented as a special kind of direct
gas connection. However, analysis of the evolvability of the
extended forms of GasNet (receptor and plexus) outlined near
the start of section 3 indicate other roles for spatial embed-
ding. It was described earlier how the “electrical” connection
encoding relies on an indirect spatial process using segments
centred on the node. As the gas emission process is based
on circles centred on the node, there is significant room for
overlap between “electrical” connections and gas influence
between any pair of nodes, potentially causing destructive
interference between the two signalling mechanisms. With
the receptor model, gas influences between pairs of nodes
can easily be altered by the presence or absence of recep-
tors. With the plexus model, overlap between the signalling

mechanisms can easily be reduced by moving the (geneti-
cally determined) centre of the emitted “cloud” away from
the location of the emitting node. In this way, both these
forms of GasNet are able to significantly reduce destructive
interference between the signalling systems, instead exploit-
ing a loose, flexible coupling between them. This results in
significantly improved evolvability in these extended forms
of GasNet [11]. In these cases, the spatial embedding is a
convenient way to encourage the right kind of coupling.

Reduction in destructive interference is probably also the
explanation for the surprisingly good performance of group 8
(flatEN) in the comparative study, despite the lack of dynam-
ics in this variant. Because the gas concentration from any
node is flat and extends everywhere in the plane, the gas
influence between all pairs of nodes is constant and cannot
be changed by moving their positions — space has effectively
being taken out of the gas signalling system which is fully con-
nected. Although this does not completely remove potential
for destructive interference, it does mean that any changes
in “electrical” connectivity act against a constant backdrop
of gas “connections” which helps to reduce coupling, leav-
ing evolution free to “tune” the electrical system against the
unchanging gas system — a much easier job than tuning
two tightly coupled systems against each other. The perfor-
mance of this variant also demonstrates that although high
evolvability is not possible with both gas modulation and dif-
fusion dynamics switched off (nchem, group 2), it is possible,
in certain circumstances, without dynamics as long as gas
modulation is active.

The initial motivation for using a spatial model, albeit
a simple one, was to allow easy visualisation of the net-
works and their operation, and of course because the natural
phenomenon that inspired the work is quintessentially spa-
tiotemporal. It seems that for the simpler forms of GasNet,
the spatial aspects are not integral or essential to their suc-
cess, and they can just as well be implemented in other ways.
However, this is unlikely to be the case in extended forms.
In ongoing work on more complex networks, involving much
more detailed diffusion models, space is not a mere imple-
mentation detail — it is essential. In these kinds of networks
diffusing chemicals act as excitable media, forming com-
plex spatiotemporal patterns which can potentially greatly
increase the power of the systems. Indeed, it has recently
been shown that these patterns can themselves act as control
systems generating fairly complex memory-based behaviors
in simulated agents, even without any interacting neurons at
all [25].

5.4. Degeneracy
In biology, degeneracy is the property whereby structurally
different elements perform the same function or produce the
same output [26]. Because the function of such elements is
nearly always context dependent, this phenomenon is dis-
tinguished from simple redundancy which refers to identical
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structures performing the same function. As Edelman and
Gally [27] have pointed out, most, if not all, biological systems
are highly degenerate at all levels of structure and func-
tion. They argue that this property, which involves a tradeoff
between specificity and generality, confers adaptability and,
indeed, is a prerequisite for natural selection to operate effec-
tively. Analysis of GasNet solutions often reveals high levels of
degeneracy, with functionally equivalent subnetworks occur-
ring in many different forms, some involving gas and some
not [15]. Their genotype to phenotype mapping (where the
phenotype is robot behavior) is also highly degenerate with
many different ways of achieving the same outcome (e.g.,
moving node positions, changing gas diffusion parameters
or adding new connections can all have the same effect). This
is especially true when variable length genotypes are used
to efficiently sculpt solutions in a search space of variable
dimensions. The levels of degeneracy are generally signifi-
cantly higher than when using connectionist networks. These
properties partly explain the robustness and adaptability of
GasNets in noisy environments as well as their evolvability
(there are many paths to the same phenotypical outcome
with reduced probabilities of lethal mutations) [11].

5.5. Modularity
In a recent study on the interaction of spatial embedding and
modularity in neural networks, successfully evolved basic
and plexus GasNet solutions for the triangle-rectangle dis-
crimination task were analyzed to test whether or not the
different spatial embeddings led to differences in the modu-
larity of the networks [28]. This revealed that all of the plexus
topologies consisted of one component (i.e., every node was
reachable from every other node), whilst 14 (out of 33) of the
original GasNet runs produced a best performing controller
with at least two network components. In other words, the
plexus GasNets were less modular. It was hypothesized that
this lower degree of modularity was linked to the different
spatial constraints in operation in the plexus networks and it
might explain, in a way that is complementary to coupling,

their greater evolvability. Given that the required behavior
is decomposable into subtasks but requiring communica-
tion between these subparts [15], an alternative explana-
tion might be that nondisconnected networks are desirable.
Indeed, one could go further and argue that the basic GasNets
were more likely to produce disconnected nets because it
was difficult to implement communication between subparts
without destructive interference, because of the higher level
of coupling, while the looser coupling of the plexus networks
allows for all parts to interact.

6. CONCLUSION
The comparative study presented in this article suggests that
GasNets employing multiplicative modulation with dynam-
ics are the most evolvable, and it is shown that this finding is
backed up by other research. However, the study also revealed
that diffusion dynamics are not necessary for high evolv-
ability: in some circumstances “instant” modulation can do
the trick, as demonstrated by the flatEN variant (group 8).
In extended forms of GasNet, spatial embedding seems to
allow easy exploitation of the most beneficial kind of coupling
between the “electrical” and “gas” signalling mechanisms,
reducing destructive interference between them. A loosen-
ing of this coupling also appears to be behind the success of
the flatEN variant. In the most successful forms of GasNet,
dynamics, modulation, and spatial embedding act in concert
to produce highly evolvable degenerate networks. In future
work, these issues will be explored with more strongly biologi-
cally inspired networks embedded in excitable media formed
by reaction-diffusion systems, thus allowing much richer spa-
tiotemporal modulatory patterns to emerge which will enable
us to explore functionally and architecturally more complex
networks.
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