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Abstract

This paper reviews evolutionary approaches to the automatic design

of real robots exhibiting a given behavior in a given environment. Such

a methodology has been successfully applied to various wheeled and legged

robots, and to numerous behaviors including wall-following, obstacle-avoidance,

light-seeking, arena cleaning and target seeking. Its potentialities and

limitations are discussed in the text and directions for future work are

outlined.

1 Introduction

In the last few years, several researchers have attempted to bypass the difficulties
of hand-coding the control architectures of mobile robots that have to fulfil
given missions in unknown, and possibly changing, environments. Because such
difficulties stem from the impossibility of foreseeing each problem the robot
will have to solve, and from the lack of basic principles upon which human
design might rely, these researchers advocate the so-called evolutionary robotics
approach, i.e., an automatic design procedure. According to this approach, a
robot’s controller, and possibly its overall body plan, is progressively adapted
to the specific environment and the specific problems it is confronted with,
through an artificial selection process that eliminates ill-behaving individuals in
a population while favoring the reproduction of better-adapted competitors.

Such a process calls upon some evolutionary procedure such as a genetic
algorithm (Goldberg, 1989), an evolution strategy (Schwefel, 1995), or a genetic
programming (Koza, 1992) approach. It involves a population of genotypes (i.e.,
of information that evolves through successive generations) and a phenotype
(i.e., the robot’s control architecture, its body plan, and its behavior) that is
encoded in any one genotype. A dedicated fitness function is used to assess
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the behavior of each individual in the population and to direct the selection
proper. Dedicated operators such as mutation and cross-over give rise to new
genotypes in the population and permit robots of ever-increasing fitness to be
generated, until the process converges to some local or global optimum. In
the majority of applications, the evolutionary procedure is performed in two
stages: fitter phenotypes are first sought through specific robot simulations
and are then downloaded in turn on a real robot to check their fitness with
respect to real world constraints. However, in some other applications, the
evolutionary procedure takes place through evaluations performed directly on
the robot and fitnesses are directly assessed through real world interactions. In
both cases, software controllers can be evolved. They may be implemented as
control programs (in a high level language or in machine code), as a variety of
production-rule systems, or as neural networks. Finally, within the so-called
evolvable hardware approach (Sanchez and Tomassini, 1996; Higuchi et al.,
1997), genotypes code for the configuration of hardware controllers and body
plans, and fitnesses are also assessed through real world interactions.

In evolutionary robotics, as in many areas of AI, there is much interplay
between engineering and scientific goals and outcomes. Some researchers are
primarily interested in making better robots, others in sythesizing control sys-
tems, artificial nervous systems, whose mechanisms underpin the generation of
interesting adaptive behaviours in an artificial creature. The engineer wants
to make the thing work well, the scientist wants to understand how it works,
trying to abstract general principles, necessary and sufficient conditions and the
like. In much of the work covered in this paper the boundary between these two
types of endeavour is often blurred. In our view, evolutionary robotics shows
great promise in both areas and it is probably beneficial for the two to remain
somewhat entwined. This issue will be returned to towards the end of the paper.

Although numerous aspects of the methodology of evolutionary robotics have
been tested in ‘simulations’ where no particular robot was modelled and there
was no question of trying out evolved systems in the real world, such research
efforts won’t be cited in this review paper, which is centered on real robot ap-
plications. The robot the most often used in the applications described herein
is Khepera, but it will be shown that other robots, including walking robots,
have been used as well. This paper will also provide a discussion of the cur-
rent potentialities and limitations of evolutionary robotics and will end with
suggestions for future work.

2 Real robot applications

2.1 Khepera

Khepera (Mondada et al., 1993) is a circular miniature mobile robot with a
diameter of 55mm, a height of 30mm, and a weight of 70g that is supported by
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two wheels and two small Teflon balls. In its basic configuration, it is equipped
with eight infra-red proximity sensors — six on the front, two on the back
— that may also act as visible-light detectors. The wheels are controlled by
two DC motors with incremental encoders that move in both directions. It
has an on-board 68000 processor and can also be controlled by an off-board
computer via a serial link. Its convenient size, ready availability and the fact
that it is straightforward to program, has made it a very popular tool for simple
autonomous robotics experiments. As in other areas of new-wave robotics, many
evolutionary robotics have been carried out on Kheperas, allowing, at least in
principle, replication and comparison of results.

Using the Khepsim simulator, Jakobi et al. (1995) evolved both obstacle-
avoidance and light-seeking behaviors in Khepera. The simulation was based on
a continuous two-dimensional model of the real world physics and allowed the
calculation of the dynamics ofthe robot’s sensory inputs in response to its motor
signals. Recurrent networks of threshold units that were evolved in simulation
evoked qualitatively similar behavior on the real robot, especially when the levels
of noise present in the simulation had similar amplitudes to those observed in
reality.

To evolve the capacity of moving in the environment while avoiding obsta-
cles, Miglino et al. (Miglino et al., 1995a; Lund and Miglino, 1996) used a
two-layer feedforward neural network with no hidden units and a fitness func-
tion with three components, which were respectively maximized by speed, by
moving in a straight line, and by obstacle avoidance. With the help of a genetic
algorithm, the synaptic connections and thresholds of the neural controllers were
first evolved through simulation. Then, the corresponding networks were down-
loaded onto a Khepera and proved to be efficient. A similar two-staged approach
has been followed by Salomon (1996), who used a (3,6)-Evolution Strategy with
self adaptation of the step size (Back and Schwefel, 1993). Likewise, Naito et
al. (1997) used a genetic algorithm to configure how a set of 8 logic elements
could be connected to each other and to the sensors and motors of the robot.
Within this approach, each controller was downloaded on Khepera and its fit-
ness was directly assessed in the real world. With an alternative, and earlier,
approach, Floreano and Mondada (1994), allowed the whole evolutionary pro-
cess to take place entirely on the robot without human intervention. Two-layer
Elman neural networks (Elman, 1990) were used as controllers. This architec-
ture consisted of a single layer of synaptic weights from eight sensor units to two
motor units, with recurrent connections within the output layer, the same three
component fitness function was used. Using the same neuronal architecture and
the same fitness function, and in order to study the interactions between associa-
tive learning and evolution, Floreano and Mondada (1996a) let evolve the type
of the Hebbian rule that was employed by each synapse in the network. Each
synapse was thus genetically described by a set of four properties: whether it
was driving or modulatory, whether it was excitatory or inhibitory, its Hebbian
rule, and its learning rate. Four Hebbian rules could be used: pure Hebbian,
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postsynaptic, presynaptic, and covariance (Willshaw and Dayan, 1990). Under
such conditions, each decoded neural network changed its own synaptic strength
configuration according to its genotypic specifications and without external su-
pervision while Khepera interacted with its environment. Experimental results
showed that the efficient controllers that evolved exhibited synapses that were
continuously changing in a dynamically stable regime. In other words, knowl-
edge in such networks is not expressed by a final stable state of the synaptic
configuration, but by a dynamical equilibrium. There are also indications that
such plastic neurocontrollers are more resistant to sensor damage than standard
static controllers.

Another study of the interactions between associative learning and evolution
is that of Mayley (1996) who evolved simple feedforward neural controllers for
wall-following in Khepera. In this work also, besides encoding the network’s
weights, the genome determined whether each weight was plastic or not i.e.,
whether it might be changed or not by an Hebbian learning process. Exper-
imental results indicated that, as long as there are costs to be paid for the
ability to learn, learning is first selected for and then against as evolution pro-
gresses, thus illustrating how a learned trait or behavior may become genetically
assimilated.

In Floreano and Mondada (1996b) the evolution of a set of behaviors that
allowed a Khepera robot to locate a battery charger and periodically return
to it so as to increase its chances of survival has been achieved. In this work,
the Khepera robot was equipped with two additional sensors. One ambient
light sensor was placed under the robot platform pointing downward, so as
to detect a black painted area on the floor that was considered as the place
where its battery was recharged. Another simulated sensor was used to provide
information about the current energy level of the robot’s battery. Thus, the
input layer of the neural network consisted of twelve receptors each clamped
to one sensor: 8 for IR-emitted light, 2 for lateral ambient light, 1 for floor
brightness, and 1 for battery charge. The controller architecture was completed
with a hidden layer of 5 units with recurrent connections and an output layer
of two units, one for each motor. To evaluate the fitness of each individual,
each robot started its life with a fully charged battery that was discharged by a
fixed amount at every time step and that was instantaneously recharged if the
robot happened to pass over the black area. While a given maximum life time
was allotted to each robot, a fully discharged battery entailed instantaneous
death. The robot’s fitness was accumulated at each step during evaluation and
called upon two components: the first one was maximized by speed and the
second by obstacle avoidance. Although such a fitness function specified neither
the location of the battery station, nor the fact that the robot should reach it,
the right behavior evolved because the accumulated fitness of each individual
depended both on the performance of the robot and on the length of its life.

In the work of Nolfi (1996b) the parameters of a feedforward neural net-
work with no hidden units were evolved to control a Khepera robot that had
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to explore its environment, to avoid walls and to remain close to a cylindrical
target when it found it. The fitness of each controller was assessed through
simulation and depended upon the time spent close to the target. Experimental
results showed that the evolved individuals were successful in the real world
and that, by intensively using an active perception strategy, they could over-
come the problem posed by the fact that the walls and the target were hard to
distinguish in most cases. As an extension of this work, and in order to study
the interactions of individual learning and evolution, Nolfi and Parisi (1997)
added two output units to such feedforward controllers. These units served as
auto-teaching units (Nolfi and Parisi, 1993) that set the desired values of the
two motor-controlling units when, at the beginning of each individual’s test
period, a backpropagation algorithm was activated. Because testing could be
performed either in an environment with dark walls or in an environment with
white walls, backpropagation made it possible for a given individual to learn in
which environment it was placed and to accordingly adjust during its lifetime
the synaptic weights it inherited from the previous generation. Thus, through
successive generations, individuals capable of learning more and more rapidly
how to find the target evolved.

Using simulations to evolve simple feedforward neurocontrollers that were
later downloaded onto a Khepera robot equipped with a gripper module, Nolfi
(Nolfi and Parisi, 1995; Nolfi,1996a,1997a,b,c) evolved the task of keeping clear
an arena surrounded by walls, in which small cylindrical trash objects were dis-
posed at random. The best results were obtained when the neural controllers
exhibited a so-called emergent modular architecture. Within such architecture,
the number of available modules, their internal organization, and the mecha-
nisms that determined their interaction were pre-designed and fixed. However,
the way each of these modules was used at each time step depended upon the
evolved values of each connection weight and bias within the overall architec-
ture. Such values were directly binary encoded in individual genes. Fitnesses
were evaluated by counting the number of objects correctly released outside the
arena during a given evaluation time. During evolution, individuals capable of
simply picking up targets were slightly favoured. Likewise, experience showed
that it was useful to artificially increase the number of times the robot encoun-
tered another target while carrying an object, in order to force the evolutionary
process to select individuals able to avoid targets when the gripper was already
holding something.

Researchers at Dortmund University (Nordin and Banzhaf, 1996; Banzhaf et
al., 1997) evolved obstacle-avoidance and object-following behaviors in Khepera
with a Genetic Programming (Koza, 1992) variant that manipulates machine
code directly. Their system uses linear genomes composed of variable length
strings of 32 bit instructions for a SUN-4 computer. Each instruction performs
arithmetic or logic operations on a small set of registers and may also include
a small integer constant of 13 bits at most. The genetic operators are tailored
to manipulate genetic code directly. In particular, crossover occurs between
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instructions and thus changes the order and number of instructions in offspring
programs; mutations are allowed to flip bits within instructions. To evolve ob-
stacle avoidance, a fitness function with a negative and positive part was used.
The former was the sum of all proximity sensors; the latter was dependent upon
wheel speeds and assessed how straight and fast the robot was moving. For
object following, the robot’s task was to follow moving objects without collid-
ing with them. The corresponding fitness function used values returned by the
4 sensors facing forward, and rewarded individuals capable of both moving to-
wards objects far away and avoiding too close objects. Encouraging preliminary
results have been obtained in experiments where the system is using a memory
buffer that stores event vectors representing salient sensory-motor situations
encountered in the past.

Instead of directly evolving a complex behavior as a whole, Lee et al. (1997a,b)
evolved behavior primitives and behavior arbitrators for a Khepera robot that
had to push a box toward a goal position indicated by a light source. To ac-
complish this task, they used a genetic programming system that evolved the
controller programs of two behavior primitives, box pushing (keep pushing a
box forward) and box-side-following (move along the side of a box). In ad-
dition, they also evolved an arbitrator program that was used to arrange the
executing sequence of the behavior primitives. Experimental results show that
controllers evolved in simulation were transferred to the real robot without loss
of performance.

Several research efforts have aimed at evolving neural controllers for the
Khepera robot through developmental approaches that call upon various biomimetic
processes — like cell division, cell differentiation, or cell adhesion — to grad-
ually build a neural control architecture. Controllers for obstacle-avoidance,
light-seeking or light-avoiding behaviors have thus been evolved by Eggenberger
(1996). Wall-following and obstacle-avoidance behaviors have also been evolved
through such a developmental approach by Michel (Michel, 1996; Michel and
Collard,1996).

Smith (1997) successfully evolved a football playing Khepera. The Khepera
was equipped with a minimal 1-D CCD camera-based visual system and used
this to guide its behaviour. Behaviours evolved in simulation allowed the robot
to successfully find the ball and accurately push it up the pitch and into the
goal. When down-loaded onto the real Khepera, the controllers were equally
successful. A GA was used to set the weights on a fixed architecture neural
network in which 16 visual inputs, recurrent connections from the two motor
outputs and the input from a crude compass, were all fully connected to 16
hidden units. The hidden units received input from a bias unit and each had
recurrent connections. Each of the 16 hidden units was connected to both left
and right motor neurons.

Finally, with the aim of evolving a behavior that was at least one step up from
the simple reactive behaviors that have been sought so far, Jakobi (1997a,b) suc-
ceeded in evolving reliably fit recurrent neural network controllers that allowed
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a Khepera robot to memorize on which side of a corridor it passed through a
beam of light. Then, when the robot arrived at a T-maze junction at the end
of the corridor, its task was to turn in the direction of the memorized light and
move down the corresponding arm. Controllers that have been evolved within
around 1000 generations in simulation were downloaded onto Khepera and per-
formed the task satisfactorily and efficiently. Both this and Smith’s footballing
Khepera were evolved using ultra-fast ultra-minimal simulations (Jakobi 1998).

2.2 Other robots

Several experiments have been performed at Sussex University (Harvey et al.,
1994; Husbands et al., 1997, Jakobi, 1997a,b) in which discrete-time dynam-
ical recurrent neural networks and visual sampling morphologies are concur-
rently evolved to allow a gantry robot to perform various visually guided tasks.
Such experiments called upon a CCD camera sensing its environment through a
swiveling mirror. For instance, within an environment predominantly dark, the
robot had to move toward fixed or mobile white targets. Likewise, in one exper-
iment it had to approach a white triangle while ignoring a white rectangle. In
such experiments, successful behaviors were evolved using a genetic algorithm
acting on pairs of chromosomes encoding the visual morphology and the neural
controller of the robot. One of the chromosomes was a fixed length bit string
encoding the position and size of three visual receptive fields from which the
visual signals processed by the neural controller were calculated. The other was
a variable length character string encoding the number of hidden units and the
number of excitatory and inhibitory connections between neurons. The number
of input nodes was fixed to seven (one input for each of three visual receptive
field and for each of four tactile sensors) and the number of output nodes was
fixed to four (two for each ’virtual wheel’, whose motions were translated into
gantry movements and mirror angular velocities); the hidden nodes were vari-
able in number. Unlike most of the work previously mentioned, in this research
the network architecture was not constrained; arbitrarily recurrent networks of
any topology were allowed. The methodology followed was also rather different
from that practiced elsewhere; a converged population was taken through an
incrementally more difficult succession of environments using different fitness
functions at each stage (Harvey 1992, Husbands and Harvey, 1992). The ap-
paratus was designed to allow real-world evolution (Harvey et al., 1994) but
behaviours have also been successfully evolved in minimal simulations (Jakobi,
1997a). In this later work the number of visual inputs was not fixed and the
lighting conditions were far noisier than in the original experiments. Highly
robust target discriminator controllers were evolved.

Interactions between reinforcement learning and evolution have been ex-
ploited in the work by Grefenstette and Schultz (1994), which calls upon the
use of the SAMUEL classifier system (Grefenstette and Cobb, 1991) for evolv-
ing collision-free navigation in a Nomad 200 mobile robot equipped with 20
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tactile, 16 sonar, and 16 infra-red sensors. Within such an approach, apart
from being liable to mutation, the condition part of each of SAMUEL’s rule
which was compared against the current sensor readings was also submitted
to dedicated generalization and specialization operators. The task consisted of
learning to reach a fixed goal location in a predetermined time, starting from
a fixed initial position within an environment that contained obstacles whose
positions were changed at each trial. With a population size of 50 rules, rule
sets evaluated through simulation over 50 generations were downloaded on the
robot and proved to be efficient 86similar approach is that of Colombetti and
Dorigo (1993) who used the ALECSYS software tool (Dorigo, 1993) to evolve
the control architecture of the AutonoMouse, a mouse-shaped autonomous robot
equipped with two on/off eyes positioned in front of the robot and sensing light
within a cone of about 60 degrees. In this work, the robot’s control architec-
ture was a set of interconnected classifier systems and the behavior to evolve
was light-chasing. To succeed, the robot had to learn appropriate moves so as
to cope with situations where the target light was on, but out of the robot’s
sight. The robot’s fitness was evaluated through light intensity, detected by a
dedicated central light sensor.

Miglino et al. (1995b) evolved a four-layer Elman-like recurrent neural net-
works with 2 sensory units, 2 output units, 2 hidden units, and 1 memory unit
that allowed a mobile Lego robot to explore the greatest percentage of an open
area within an allotted number of steps. Two optosensors were used to detect
whether the areas ahead and behind the robot’s current location were black or
white, thus allowing the robot to move within a central white surface surrounded
by a black border. Such moves were determined by the values of the two output
units. The architecture of the controllers was fixed and only the weights of the
connections were encoded in the genotype, as a vector of 17 integer numbers.
Although the fitness of each controller was assessed through simulations, exper-
iments showed that evolved controllers were efficient in the real world, despite
the fact that the real trajectories were significantly different from the simulated
ones.

Yamauchi and Beer (1994) used a Nomad 200 mobile robot to evolve neu-
ral controllers capable of identifying one of two landmarks based on the time-
varying sonar signals received as the robot turned around the landmark. The
robot’s trajectory was controlled by a fixed behavior-based control system that
allowed the robot to find a wall and follow it counterclockwise around the
perimeter of the experimental room. A single sonar on the left side of the
robot was used to detect a central landmark and its range signals were input to
each of the eight neurons in a continuous-time fully-connected recurrent neural
network (Beer and Gallagher, 1992). One of these neurons was designated the
output unit and its firing rate after a fixed period of time (i.e., after the input
signal sequence has been integrated over time) was used to classify the land-
mark. Network parameters — like time constants, thresholds, or connection
weights — were genetically encoded as vectors of real numbers, of which each
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element was indivisible under crossover. The fitness function of each individual
in a population of 100 networks was evaluated in simulation and assessed the
average capacity of the network to correctly identify the landmarks over six test
trials. After 15 generations, an individual capable of correctly recognizing the
landmarks in simulation was generated. When transferred onto the real robot,
it correctly classified the landmarks in 17 out of 20 test trials.

In Yamauchi (1993), other evolutionary robotic simulations are described
that have been successfully applied to predator avoidance in a Nomad 200 robot.
In this approach, dynamic neural networks were used to perform the task of
evading a moving pursuer while avoiding collisions with stationary obstacles.

Baluja (1996) presents an evolutionary method for designing a neural con-
troller for the Carnegie Mellon’s NAVLAB autonomous land vehicle. To as-
sess its steering abilities, the neural network is shown video images from the
NAVLAB’s onboard camera as a person drives and its task is to output the
direction in which the person is currently steering. A maximal network archi-
tecture is defined, which determines the structure and maximum connectivity
of the controller to which, during evolution, connections may be removed but
not added. In one series of experiments, this maximal network architecture
was a fully-connected perceptron with a 15 x 16 pixels input retina, a five unit
hidden layer, and a single unit layer whose activation determined how sharply
the steering should be to the left or to the right of center. In a second se-
ries of experiments, the same architecture was used, but with 30 output units,
each of which was considered as representing the network’s vote for a partic-
ular steering direction. In both cases, the so-called PBIL (Population-Based
Incremental Learning) evolutionary algorithm was used, according to which a
probability vector is evolved as a prototype from which potentially highly fit
networks can be derived. This vector specifies the probabilities of having a 1
or a 0 in each bit position of a string encoding the topology and connection
weights of a neural controller. During evolution, in a manner similar to the
training of a competitive learning network, the values in the probability vector
are progressively shifted toward the bit values that specify efficient network de-
signs. This evolutionary approach performed better, on average, than standard
backpropagation, especially in the one-output networks.

Using a genetic algorithm acting on individuals represented as real-coded
vectors of weights, Meeden (1996) evolved recurrent neural controllers for a four-
wheeled robot that had to continually keep moving, to avoid contacts with walls,
and either to seek or avoid light depending upon its current goal. This robot was
equipped with three front and one back touch sensors, with two light sensors, and
with one goal sensor that indicated that the robot should seek out (or avoid) the
light until a maximum (or minimum) light reading was obtained. For movement,
the robot had two servo-motors: one controlling forward and backward motion,
the other controlling steering. Elman-like networks with a fixed architecture
were used for that purpose — with 7 input units each connected to a given
sensor, 5 hidden units with recurrent self-connections, and 4 output units that
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determined how to set the motors for the next time step. During evaluation, the
fitness of a given controller was incremented or decremented after each robot’s
action, according to a reward scale that took into account whether or not the
robot accomplished a light goal, kept moving, had any touch sensor triggered,
and correctly followed the light gradient. Experimental results showed that the
evolutionary update of weights out-performed a complementary reinforcement
backpropagation learning algorithm (Ackley and Litman, 1990) under delayed
reinforcement conditions, i.e., when no light gradient reinforcement was provided
between two switching-goal episodes.

Jeong and Lee (1997) got promising results suggesting that a genetic al-
gorithm could be used to automatically design the controllers and the control
strategies for two-wheeled soccer playing robots. Such robots are assumed to be
used within an experimental setup consisting of a host computer that processes
the vision data acquired by a camera and sends to each robot information about
the positions of the ball and of each robot. A two-stage evolutionary approach
has been investigated. In a first stage, production rules have been evolved,
whose condition parts take into account the positions of the relevant objects
i.e., the partners, the opponents, the goals, and the ball and whose action parts
trigger a relevant action i.e., a move, a dribble or a kick. In a second stage,
optimal on-off control signals to the motors were evolved that allowed a robot
to reach a position with desired coordinates and orientation.

Ram et al. (1994) used a genetic algorithm to find appropriate combina-
tions of parameters for basic reactive behaviour schemas used to control an
autonomous mobile robot engaged in navigation tasks. Example primitive be-
haviours are: move-to-goal and avoid-static-obstacle. Parameters involved in
the underlying implementation of these behaviours are quantities such as: goal
gain (strength with which robot moves towards goal), obstacle gain (strength
with which robot moves away from obstacle) and obstacle sphere of influence
(distance from obstacle at which robot is repelled). The use of a genetic algo-
rithm greatly reduced the time required to configure the navigation systems.

Gallagher et al. (1996) describe experiments were neural networks con-
trolling locomotion in an artificial insect were evolved in simulation and then
successfully downloaded on a real 6-legged robot. In this approach, each leg
was controlled by a fully interconnected network of 5 Hopfield-like continuous
neurons (Hopfield, 1984), each receiving a weighted sensory input from that
leg’s angle sensor. Three of these neurons were motor neurons that respectively
governed the state of the forward and backward joint torques of the leg and the
state of the corresponding foot. The remaining two neurons were interneurons
with no pre-specified role. Thanks to various simplifying assumptions (Beer and
Gallagher, 1992), a set of only 50 parameters which described neuronal physical
constants, crossbody connection weights and intersegmental connection weights
needed to be encoded in the insect’s genotype as mere bit strings.

A genetic algorithm has been used by Galt et al. (1997) to derive the opti-
mal gait parameters for a Robug III robot an 8-legged, pneumatically powered
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walking and climbing robot. The individual genotypes were encoded to repre-
sent the phase and duty factors i.e., the coordinating parameters that represent
each leg’s support period and the time relationships between the legs. Con-
trollers were thus evolved that have been proved capable of deriving walking
gaits that are suitably adapted to a wide range of terrains, damages or system
failures. Future research will be targeted at using information on the terrain
contours provided by the robot’s legs. Such information can be used by neural
networks to provide one step ahead forecast of the terrain conditions and hence
improve the walking efficiency.

Gomi and Ide (1997) evolved the gaits of an 8-legged OCT-1 robot (AAI
Systems, Inc.) by loading it with a set of 50 software invoked control processes
that are each given in turn a fixed amount of time to actuate the robot’s legs.
The corresponding genotypes are made of 8 similarly organized sets of genes,
each gene coding for a legs motion characteristics such as the amount of delay
after which the leg begins to move, the direction of the leg’s motion, the end
positions of both vertical and horizontal swings of the leg, the vertical and
horizontal angular speed of the leg, etc. The fitness function is set in favor of
a robot that stands up, evolves coordination among its legs motions, and has a
tendency to move forward. Moreover, fitness scores are increased when internal
sensors monitoring the servo motor electric currents indicate that a given leg
is moved under proper loading conditions. Fitness scores are decreased when
any of the sensors located on the belly of the robot detects a contact with the
floor. Typically, after generation 10, most individuals succeed in standing and
walking with a faint gait. Likewise, after a few dozen generations, a mixture of
tetrapod and wave gaits is obtained.

Gruau and Quatramaran (1997) also evolved controllers for walking in the
OCT-1 robot. Using a developmental approach called Cellular Encoding (Gruau,
1995) i.e., an approach that genetically encodes a grammar-tree program that
controls the division of cells growing into a discrete-time dynamical recurrent
neural network they first evolved a single-leg neural controller with one input
and two outputs. When commands for return stroke or power stroke were input
to the controller, it succeeded in respectively lifting the foot up and propelling
the leg forward or puting the foot down and propelling the leg backwards. Then,
they put together 8 copies of the leg controller and evolved a neural network
that called upon 8 oscillators with correct frequency, coupling, and synchro-
nization, which generated a smooth and fast quadripod locomotion gait. Gruau
used a form of interactive evolution, in which the experimenter decides fitness
scores by observing candidate robot behaviours, and shapes the course of evo-
lution by favouring certain traits they feel will be useful in the final solution.
Jakobi (1998) has successfully used his minimal simulation techniques to evolve
controllers for the same 8-legged robot. He used networks very similar to those
employed by Beer and Gallagher (1992). Evolution in simulation took about
2 hours only, and then transferred perfectly to the real robot. His neural con-
trollers allowed the robot to avoid obstacle using a fluid combination of forward
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and backward gaits.

3 Evolvable Hardware

Evolved Hardware controllers are not programmed to follow a sequence of in-
structions, they are configured and then allowed to behave in real time according
to semiconductor physics.

Thompson (1995,1997) used artificial evolution to design hardware circuits
as an on-board controllers for two-wheeled autonomous mobile robots displaying
simple wall-avoidance behavior in an empty arena. This work is now possible us-
ing particular types of Field Programmable Gate Arrays (FPGAs) which are ap-
propriate for evolutionary applications (eg. the Xilinx XC6200 series). A FPGA
is a Very Large Scale Integration (VLSI) silicon chip containing a large array
of components and wires. Switches distributed throughout the chip can be set
by an evolutionary algorithm and determine how each component behaves and
how it connects to the wires. In the 1995 work before the appropriate FPGAs
were available, it was necessary to construct ones own equivalent reconfigurable
circuits. Thompson’s approach called upon a so-called DSM (Dynamic State
Machine) equipped with genetic synchronizers and with a global clock whose
frequency was also under genetic control. Thus evolution determined whether
each signal was passed straight through asynchronously, or whether it was syn-
chronized according to the global clock. This process took place within the
robot in a kind of ”virtual reality” in the sense that the real evolving hardware
controlled the real motors, but the wheels were just spinning in the air. The
movement that the robot would have actually performed if the wheels had been
actually supporting it were then simulated and the sonar echo signals that the
robot was expected to receive were supplied in real time to the hardware DSM.
Excellent performances were attained after 35 generations, with good transfer
from the virtual environment to the real world. In later work after the Xilinx
XC6200 chips became first available, similar results (using infra-red rather than
sonar) have been obtained with a Khepera robot equipped with an onboard
Field-Programmable Gate Array (FPGA) (Thompson, 1997).

Using a Boolean function approach implemented on gate-level evolvable
hardware, Keymeulen et al. (1997a,b) evolved a navigation system for a mo-
bile robot capable of reaching a colored ball while avoiding obstacles during its
motion. The mobile robot was equipped with infra-red sensors and an active
vision system furnishing the direction and the distance to the colored target. A
programmable logic device (PLD) was used to implement a Boolean function in
its disjunctive form, which has been proved to be sufficient to control tracking-
avoiding tasks (Lund and Hallam, 1997). It appeared that such gate level evolv-
able hardware was able to take advantage of the correlations in the input states
and to exhibit useful generalization abilities, thus allowing the simulated evolu-
tion of a robust behavior in simple environments and a good transfer into the
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real world. Future work aims at accelerating on-line evolution by allowing the
robot to do some experimentation in an internal model of its environment, to
be implemented in an additional special purpose evolvable system.

Finally, Lund et al. (1997) advocate the use of so-called true evolvable hard-
ware to evolve, not only a robot’s control circuit, but also its body plan, which
might include the types, numbers and positions of the sensors, the body size,
the wheel radius, the motor time constants, etc. These authors are currently
developing a new piece of reconfigurable hardware that will make it possible to
co-evolve the control mechanisms and the auditory morphology of a Khepera
robot behaving like a female cricket which is able to use phonotaxis to locate a
song emitting male.

4 Discussion

The research field of evolutionary robotics came into being in the early 1990s
(e.g. Husbands and Harvey, 1992; Brooks, 1992), and has expanded rapidly,
largely in Europe and Japan. The special requirements of an evolutionary ap-
proach, in particular large numbers of trials, raise particular problems. These
were first tackled with a purpose-built piece of hardware at Sussex (Harvey et
al, 1994), but then the field really took off with the introduction of the Khepera
robot built in Lausanne (Mondada et al., 1993). This allowed many research
laboratories to move into the field relatively cheaply, and generate results that
are replicable elsewhere by others with the same class of robot.

An evolutionary approach to design could in principle be applied to any class
of control system architectures, but it is significant that the great majority of
research reported here uses some form of neural network. Classifier systems
have also been used, but these can usually be reconceptualised as implementing
something functionally equivalent to a neural network (Miller and Forrest, 1989).
Likewise at least some of the evolvable hardware approaches (eg. Thompson
1997) treat the hardware as electrical circuits (loosely comparable to neural
circuits) rather than as implementing Boolean functions or computational rules.
So for the most part the research reported here has moved away from world-
modelling classical AI ideas on robotics (Moravec, 1983). Where neural networks
are recurrent and incorporate some reference to time scales, then these fit in with
the Dynamical Systems approach to cognition (Beer, 1995; Van Gelder, 1995).

As mentioned earlier, evolutionary robotics has potential in research with
scientific aims as well as that with more exclusively engineering goals. Two
of the ways evolutionary robotics can be used in cognitive science are: as a
means to explore spaces of behaviour generating mechanisms and architectures;
and as a way of synthesizing adaptive artificial nervous systems using as few
preconceptions as possible about how a given behaviour should be generated.
On analysis, evolved controllers may well make use of very different kinds of
mechanisms from those postulated by conventional cognitive science. See (e.g.
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Wheeler, 1996; Hendriks-Jansen, 1996; Beer, 1996; Cliff and Nobel, 1997) for
further discussion of issues surrounding this topic. A similar role is starting to
be explored in neuroscience; spaces of postulated mechanisms can be searched
for plausible candidates. Such spaces might usefully range from possible high-
level behavioural strategies to the potential roles of secondary messengers in
neuronal networks.

This paper has concentrated exclusively on research that has been imple-
mented on real robots. There have also been many studies in the artificial life
and animat literature of artificial agents constructed to ‘live’ in artificial virtual
worlds with varying degrees of resemblance to the real world. There is probably
a consensus amongst those who have worked both with real robots and with
simulations of robots that most of the really hard problems in robotics cannot
be appreciated by those who have worked solely with simulations. This raised
question marks as to whether simulations were of any use at all. Some of these
worries have been resolved by the several pieces of research reported here where
control systems evolved partly or wholly within careful simulations did indeed
behave appropriately when downloaded onto the real robot. There is a study
of the necessary relationships between simulations and reality in (Jakobi 1998).
Adequate simulations, particularly ones that are significantly faster and cheaper
than testing on a real robot, are potentially significant if evolutionary robotics is
to be economic for practical applications. The scientific work mentioned in the
previous paragraph will often be most convincing when real robots, facing real
noisy and uncertain worlds, are used. However, aspects of it may well make use
of abstract computer models when assumptions and simplifications are carefully
and appropriately drawn.

Irrespective of the aims and style of individual pieces of evolutionary robotics
research, no such endeavour will progress significantly unless a number of key
interacting problems are addressed. These include:

• What is the most appropriate type of genotype to phenotype mapping to
use for a given class of desired behaviours?

• What kinds of basic nervous system building blocks should be used?

• How is fitness best evaluated?

• What kind of evolutionary algorithm is best suited to a particular evolu-
tionary robotics project?

These items are briefly discussed below. It would be premature to say any-
thing very concrete at the moment. However, various researchers are exploring
the interwoven strands of these central problems. As knowledge and experience
is built up and exchanged, it is hoped that the best way forward will become
clear. Currently there is no lack of ideas on possible directions, which makes for
a healthy and interesting research field.
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A wide variety of evolutionary algorithms have been used in the research
covered here. There is as yet no clear consensus on which type of evolutionary
algorithm, and which parameter settings, are appropriate for particular prob-
lems, and much experimentation is on a trial and error basis. A significant
division in evolutionary robotics lies between those approaches where the form
of the control structure (e.g. layers and nodes of a neural network) are pre-
defined by the researcher, leaving such variables as connection weights to be
determined through evolution; and those where the very structure and form of
the control system is to be evolved. In the former class, evolutionary algorithms
are just one possibility amongst many feasible optimisation techniques, and are
typically working with a fixed number of real-valued variables representing con-
nection weights; these can be encoded directly on the genotype as real numbers,
or encoded in binary or other form. For the second class perhaps evolution-
ary algorithms come into their own, as there are few alternative techniques for
open-ended search through a space of possible structures. Here the role of the
genotype-to-phenotype mapping is of great significance, as different methods
of morphogenesis may have differing suitability for evolution. It is likely that
the control networks and sensor morphologies needed for more complex be-
haviours will require various forms of large scale structure, including repeated
sub-elements. It is difficult to see how this could be achieved without recourse
to a fairly sophisticated developmental genotype to phenotype mapping. See
(Kodjabachian and Meyer, 1994; Husbands et al., 1997) for discussions of en-
coding issues.

Although we a very long way from an understanding of real brains, it can
at least be said that both vertebrate and invertebrate nervous systems are com-
plex highly heterogeneous dynamical systems with a number of distinct but
interacting processes at play. These include electrical, short-range chemical
and long-range diffusing chemical mechanisms. Diffusing gases can modulate
the intrinsic properties of nerve cells and synapses, sometimes causing radical
changes (Garthwaite, 1991; Salter et al., 1991). It appears that these effects
can be short-lived or permanent (through changes in cells at the genetic level).
This is all a very far cry from the connectionist style networks favoured by most
evolutionary roboticists. Why are natural nervous systems so complex (or at
least appear to be so complex)? Could it be that systems capable of generat-
ing sophisticated adaptive behaviour require the kinds of intricate and deeply
entwined mechanisms that we observe in nature? Could it be that this class
of dynamical systems is more evolvable? Whatever the answer, it is clear that
there is a huge space of possible network types to explore, with varying degrees
of plasticity and dynamical complexity. It certainly seems a mistake to imagine
that simple connectionist style networks can take us very far, although exactly
how far they can take us is itself an interesting question.

Evaluating robot behaviours brings its own special problems. Many be-
haviours are inherently noisy which must be taken into account in designing
fitness criteria. Every effort must be made to eliminate the possibility of giving
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too much credit to ’lucky’ controllers that perform very well in some circum-
stances but poorly under most conditions. Very often multiple trials are used for
each fitness evaluation, so that a representative spread of conditions is encoun-
tered by each robot. As attempts are made to evolve more complex behaviours
the issue of how to design fitness criteria will become more pertinent. It is pos-
sible that rather implicit criteria that map ’good behaviour’ onto ’survival’ or
’maintaining viability’ will be necessary.

For evolutionary robotics to have some practical applications, the time and
expense of multiple evaluations of robot control systems must be minimised.
Apart from the use of simulations where viable, elements of all the above (en-
coding, network type, evaluation criteria, evolutionary algorithm) will be impor-
tant. In order to make advances in understanding how to evolve more complex
behaviours faster, it will be necessary to understand more about the dynam-
ics of the evolutionary process itself, the properties of encoding schemes, the
behaviour generating power of particular types of networks, and how all these
combine to produce search spaces that are more or less amenable to evolution.

5 Conclusion

As an infant research field, evolutionary robotics is a relatively thriving baby
with much research going on in parallel across many research groups. Some
basic achievements have been reached with real robots, typically on fairly sim-
ple robot behaviours which are often comparable to those achieved by more
orthodox methods. Enough experience has been built up for the start of a clear
understanding of the relationships between simulations and reality. The field
is starting to move from reports of one-off successes towards repeatable results.
The challenge is to move from basic robot behaviours to ever more complex,
non-reactive ones. There is much to be done, go to it.
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