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Abstract

In this paper we propose a model of visually guided route navigation in ants that captures the known properties of real
behaviour whilst retaining mechanistic simplicity and thus biological plausibility. For an ant, the coupling of movement and
viewing direction means that a familiar view specifies a familiar direction of movement. Since the views experienced along a
habitual route will be more familiar, route navigation can be re-cast as a search for familiar views. This search can be
performed with a simple scanning routine, a behaviour that ants have been observed to perform. We test this proposed
route navigation strategy in simulation, by learning a series of routes through visually cluttered environments consisting of
objects that are only distinguishable as silhouettes against the sky. In the first instance we determine view familiarity by
exhaustive comparison with the set of views experienced during training. In further experiments we train an artificial neural
network to perform familiarity discrimination using the training views. Our results indicate that, not only is the approach
successful, but also that the routes that are learnt show many of the characteristics of the routes of desert ants. As such, we
believe the model represents the only detailed and complete model of insect route guidance to date. What is more, the
model provides a general demonstration that visually guided routes can be produced with parsimonious mechanisms that
do not specify when or what to learn, nor separate routes into sequences of waypoints.
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Introduction

The impressive ability of social insects to learn long foraging

routes guided by visual information [1–8] provides proof that

robust spatial behaviour can be produced with limited neural

resources [9–11]. As such, social insects have become an

important model system for understanding the minimal cognitive

requirements for navigation [12]. This is a goal shared by

biomimetic engineers and those studying animal cognition using a

bottom-up approach to the understanding of natural intelligence

[13].

In this field, computational models have proved useful as proof

of concept [14,15] that a particular sensori-motor strategy [16] or

memory organisation [17] can account for observed behaviour.

Such models of visual navigation that have been successful in

replicating place homing are dominated by snapshot-type models;

where a single view of the world as memorized from the goal

location is compared to the current view in order to drive a search

for the goal [16,18–26]. Snapshot approaches only allow for

navigation in the immediate vicinity of the goal however, and do

not achieve robust route navigation over longer distances [27,28].

Here we present a parsimonious model of visually guided route

learning that addresses this issue. By utilising the interaction of

sensori-motor constraints and observed innate behaviours we show

that it is possible to produce robust behaviour using a learnt

holistic representation of a route. Furthermore, we show that the

model captures the known properties of route navigation in desert

ants. These include the ability to learn a route after a single

training run and the ability to learn multiple idiosyncratic routes to

a single goal. Importantly, navigation is independent of odometric

or compass information, does not specify when or what to learn,

nor separate the routes into sequences of waypoints, so providing

proof of concept that route navigation can be achieved without

these elements. The algorithm also exhibits both place-search and

route navigation with the same mechanism.

Navigation in ants
Individual ant foragers show remarkable navigational ability,

shuttling long distances between profitable foraging areas and their

nest. Despite low resolution vision and the availability of

odometric information, many ant species preferentially guide their

foraging routes using learnt visual information [2,29–31]. The

robust extraction and learning of the visual information required

for route guidance is a product of the interactions between innate

behaviours and learning [12,32]. We highlight these interplays by

sketching out the career of an individual forager.

Upon first leaving the nest, a new forager performs a series of

short learning walks where a carefully orchestrated series of loops

and turns allow her to inspect the visual surroundings from close

to the nest entrance [33–35]. The knowledge gained during

these special manoeuvres means she will be able to use visual

information to pin-point the nest entrance after future foraging
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trips. When she finally leaves the vicinity of the nest she is safely

connected to it because of her path integration (PI) system [12,36].

In order to perform path integration, odometry and compass

information are continuously combined such that at all times

during a foraging journey the ant has the direction and distance

information required to take an approximately direct path home.

However, PI is subject to cumulative error and cannot take

account of passive displacements, such as by a gust of wind. To

mitigate these risks and ensure robust navigation, ants therefore

learn the visual information required to guide routes between the

nest and their foraging grounds [Reviews: [12,37]]. During the

early stages of learning the ants are reliant on their PI system for

homing. However, as they become more experienced they come to

rely more and more on visual information for route guidance [31].

The use of PI also provides consistent route shapes thereby

facilitating and simplifying the learning of appropriate visual

information [32,38].

Extensive behavioural experiments over many years have led to

a knowledge base of properties and behavioural signatures of

visually guided navigation in ants that can be summarised as

follows:

1. Ants can use visual information to guide routes between their

nest and a stable food site [1,3,8,39].

2. Routes are idiosyncratic, so individual ants will adopt and

remain faithful to unique routes [1–3,8].

3. Routes have a distinct polarity; knowledge of a nest-food route

does not imply knowledge of a food-nest route [4,9].

4. Route knowledge defines a visual corridor as opposed to a narrow

ridge, so the overall shapes of routes are stable but ants do not

have to recapitulate them with high precision [1,3,9,39].

5. The visual knowledge used to define routes can be used

independently of any odometric information that the ant may

possess [1–3,31,40,41].

6. Route following is not dependent on learning a strict sequence

of actions. The knowledge needed to guide a route can be

accessed out of the usual sequence [1,3].

7. Ants can use learnt visual information to drive a search for

their nest entrance [2,42–44].

8. The visual information required to follow a route can be learnt

very rapidly; however performance becomes more stable with

experience [34,43,45].

9. Individual ants can learn multiple routes to the same

destination [6].

Models of visually-guided navigation in insects
Computational models of visual navigation in insects followed

experimental findings where ants [42] and bees [16] had been

shown to guide their return to a goal-location by matching

retinotopic information as remembered from the goal. With their

seminal snapshot model, Cartwright and Collett [16] showed that

within a certain catchment area [46] subsequent search for a goal

location can be driven by a comparison of the current view of the

world and a view stored at that goal. This has inspired roboticists

and biologists to develop homing models [19–26] where a single

retinotopic view is used to get back to a location.

Snapshot style models represent elegant, but abstract, sensori-

motor strategies for navigation yet there are two major directions

where such models need developing. Firstly, although snapshot

models are very useful for understanding the information that is

available in a visual scene [21,47], to fully understand visual

navigation we must consider the constraints imposed by a

particular motor system and means of locomotion. Secondly, we

need to understand how visual knowledge can be applied to the

guidance of longer distance journeys and not just to the pin-

pointing of a single goal location.

Understanding sensori-motor interactions
A significant component to any view-based homing algorithm is

the sensori-motor interaction. The original snapshot model was

developed following extensive experiments with bees. In the final

stages of locating an inconspicuous goal, bees and wasps are able

to fix the orientation of their body axis, perhaps using compass

information, and then translate in any direction [48–50]. Inspired

by this, the original snapshot model relies on stored views and

current views being aligned to an external frame of reference

before a matching procedure is used to determine a homing

direction [16]. This represents a significant challenge for ants, and

also for bees and wasps when flying rapidly over longer distances,

where translation is predominantly in the direction of the body

axis. In the context of our proposed model, however, the tight

coupling of sensation and action is used to simplify the problem of

learning a route. For an ant with fixed eyes and a relatively

immobile head a given view implicitly defines a direction of

movement and therefore an action to take. This suggests the

following approach:
Our approach. A panoramic image can be used as a Visual

Compass; the difference between a goal image and rotated images

from nearby locations is minimised when the rotated images are at

the orientation of the original [21,47,51]. Therefore, rather than

tagging remembered images with an orientation, or rotating into a

particular orientation during learning and recall, we use a similar

mechanism to a visual compass to search for familiar viewing

directions. The fact that ants are moving, and therefore facing, in

the overall route direction most of the time during learning means

that these familiar viewing directions implicitly define the

movement directions required to stay on the route. It is

therefore sufficient to learn all of the views exactly as they are

experienced. The problem of navigation is then re-framed in terms

of a rotational search for the views associated with a route. By

Author Summary

The interest in insect navigation from diverse disciplines
such as psychology and engineering is to a large extent
because performance is achieved with such limited brain
power. Desert ants are particularly impressive navigators,
able to rapidly learn long, visually guided foraging routes.
Their elegant behaviours provide inspiration to biomimetic
engineers and for psychologists demonstrate the minimal
mechanistic requirements for complex spatial behaviours.
In this spirit, we have developed a parsimonious model of
route navigation that captures many of the known
properties of ants routes. Our model uses a neural network
trained with the visual scenes experienced along a route to
assess the familiarity of any view. Subsequent route
navigation involves a simple behavioural routine, in which
the simulated ant scans the world and moves in the most
familiar direction, as determined by the network. The
algorithm exhibits both place-search and route navigation
using the same mechanism. Crucially, in our model it is not
necessary to specify when or what to learn, nor separate
routes into sequences of waypoints; thereby providing
proof of concept that route navigation can be achieved
without these elements. As such, we believe it represents
the only detailed and complete model of insect route
guidance to date.

Ant Route Navigation Driven by Scene Familiarity
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visually scanning the environment and moving in the direction

that is most similar to the views encountered during learning an

ant should be able to reliably retrace her route.

Note that this process associates the current view not with a

particular place but instead with a particular action, that is, ‘‘what

should I do?’’ not ‘‘where am I?’’. In addition, it means that

compass information is not necessary during either learning or

recall [52].

Using views for route guidance
Given the success of snapshot-type models in place-homing, it is

natural to assume that navigation over larger scales, that is, along

routes, could be achieved by internalizing a series of stored views

linked together as a sequence. Route behaviour in this framework

would entail homing from one stored view to the next in a fixed

sequence. While it has been shown that the catchment areas of

individual snapshots can be quite large [21–47,53], attempts to model

route navigation using linked view-based homing have shown it to be

a nontrivial problem which requires the agent to both robustly

determine at which point a waypoint should be set during route

construction and when a waypoint has been reached during

navigation [19,27,28]. Essentially, for robust route navigation using

a sequence of snapshots, an agent needs place recognition to

determine where along the route it is [54]. Here we propose a

different model that develops and refines ideas that have been

recently put forward as an alternative to such a scheme [55]. Instead

of defining routes in terms of discrete waypoints all views experienced

during training are used to learn a holistic route representation.

Our approach. An artificial neural network is first trained

using the views experienced during a return to the nest. During

subsequent navigation the network is used to estimate whether a

given view has been experienced before. A behavioural routine

facilitates route following by scanning the world and moving in the

direction that is most familiar and therefore deemed most likely to

be part of the route.

We feel that this approach has two major benefits. Firstly, we do

not attempt to learn in detail specific views along the route, but

instead use all of the views to determine a measure of familiarity.

In this way our approach provides a compact way of storing the

visual information required to follow routes that is also open-

ended in that new information can be incorporated at any time in

the future. As a corollary, the agent does not need to decide when

or which views to learn. Secondly, the agent does not need to

determine where along the route it is. By performing visual scans

of the world from the current location and moving in the direction

that appears most familiar we obviate the need to determine a

sequence of views that must be experienced in the correct order.

Both desert ants and wood ants perform scanning behaviours

that support this approach. When released in an unexpected but

familiar place the desert ant Melophorus bagoti scans the environ-

ment by turning rapidly on the spot [A. Wystrach and P. Graham,

personal observation]. More than one scan may be performed

with short straight runs of a few centimetres separating them

before the ant finally sets off in a seemingly purposeful manner.

The desert ant Cataglyphis bombycina has also been reported to

perform a similar scanning behaviour during foraging runs

[56,57]. Wood ants exhibit a second form of scanning behaviour;

instead of walking in a straight line, they tend to take a sinuous

path [58] which has the effect of producing scans of the world

centred on the overall direction of movement.

Preview
We test our proposed route navigation strategy in simulation, by

learning a series of routes through visually cluttered environments

consisting of objects that are only distinguishable as silhouettes

against the sky. This represents a challenging task due to the

paucity of information and the potential for visual aliasing,

whereby two locations appear similar enough so as to be

indistinguishable. Our results indicate that, not only is the

approach successful, but also that the routes that are learnt show

many of the features that characterise the routes of desert ants.

Results

Navigating with a perfect memory
Our navigation algorithm consists of two phases. The ant first

traverses the route using a combination of PI and obstacle

avoidance (as specified in the Materials and Methods) during

which the views used to learn the route are experienced.

Subsequently, the ant navigates by visually scanning the world

and moving in the direction which is deemed most familiar. In

the later experiments, the route is learnt by a neural network

and the familiarity of each view is the output of the trained

network. However, to show the utility of the proposed scanning

routine, without the added complication of learning a familiarity

metric, we first explored the performance of a system with

perfect memory. This was implemented by storing views

experienced every 4 cm along a training route and using these

to determine view familiarity directly. Following Zeil et al. [21]

we calculate the sum squared difference in pixel intensities

between rotated versions of the current view and each stored

view. The minimum across all stored images and all viewing

directions experienced during a 360o scan of the world from the

current location is deemed the most familiar view for that

location and a 10 cm step is taken in the viewing direction

associated with this minimum.

Figure 1 shows that by storing the views along a training path

and using these to drive a subsequent recapitulation of the route,

robust behaviour is achievable. We used our algorithm to learn

three routes through an environment containing both small and

large objects randomly distributed across the environment. Three

subsequent navigation paths were attempted for each route. Of the

nine paths, all but one successfully return to the nest location, with

the one failure caused by the simulated ant being drawn out of the

stable route corridor by the presence of a tussock that dominates the

visual field and causes visual aliasing. Despite the noise added to

the movements during the recapitulation, paths are idiosyncratic

though inexact. Within a corridor centred on the original route

both a good match and a sensible heading are recovered that will,

in general, drive the simulated ant towards the goal (Figures 1B–

D). Outside of this route corridor the best match becomes poorer

and, particularly within areas containing a high degree of visual

clutter (i.e. within a group of tussocks) the proposed direction of

movement less reliably points towards the goal. This is seen most

clearly in panel C where, very close to tussocks, a significant

proportion of the homeward directions determined by the

algorithm (white arrows in Figure 1B–D) point away from the

goal location. Often these erroneous signals direct movements

back into the route corridor, although this is clearly a matter of

chance.

The routes that are generated show a distinct polarity meaning

that they can only be traversed in a single direction as is evidenced

by the coherence of the homeward directions (arrows in Figure 1B–

D). Importantly, the actions that result from following this strategy

are not tied to a coordinate system and are therefore completely

independent from the PI system that provided the initial scaffold

for learning. In addition, the resulting routes are not dependent on

a chained sequence of actions; appropriate actions are taken at any

Ant Route Navigation Driven by Scene Familiarity
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location along the route corridor independent of how that location

was reached.

Adding learning walks
One potential problem with this navigational strategy is that if

the simulated ant overshoots the goal it will, in general, carry on

heading in the same direction and move further and further away

from the goal location (Figure 2A). This is because there are no

training views that point back towards the nest once it has been

passed. This problem can be mitigated by including an

exploratory learning walk during the training phase, a behaviour

seen in many species of ants [33–35]. These initial paths take the

form of a series of loops centred on the nest as can be seen in

Figure 2B which shows the learning walk of a Melophorus bagoti

worker taken from a paper by Muser et al. [33]. Essentially, this

process means that in the region around the nest there will always

be some views stored which are oriented back towards the nest.

To explore the possible effects of these initial short learning

walks, the views experienced along them were added to the set of

inbound views used for route learning. Figure 2 shows the end

section of a route navigated after training with and without a

learning walk. In these tests the simulation was not stopped when

the simulated ant reached the nest location, analogous to blocking

the nest entrance in a behavioural experiment. With the addition

of a learning walk (Figure 2B), as the simulated ant passes the nest,

rather than the best match being from the training route and

oriented upwards (as in Figure 2A), the best match comes from the

learning walk. The simulated ant is drawn into the loop of the

learning walk it first encounters, leading to the looped paths seen

in Figure 2B. Close to the nest, the density of points from the

Figure 1. Navigating with a perfect memory. A) Three separate routes (red lines) learned in an environment containing both small and large
objects. For each of the three routes, that consisted of between 700 and 980 views taken every 1 cm, we show three recapitulations (black lines).
During route recapitulations the headings at each step were subject to normally distributed noise with a standard deviation of &15o. The panels to
the right of the main figure show example views from points (indicated by squares) along the training route. B,C,D) Various sections of the middle
route at a variety of different scales. The figures show the result of running the navigation algorithm at each point within a grid and indicate what
action would be taken by an agent placed at that location. The white line indicates the training path and the white arrows indicate the directions that
would be chosen from those locations. The underlying pseudocolour plot indicates the quality of the best match to the stored views for each
position, with darker hues indicating a better match.
doi:10.1371/journal.pcbi.1002336.g001
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learning walk increases and there are multiple views from nearby

locations oriented in a variety of directions. The best match at

subsequent points will then likely be from different learning walk

loops and so the ant stops following a single loop and enters more

of a search-type path around the nest. Thus, our algorithm

demonstrates both route following and nest search with the same

mechanism.

Summary
Here we have shown that by storing and using panoramic views

as they were experienced and aligned during training, we can

achieve visually guided route navigation through a scanning

routine and without recourse to a compass. The model is of

particular interest since the resulting paths show remarkable

similarities to many of the features that we observe in the routes of

ants. Specifically, independence from the PI system that is

assumed to scaffold the original learning; distinct polarity of

routes; formation of a route corridor; and procedural rules that

can be accessed out of sequence. By including a learning walk we

can also get visually driven search for the nest location from the

same mechanism. This algorithm demonstrates the efficacy of

using a simple scanning behaviour as a strategy for seeking familiar

views. However, the algorithm relies on the unrealistic assumption

of a perfect memory of views experienced along the training route.

We next investigate a more realistic encoding of the visual

information required for navigation by training an artificial neural

network using the views experienced along a return journey and a

learning walk.

Familiarity and Infomax
Having shown that the proposed scanning routine can produce

ant-like paths, we next addressed the problem of learning a

familiarity metric to use in place of a perfect memory system.

Instead of storing all of the views experienced on a training route,

the views were used to train a two-layered artificial neural network

to perform familiarity discrimination using an Infomax learning

rule [59]. Each view was presented to the network in the order in

which it was collected and then discarded. This means that the

memory load does not scale with the length of route but remains

constant. Once trained, the network takes a panoramic image as

input and outputs a familiarity measure indicating the likelihood of

the view from that location and orientation being part of the learnt

route. The trained network was then used in conjunction with the

scanning routine to drive route navigation by presenting the

rotated views to the network, and choosing the most familiar

direction as the direction in which to navigate. The only difference

in the behavioural routine was that the scanning range was

reduced from 360o to a slightly more realistic 180o scan centred on

the direction of travel from the previous timestep.

In a first experiment using this approach we employed the

Infomax system to learn the same three training paths as in the

previous experiment using a perfect memory. As Figure 3 shows,

in this instance all returns were completed successfully. We do not

believe this indicates that the approach is more robust than the

perfect memory system but simply that the noise added to the

system did not happen to nudge the agent into an area of the

environment where visual aliasing would occur. In other ways the

results of this experiment are very similar to the results obtained

using a perfect memory. As these routes were learned using a

single exposure to each of the training views, we are thus able to

fulfil another of the desiderata for ant-like visual mediated route

navigation: that routes can be learnt rapidly, in this case following

a single trial.

To show that learning was not environment specific we

conducted further simulations. Environments with varying densi-

ties of tussocks were randomly generated and a simple algorithm

that performed path integration with obstacle avoidance was used

to generate paths through them. In all of the environments we

provided a distant horizon consisting of bush-like and tree-like

objects as would be present in the natural environment of

Melophorus bagoti [33]. In these experiments we also included a

simplified learning walk at the start of training to prevent the

simulated ant overshooting the goal.

We first examined a low tussock density environment compared

to the environment used previously. Performance was good,

although the lack of nearby objects resulted in less consistent paths

(Figure 4). Example views taken from the training route (Figure 4,

right) show how the panorama of distant objects provide a stable

frame of reference throughout the route. Despite the sparse visual

information in this environment, the distant objects help to keep

the return paths heading in the right direction. The effect that the

structure of the learning walk has on the return paths can be

clearly seen near the goal location. As the simulated ant nears the

goal it gets drawn into a series of left and right sweeps that reflect

the left and right inbound loops of the learning walk and are

analogous to an ant’s search for its often inconspicuous nest

entrance.

We next used an environment with a more dense set of tussocks

(Figure 5). In this more densely tussocked world the distant

panorama is no longer visible at all points along the route. This

clearly makes route learning more difficult as is evidenced by the

failures in three of the four runs. Because noise is added to the

simulated ant’s heading during route recapitulation the simulated

ant may stray into previously unexperienced parts of the

environment which, even a short distance away from the learnt

route, can look very different in this cluttered world. Two attempts

fail early when noise added to the heading leads the simulated ant

to go to the left of a small tussock taking it into a part of the world

with which it is not familiar. The other two returns do reasonably

well. They do show some circling of tussocks, driven by training

views where the path goes very close to a tussock and dominates

the visual field, however both paths make it very close to the nest.

This is a challenging environment in which to navigate and was

picked to be at the limit of the algorithm’s learning power

following just one training run; other runs using a similar density

of tussocks were more successful. Performance also improved if we

removed or reduced the noise that was added to the direction of

movement at each timestep. Of course, ordinarily ants would

incorporate knowledge from several foraging trips during which

Figure 2. Including learning walks prevents return paths from
overshooting the goal. A) Without a learning walk the simulated ant
overshoots and carries on in the direction it was heading as it
approached the nest location. B) By including the views experienced
during a learning walk the simulated ant, instead of overshooting, gets
repeatedly drawn back to the location of the nest. Red lines training
paths, black lines recapitulations.
doi:10.1371/journal.pcbi.1002336.g002
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time their performance becomes more stable and robust. We

investigate this in the next section.

Route performance improves with experience
Performance of our algorithm was often quite reliable following

a single training run but there were still failures (Figure 5). Ants,

however, do not just use a single training run but will continue to

develop their knowledge of the surroundings during multiple runs.

We therefore investigated the effect on performance if multiple

subtly different training routes were combined. The path

integration algorithm that we used allowed the generation of

multiple paths that were similar but not identical. The views

collected along a number of paths were used to train the network.

The learning scheme did not need to be altered as each view

collected was simply presented to the network in the order that it

was experienced.

Performance is shown for a twelve metre route in one of the

more challenging environments (tussock density 0.75 tussocks=
m2) following 1, 2, 4 and 8 training runs (Figure 6). Using

multiple training runs can be seen to aid robustness, and after 8

training runs (Figure 6, far right) the recapitulated routes are

efficient and consistent, even in this high tussock density

environment. With repeated training runs the network will be

exposed to a more comprehensive set of views from the route

than with a single training run. It should be noted that using, say,

four training runs is not the same as sampling the views four times

as often during a single training run. In the latter case, sets of four

consecutive points are not independent of each other. Using

multiple runs however, views from similar locations are coupled

only through the environment and thus variation in the views

reflects the variation that will be experienced during navigation.

For instance, if the distribution of objects in the world means that

the training routes are canalised down a narrow corridor, it is

likely that the navigated route will also go down a narrow path

and so it does not matter that the training views from each run

are similar. However, if the route corridor is broader, or even

allows multiple paths, then multiple training routes allow a wider

set of views that might be experienced when navigating, to be

Figure 3. Navigating using a trained artificial neural network to assess scene familiarity. A) Successful return paths for three different
routes. The panels to the right of the main figure show example views from points (indicated by squares) along the training route. B,C,D) Various
sections of the middle route at a variety of different scales. The pseudocolour plots indicate the familiarity of the best view as was output from the
trained network, with darker hues indicating increased familiarity. Conventions as in Figure 1.
doi:10.1371/journal.pcbi.1002336.g003
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captured. Multiple runs therefore allow a broader, more robust,

route corridor to be learnt.

Learning multiple routes
It has been shown that Melophorus bagoti are able to learn and

maintain more than one route memory when forced to learn

distinct return paths to their nest from a series of different feeders

[6]. In the experiments performed by Sommer et al. [6], seven

training runs along a first route were followed by a control run to

test whether the ant had learnt the route. This training schedule

was repeated for a further two routes that each led back to the

same location - the nest. Finally, the ants were tested on the first

two routes to see if they had retained the original route memories.

Here we attempt to replicate this experiment using our route

learning algorithm to learn three 10 m routes performed in an

environment with a tussock density of 0.75 tussocks=m2.

To do this we train a network using the first route. The network

is then tested before we continue to train the network using views

from the second learning route. The network is then again tested

before the final training session using views from the third route,

before finally being tested on all three routes. The performance

can be seen in Figure 7. The network is able to learn and navigate

multiple routes without forgetting the earlier ones. It is interesting to

note that when the third route is recapitulated following learning,

the paths tend to get drawn back onto the previously learnt route

2, representing a possible confabulation of these two memories

within the network. The individual route memories are not held

separately and the return paths for route 3 are drawn back to route

2 as, at that point in the world, views from routes 2 and 3 are

similar. This is not wrong per se, as the important thing is that the

routes lead safely back to the nest. Also this property of routes can

be seen in the original paper [6].

Discussion

We have presented a parsimonious model of visual route

guidance which replicates the properties and characteristics of ant

navigation. We believe this model represents the only detailed and

complete model of insect route guidance to date. However, for us,

the major value of the model lies in it being a proof of concept

that simple architectures and mechanisms can underpin complex

cognitive behaviours such as visually guided routes. Visual

navigation requires a cognitive toolkit capable of learning

appropriate information, organising memories robustly and also

Figure 4. Navigational performance in a sparse environment with a tussock density of 0.05 tussocks=m2. The left panel shows the
training (red) and test (black) paths for a 12 m route. The right panel shows example views from points (indicated by squares) from the training route.
The combined learning walk and training route consisted of 520 views that were used to train the network.
doi:10.1371/journal.pcbi.1002336.g004
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a way of converting those memories into spatial decisions. By

considering the way that sensory and motor systems are tightly

coupled through behaviour, and utilising familiarity measures to

drive route recapitulation, we have produced a minimal cognitive

architecture that demonstrates visual route guidance and visually

guided search for a goal.

There are three key aspects of this work that we would like to

discuss further: (i) Using a familiarity measure to guide routes; (ii)

the holistic nature of the route representation; (iii) how learning

walks allow route following and nest search with the same

mechanism.

View familiarity and recognition vs. recall
Our own experience tells us that the human capacity for visual

recognition is remarkable and clearly outstrips our capacity for

recall. For instance, our ability to decide whether we have met

somebody before, runs to many more people than those we can

explicitly recall specific facts about. Theoretical investigations of

abstract neural network models back up this intuition, with

familiarity discrimination or recognition models having far greater

capacity than associative models with the same number of

processing units and weights [60]. Given the limited neural

resources available to an ant and the need for rapid learning it

makes sense to develop a navigational strategy that relies on

recognition, as building either a cognitive map or employing some

other form of associative learning are both harder tasks.

The fact that, in our experiments, sensible behaviour can be

generated following a single traversal of a route indicates that a

form of recognition memory may be sufficient for route navigation

in the real world. In fact we would expect that in many ways the

problem would be easier for an ant operating in the real world

where there would be more information available to disambiguate

different views and thereby reduce visual aliasing. The current

model presupposes that the only information available to guide

behaviour is provided by the high contrast silhouettes of objects

against the sky. While we know that ants are able to use skylines to

orient themselves [7], any additional visual information, for

example colour, texture or celestial cues, information from other

modalities [57,61,62], or internal motivational cues, would only

help to reduce aliasing and improve reliability.

Whether insects have the appropriate brain architecture for

storing visual information in this way is not known, though the

mushroom bodies would be the obvious candidate neural

structure. These higher brain centres, that are enlarged and

Figure 5. Navigational performance in a cluttered environment with a tussock density of 0.75 tussocks=m2. The left panel shows the
training (red) and test (black) paths for a 12 m route, squares indicate points where example views from the training run (right panel) are taken from.
The combined learning walk and training route consisted of 520 views that were used to train the network.
doi:10.1371/journal.pcbi.1002336.g005
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elaborated in central place foraging insects, have been implicated

in a number of cognitive functions including olfactory processing

and associative learning [63–65], attention [66], sensory integra-

tion , sensory filtering [67,68] and spatial learning [69,70]. Farris

and Schulmeister [71] present compelling evidence that large

mushroom bodies receiving visual input are associated with a

behavioural ecology that relies heavily on spatial learning.

Furthermore, recent research by Stieb et al. [72] implicates the

mushroom bodies in the behavioural transition from working

inside the nest to foraging outside. In light of our model it would

be interesting to evaluate the potential of the mushroom bodies for

familiarity discrimination or recognition memory.

Figure 6. Route following improves with experience. Performance improves as more training runs are performed. Performance is shown
following one, two, four and eight training runs. In each figure the training runs used for learning are shown in red while the attempts to recapitulate
the route are shown in black. As previously, noise is added to paths during route recapitulation. Of the 4 attempts (black lines) shown in each panel 2,
4, 3 and 4 were successful after one, two, four and eight runs respectively.
doi:10.1371/journal.pcbi.1002336.g006

Figure 7. Learning multiple routes. A) Route recapitulation performance (black lines) for each of three routes (red lines) that are learned with the
same network. Testing of each of the routes is performed immediately following training on that route and prior to any subsequent learning. The
order in which the routes were learnt is indicated by the numbers next to the training routes. B) Performance on the first two routes following
learning of all routes, indicating that the route knowledge gained during the first two phases of learning is retained. Having learnt all 3 routes the
network must encode 30 m of route information. This increases the likelihood of visual aliasing as is evidenced by the failed recapitulations following
learning of all three routes.
doi:10.1371/journal.pcbi.1002336.g007
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The pseudocolour plots in Figure 3 indicate how familiarity

could provide another source of information for making routes

more robust. If an agent was able to follow a combination of the

gradient of the familiarity and the heading of the most familiar

direction this would have the effect of drawing the recapitulated

paths back onto the habitual route. While this gradient is apparent

in the plots that are obtained by sampling from a dense grid of

points, it is less obvious how an ant might extract this information,

since it would be necessary to sample at least three non-collinear

points whilst maintaining the most familiar heading. For a flying

insect this would be much less of a problem. The familiarity

gradient alone will only serve to draw paths back onto the route

and will therefore not produce route following behaviour.

However, preliminary results indicate that performance is more

robust when the direction indicated by the most familiar view is

combined with the familiarity gradient.

We have shown how a familiarity metric could in principle be

used to guide successful route navigation; the proposed motor

program is however not realistic. Although ants have been

observed performing scanning behaviours such as we have used,

in general they proceed in a far more purposeful manner when on

or near their habitual routes. One issue that we need to address

therefore is how familiarity of views could be used in a way that is

more consistent with the fine-grained movements that ants actually

perform. In order to do this we will need to simulate an

environment in which behavioural experiments have been

conducted and record in fine detail the movements of ants during

their foraging career.

Holistic representations of visual knowledge
In our second set of experiments we train a network with the

views experienced during a learning walk and along a route. There

is no requirement for specific views to be selected and following

training the network provides a holistic representation of visual

information rather than a set of discrete views. The network in fact

holds a holistic representation of all the visual information needed

for the agent to get to a particular goal, as shown by our

replication of multiple route learning. We have previously shown

that other neural network models are also able to holistically

encode this information [55,73]. However the particular elegance

of the Infomax procedure is that each view is presented to the

network once and then discarded.

The consensus view amongst biologists is that ants do not hold

spatial information in a unitary cognitive map [12,74–76]. Indeed

experiments have shown that the memories required to get to one

goal (e.g. the nest) are insulated from the memories required to get

to a second goal (e.g. a regular feeding site) [4,77]. Indeed, if food-

bound and nest-ward routes do not overlap then ants captured as

they try to get to their nest are effectively lost if they are placed on

their familiar food-bound route [4]. Our model could account for

this if the motivational state of the animal formed part of the input

to the familiarity network. In this way, views would appear familiar

only within the correct motivational context.

Learning walks and behavioural modulation of learning
One of the key properties of this model is that route guidance

and place search come from the same mechanism. This comes

from incorporating the views experienced during a learning walk

into the overall task. Learning walks (and flights in bees and wasps)

are a form of active vision where the insect shapes its own

perception in a way that is beneficial for learning. This principle is

demonstrated by our design of an artificial learning walk. If the

views on the outbound sections of the learning walk are made to

be more variable than those on the inbound sections, then the

inbound views will be learned preferentially. A simple way to

achieve this is to have curved outbound routes and straight

inbound routes (see the Materials and Methods), a learning walk

scheme that performed well. We imagine that when we have an

understanding of how real learning walks are structured by the

environment, performance will be improved and search paths will

more closely resemble those that have been observed in ants.

Another more complex way to modulate learning would be to

turn-off learning when not heading towards the nest. This would

require some sort of input from the PI system and interestingly,

recent detailed descriptions of learning walks in Ocymyrmex [34]

highlight that PI is likely to be used to ensure ants look at the nest

at discrete points during their learning walks. However, these

learning walks are still compatible with either behavioural or

cognitive modulation of learning. The use of PI might only be used

to structure the learning walks and allow the ant to accurately face

its nest thereby facilitating behavioural modulation of learning

[52].

Conclusion
We have presented a parsimonious model of visual navigation

that uses the interaction of sensori-motor constraints with a holistic

route memory, to drive visual navigation. The model captures

many of the observed properties of ant navigation and importantly

visual navigation is independent of odometric or compass

information. Additionally, in the model one does not need to

specify when or what to learn, nor separate routes into sequences

of waypoints, thus the model is a proof of concept that navigation

in complex visual environments can be achieved without those

processes. Our principal goal in this research project is to

understand the likely and viable mechanisms underpinning insect

navigation. Therefore our next step will be to evaluate the model

using fine-grained recordings of ants learning and performing

routes in their natural habitat.

Materials and Methods

The simulation environment
To create the environments used in our experiments, a distant

panorama of trees and bushes was generated and uniformly

distributed densities of tussock-like objects were created over a

central 20m|20m region. While the placement of the tussocks

was performed by sampling from a uniform distribution,

environments that did not contain many tussocks in the vicinity

of the training paths were rejected. In some of the experiments

additional 3D objects such as large trees and a building were

added within the central region. The environment is intended to

produce panoramic views that are typical of the natural

environment of the Australian desert ant Melophorus bagoti (See

[7,8,37,78] for example images of this environment). Figure 8

shows an overview of a typical environment together with a series

of views along a route. Notice how variable the views are and also

how insignificant the large tree and the building (the solid black

objects in Figure 8B) can be from the perspective of an ant. This is

easiest to see in Figures 8D and E taken from the middle section of

the route where the house, which is NE of the ant (i.e. just over

half way along the image; notice the triangular roof in the high-

resolution image) blends in to a tussock.

The simulated environment, programmed in MATLAB,

consists of objects formed from flat black triangular patches as

described below and rendered at a high resolution (Figure 8D),

prior to being re-sampled at the low resolution of the simulated

visual system (Figure 8C,E). This allows for subtle changes to be

registered in response to small movements as would be the case for
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an ant with a low resolution visual system acting in the real world.

This means the resultant view is composed of grey-scale values

when a pixel is neither completely covered by sky nor completely

covered by an object. In our simulated environment nearby

objects are rendered in three dimensions whereas objects at a

distance greater than 20 m from the route are flat but oriented so

as to be maximally visible.

Simulating tussocks, trees and bushes. Figure 9 shows

how the tussocks that form the majority of the objects in the

simulated world are constructed. Each tussock is made from a base

model consisting of 26 triangular patches that form an inverted

cone shape. The vertices of the base model are randomly

perturbed and rescaled to produce a variety of similar shaped

objects at different scales that approximate the grass tussocks that

are typical of the desert ants’ natural environment.

Figure 10 shows tree and bush objects and a typical panorama,

as used in the experiments, prior to being down-sampled to

4o=pixel. By placing objects sufficiently far away (greater than

20 m), the view of them does not change significantly over the

scale of the routes thereby providing a stable frame of reference.

The trees and bushes were generated from flat triangular patches

oriented so as to be maximally visible from the region of the world

where the tussocks and training paths were located. A set of four

different base tree trunks were used that were randomly flipped and

rescaled to provide variation. The leaves of both the bushes and

trees were generated from a base template containing a large

number of triangular patches. A subset of these patches was

randomly chosen for each tree or bush. The environment used in

Figures 4 and 5 contained 50 bushes and trees positioned at a

1m

Figure 8. The simulation environment. A,B) Two views of a typical simulated environment used in our experiments. In B the small squares
indicate the positions from which the views that are shown in C are taken. C) Five example views taken approximately 2 m apart along a typical route
used for learning. The views are oriented so that North (straight up in B) is at the centre of the unwrapped images. D) Typical high-resolution view of
the world from an ant’s perspective. E) Low-resolution representation of the view shown in D.
doi:10.1371/journal.pcbi.1002336.g008

Figure 9. Constructing tussocks from a base model. A) Side and
top view of the base model. B) Side and top view of randomly
perturbed base model forming a tussock.
doi:10.1371/journal.pcbi.1002336.g009
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uniformly distributed random distance in the range [20–50 m]

and random azimuthal angle from the centre of the training route.

The simulated visual system
Once an environment consisting of triangular patches has been

created, a panoramic view from any position within the

environment can be generated as follows. We first change the

origin of the world to coincide with the position of the simulated

ant by subtracting the current x, y and z coordinates of the ant

from the set of vertices, X, Y and Z that define the triangular

patches. The set of vertices [X, Y, Z] are then converted into

spherical coordinates [h,w,R] that represent the azimuth, elevation

and radial distance. The radial information is discarded and the

patches re-plotted in 2D giving the required binary panoramic

view (Figure 8D) which is stored as a high-resolution [size

951|182] binary matrix. The final step is to reduce the resolution

of this image to 4o=pixel, which represents the approximate

sampling resolution of the compound eyes of Melophorus bagoti

workers [78]. The binary matrix is resized to [900|170] using the

imresize function in MATLAB and the average value of each

[10|10] block is then used as the value of the corresponding pixel

in the low resolution representation. This averaging results in

values in the range [0,1], with values between the two extremes

indicating the fraction of sky and objects covered by a pixel in the

original high resolution image [Figure 8E].

Training route generation
The routes shown in Figure 8 and used in the first sets of

experiments (reported in Figures 1 and 3) are return paths taken

from a paper by Muser et al. [33] that describes the foraging

ecology of Melophorus bagoti. While we have no knowledge of the

real environment from which these paths were recorded we

assume that the overall straightness of the paths is somewhat

typical and that they therefore represent a reasonable example of

the sort of paths that these ants must learn.

In subsequent experiments, paths were generated iteratively

starting from the end point of the outbound route using a

combination of path integration and obstacle avoidance. Path

integration was approximated by centring a Gaussian distribution

with a standard deviation of &5o on the correct homeward

direction and sampling from this distribution. Obstacle avoidance

was incorporated into the path generation scheme by modulating

the Gaussian distribution used for path integration by multiplying

it by the proportion of sky visible in each direction, v (effectively

the inverse of the height of the skyline; Figure 11A,B), raised to the

power of 4, v4 (Figure 11C). The resulting modulated Gaussian

(Figure 11E) was renormalized and sampled from to determine a

movement direction and a 4 cm step was taken in this direction.

Training images are collected after every step. The obstacle

avoidance modulation has the effect of biasing movements towards

lower portions of the horizon while preventing completely

movements towards objects that fill the entire visual field in the

vertical direction. Due to the sampling involved in this process,

individual paths between two locations will vary slightly allowing

the collection of subtly different sets of images describing a route.

A return path was considered complete when the distance to the

nest was less than 4 cm.

Figure 10. Trees, bushes and the distant panorama. A) Randomly generated tree. B) Randomly generated bush. C) Randomly generated distant
panorama.
doi:10.1371/journal.pcbi.1002336.g010

Figure 11. Path integration modulated by obstacle avoidance.
A,B,C) Obstacle avoidance is achieved by biasing movements towards
low points on the horizon. D) A Gaussian distribution is centred on the
home direction. E) The Gaussian is multiplied by the proportion of sky
raised to the power of 4 and then normalised. This distribution is then
sampled from to determine a movement direction.
doi:10.1371/journal.pcbi.1002336.g011
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Learning walks
Where learning walks were added to the training routes, we

sampled views from pre-specified paths around the nest. Ants

generally walk slower during their learning walks and so samples

were taken every 2 cm along the paths as opposed to the 4 cm

sampling that was used for generating the route data. These views

are added to the start of the set of route views used to train the

network in the order that they appear, beginning at the nest. The

learning walk in Figure 2B is taken from [33] but see also [34] for

another route shape that could have similar properties. The

artificial learning walks were generated using a circular path with a

radius of 0.5 m for the outbound section and a straight path for

the inbound section (Figure 12). This is inspired by data from the

learning flights of bumblebees whose early learning flights contain

many loops with an inward portion oriented directly at the nest [A.

Philippides, personal observation].

The motor model and scanning routine
In the experiments that we report using a perfect memory

system, route recapitulation is performed using a complete 360o

scan of the environment (in steps of 4o) at each timestep. Normally

distributed noise with a standard deviation of &15o is added to the

preferred direction of movement and a 10 cm step is made in this

direction (Figure 13).

In the experiments that we report using the Infomax model we

employ a slightly more realistic scanning routine during route

recapitulation and instead of performing full 360o scans we limit

the scans to the frontal 180o in steps of 2o relative to the current

heading. We did this to make the scans more similar to those that

real ants produce which are rarely as large as 360o. This had a

negligible effect on performance except that it made it impossible

to follow a path that had any turns greater than 90o as were

present in the Muser et al. learning walk in Figure 2B. As before,

normally distributed noise with a standard deviation of &15o is

added to the preferred direction of movement and a 10 cm step is

made in this direction. However, when generating the pseudocolor

plots in Figures 4 and 5, we did not have a current heading and so

performed a full 360o scan to generate an assumed movement

direction.

Navigating with a perfect memory
For the perfect memory system each of the views experienced

along a training path was stored. we then calculated a familiarity

metric as minus the minimum of the sum squared difference in

pixel values between the current view and each of the stored views,

Vi.

Familiarity(I)~{ min
i

(
X

x,y

(I(x,y){Vi(x,y))2) ð1Þ

The maximum familiarity score across all rotated versions of the

current view will be obtained for the most similar stored view and

the direction from which this maximum was attained determines

the next movement to make. In this setting, if the simulated ant

does not stray from the training path then it is guaranteed to

choose the correct direction to move at each timestep. This is

because the most similar view will always be the one that was

stored at that location while facing in the direction required to

recapitulate the route.

Familiarity and Infomax
In order to perform familiarity discrimination we chose to use a

neural network model that was specifically designed to perform

this task [59]. The architecture consists of an input layer and a

novelty layer with tanh() activation functions (Figure 14). The

number of input units is equal to the dimensionality of the input

which in our case is ½90|17�~1530, the number of pixels in a

down-sampled view of the world. The number of novelty units is

arbitrary and here we follow [59] and use the same number of

novelty units as inputs. We found that using as few as 200 novelty

units can work well in many instances. We did not explore this

aspect of the problem in any detail since we were more interested

in the behavioural consequences of a familiarity driven approach.

The network is fully connected by feedforward connections wij .

Weights are initialised randomly from a uniform distribution in the

range ½{0:5,0:5� and then normalised so that the mean of the

weights feeding into each novelty unit is 0 and the standard

deviation is 1. The network is trained using the Infomax principle

[79] adjusting the weights so as to maximise the information that

the novelty units provide about the input, by following the gradient

of the mutual information. The core update equation (4) in our

learning scheme performs gradient ascent using the natural

gradient [80] of the mutual information over the weights [81]

(use of the natural gradient avoids the computationally expensive

calculation of the inverse of the entire weight matrix). Since two

novelty units that are correlated carry the same information,

Figure 12. Artificial learning walks. The artificial learning walks are
structured so that the outbound sections of the paths are curved while
the returns are straight. Behavioural modulation of learning is achieved
as views are only consistent during the straight inbound sections.
doi:10.1371/journal.pcbi.1002336.g012

Figure 13. The effects of noise. A) A random walk with normally
distributed noise with a standard deviation of &15o added to the
current heading at each timestep and a stepsize of 10 cm. B) A directed
walk with a fixed heading of 0 and normally distributed noise with a
standard deviation of &15o added at each timestep with a stepsize of
10 cm.
doi:10.1371/journal.pcbi.1002336.g013
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adjusting weights to maximise information will tend to decorrelate

the activities of the novelty units and the algorithm can thus be

used to extract independent components from the training data

[81]. We choose to use this approach mainly because it only

requires a single pass through the data. This means that each view

is experienced just once and then discarded. While with a limited

amount of data the algorithm is unlikely to converge to a

particularly good set of independent components, it is enough that

the components that are extracted provide a more suitable

decomposition of the training data than of an arbitrary input.

During learning the activation of each of the M novelty units hi is

computed as:

hi~
XN

j~1

wijxj ð2Þ

where xi is the value of the ith input and N is the number of input

units. The output yi of the novelty units is then given by:

yi~tanh(hi) ð3Þ

The weights are adjusted using the following learning rule:

Dwij~
g

N
(wij{(yizhi)

XN

k~1

hkwkj) ð4Þ

where g is the learning rate and is set as 0.01 for this paper.

Finally, the response of the network to the presentation of an

unseen N-dimensional input ~xx is computed as

d(~xx)~
XM

i~1

jhij ð5Þ

where jj denotes the absolute value. The network response could

be viewed as an output layer but as it is a function of the

activations of the novelty units, we follow [59] and do not

represent it with another layer (Figure 14). As noted above, in this

paper we set M~N and the network is trained with each training

view presented just once to the network in the order in which it is

experienced in training. In [59] the authors use d(~xx) together with

a threshold that must be determined empirically to determine

whether the input is novel or familiar. For our purposes it is not

necessary to determine a threshold as we only need to choose the

most familiar input from a limited number of possibilities i.e. the

views experienced during a single scan of the environment.

The difference between the way an image difference function

and a neural network trained using an Infomax principle represent

familiarity will be subtle. In essence, the difference is manifest in

the way the information is stored. For image differences, each

stored view defines a single point in an n-dimensional space, with n

equal to the dimension of the images (n = 90617 = 1530) and the

image difference function gives the squared Euclidean distance of

an input image from one of these stored points. This requires all of

the views to be stored and so memory load increases as more views

are experienced. The Infomax approach instead decomposes each

view into a fixed number of components (determined by the

number of hidden units in the network) which remains constant,

independent of the number of views experienced. The Infomax

measure is more abstract and reflects whether a test input is well

described in terms of the learned components that the hidden units

represent. By decomposing the input in this way it is possible

compress redundant data resulting in more efficient memory

storage.
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18. Lambrinos D, Möller R, Pfeifer R, Wehner R (1998) Landmark navigation
without snapshots: The average landmark vector model. In: Elsner N, Wehner R,

eds. Proc Neurobiol Conf Göttingen. Stuttgart: Georg Thieme Verlag. 30a p.

19. Franz M, Schölkopf B, Georg P, Mallot H, Bülthoff H (1998) Learning view
graphs for robot navigation. Auton Robot 5: 111–125.

20. Franz M, Schölkopf B, Mallot H, Bülthoff H (1998) Where did I take that

snapshot? Scene-based homing by image matching. Biol Cybern 79: 191–202.

21. Zeil J, Hofmann M, Chahl J (2003) Catchment areas of panoramic snapshots in
outdoor scenes. J Opt Soc Am A 20: 450–469.
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