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Abstract 
This abstract summarises a model of route navigation inspired 
by the behaviour of ants presented fully in Baddeley et al. 
(2012). The ant‟s embodiment coupled with an innate scanning 
behaviour means that robust route navigation can be achieved 
by a parsimonious biologically plausible algorithm. 

 
The ability of social insects to learn long foraging routes 
guided by visual information (Wehner, 2009) shows that 
robust spatial behaviour can be produced with limited neural 
resources (Chittka and Skorupski, 2011). As such, social 
insects have become an important model system for 
understanding the minimal cognitive requirements for 
navigation and, more generally those studying animal 
cognition using a bottom-up approach to the understanding of 
natural intelligence (Wehner, 2009, Shettleworth, 2010) while 
also providing inspiration for biomimetic engineers. Models 
of visual navigation that have been successful in replicating 
place homing are dominated by snapshot-type models where a 
single view of the world as memorized from the goal location 
is compared to the current view in order to drive a search for 
the goal (Cartwright and Collet, 1983; for review, see Möller 
and Vardy, 2006). Snapshot approaches only allow for 
navigation in the immediate vicinity of the goal however, and 
do not achieve robust route navigation over longer distances 
(Smith et al., 2007). Here we present an embodied 
parsimonious model of visually guided route learning that 
addresses these issues (Baddeley et al., 2012). By utilising the 
interaction of sensori-motor constraints and observed innate 
behaviours we show that it is possible to produce robust 
behaviour using a learnt holistic representation of a route. 
Furthermore, we show that the model captures the known 
properties of route navigation in desert ants. 
 
Our navigation algorithm consists of two phases (see 
Baddeley et al., 2012, for details). The agent first traverses the 
route in 4cm steps with direction determined by a 
combination of noisy path integration (PI; true heading plus 
Gaussian noise, mean 0, s.d. 5o) and obstacle avoidance, 
during which the training views used to learn the route are 
experienced (a view is used after every 4cm step). In some 
experiments, a predefined learning walk is added to the start 
of the training path with training views taken every 2cm. To 
navigate, the agent visually scans the world by rotating on the 
spot through ±90o of the current heading in 1o steps, 
behaviour similar to that observed in ants (P. Graham, 
Personal Observation). The most familiar direction during the 
scan is identified by inputting each view into an artificial 
neural network (ANN) trained to perform familiarity 
discrimination using the training views. Views are panoramic 
in azimuth and cover 68o of elevation above the horizon. 
Acuity is 4o meaning views are 90x17. The ANN is fully 
connected with 90x17 (one per pixel) inputs and outputs and 

no hidden layer. Weights are adjusted once per training view 
using an Infomax learning rule, with training views then 
discarded. The algorithm thus „learns‟ routes after a single 
journey and memory load does not scale with route length. 
After training, the ANN outputs a familiarity score for each 
view input during a scan. Gaussian noise (mean 0, s.d. 15o) is 
added to the direction associated with the most familiar view, 
a 10cm step is made in this directoin, and the scanning routine 
repeats, until within 4cm of the goal or timed out.  
 
We test our route navigation by learning a series of routes 
through visually cluttered environments consisting of objects 
distinguishable only as silhouettes against the sky. The 
model‟s performance is shown in figure 1. The model is able 
to learn idiosyncratic routes after a single training run (fig. 
1A). As with ants, the routes show clear polarity and can only 
be traversed from start to goal. While successful for route 
navigation, if the agent misses the goal, it will typically 
continue in a direction similar to the last steps of the training 
route (fig. 1B) rather than search for it. To learn how to return 
to a specific goal location from nearby local surrounding 
regions, some ants perform a learning walk consisting of 
several loops out and back towards the goal when they first 
leave it. Adding such a walk to the training path means that 
when the agents nears or passes the goal, familiar directions 
are set by views experienced during the learning walk and 
draw the agent to the goal (fig. 1C). The model thus exhibits 
both place-search and route navigation with one mechanism. 
The model also learns multiple idiosyncratic routes to a goal 
(Fig. 1D-E). Here, three different routes are used but encoded 
within the same network which does not separate routes into 
distinct paths but stores all the information holistically. Given 
this performance, we believe our model represents the only 
detailed and complete model of insect route guidance to date.  
 
Our approach is differentiated from previous attempts to 
understand route navigation in insects in several ways. 1) 
Navigation is independent of odometric or compass 
information. Unlike most snapshot-type models, training 
views are used as they are experienced, and are not rotated 
into common orientation before use. 2) The algorithm does 
not specify when or what to learn, but uses all views 
experienced during training. 3) Training views are not discrete 
waypoints. Previous route navigation algorithms navigate 
from one waypoint to another in a sequence, meaning one 
needs to know which waypoint is being used. Here, we do not 
navigate to each training view. Rather training views recall 
familiar directions not discrete places and are used to learn a 
holistic representation of the route; this representation says 
“What should I do?” not “Where am I?”. This means that 4) 
navigation proceeds through a simple embodied strategy of 
rotating on the spot – a behaviour observed in navigating ants 
– and moving in the most familiar direction. 
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Figure 1: Route navigation with an embodied holistic model. The simulated world is viewed from above and is comprised mainly of 
small tussocks and a few larger more distant objects (trees and bushes). In all panels, red lines are training paths, black lines 
recapitulations. A: Successful return paths for three different routes. The panels to the right show example views covering 360ox68o 
with 4o acuity from points along the training route (squares). B-C: Including learning walks prevents return paths from overshooting 
the goal. B) Without a learning walk the simulated ant overshoots and carries on in the direction it was heading as it approached the 
nest location. C) By including the views experienced during a learning walk the simulated ant, instead of overshooting, gets 
repeatedly drawn back to the location of the nest. D-E: Learning multiple routes. D) Route recapitulation performance (black lines) 
for each of three routes (red lines) that are learned with the same network. Testing of each of the routes is performed immediately 
following training on that route and prior to experience of other routes. Numbers by training routes show order in which routes were 
learnt. E) Performance on first two routes following learning of all routes, indicating that the route knowledge gained during the 
first two phases of learning is retained. Having learnt all 3 routes the network encodes 30m of route information.  
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