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Abstract

This paper describes a hitherto overlooked aspect of the
information dynamics of embodied agents, which can be
thought of as hidden information transfer. This phenomenon
is demonstrated in a minimal model of an autonomous agent.
While it is well known that information transfer is generally
low between closely synchronised systems, here we show
how it is possible that such close synchronisation may serve
to “carry” signals between physically separated endpoints.
This creates seemingly paradoxical situations where transmit-
ted information is not visible at some intermediate point in a
network, yet can be seen later after further processing. We
discuss how this relates to existing theories relating informa-
tion transfer to agent behaviour, and the possible explanation
by analogy to communication systems.

Introduction
The dynamics of embodied agent-environment systems are
increasingly analysed using information theory (Lungarella
and Sporns, 2006; Pfeifer et al., 2007b; Bertschinger et al.,
2008; Klyubin et al., 2008; Pitti et al., 2009; Williams and
Beer, 2010; Moioli et al., 2012; Schmidt et al., 2012). This
paper adopts this approach and demonstrates a phenomenon
that is consistent with the analogy to communications, but
thus far seemingly overlooked in studies of information
transfer in embodied agents. We describe “hidden” informa-
tion transfer in a simulated robot: strongly physically cou-
pled parts of the system carry information between separated
endpoints, without such information tranfer being visible be-
tween the carrier components themselves.

Information transfer is often characterised using forms of
transfer entropy (Schreiber, 2000), itself a nonlinear gener-
alisation of Granger causality (Barnett, 2009). Information
transfer from X to Y is quanitified by the relative improve-
ment in statistical prediction of the future states of Y when
the current state of X is known in addition to the already-
known historical states of the target variable Y . A known
issue, and potential source of confusion, is that information
transfer is not a measure of the physical strength of coupling
– a common example being synchronised systems, where
very high coupling may mean that two time series are almost

identical, leading to little prediction improvement and hence
low transfer entropy in spite of strong physical coupling (this
is seen in e.g. Thorniley, 2011). This is sometimes regarded
as a failure of transfer entropy to properly capture causal
influences (Ay and Polani, 2008; Lizier and Prokopenko,
2010; Janzing and Balduzzi, 2012). The agent model used
in this paper will exhibit this type of phenomenon, but in ad-
dition we will show that although strongly coupled compo-
nents may exhibit low transfer entropy, they may still act as
information conduits, hiding information transfer between
more separate components.

Our model is a reactive robot designed to behave like a
child swinging on a swing. As the feedback gain in the
robot’s controller increases, a self sustaining oscillation is
created. The agent has a simple neural model acting as its
brain, which is connected to the environment via its body.
The state of the agent’s neural system cannot (physically)
influence the environment apart from by first affecting its
body. However, we demonstrate that information transfer
can take place from brain to environment without informa-
tion transfer from brain to body. This shows how informa-
tion transfer can be hidden within the agent, and revealed by
its interaction with the environment.

This is the key result of this paper – information can pass
through a chain of coupled systems, e.g. A to B to C such
that there is a high information transfer from A to C but not
from A to B, even though physically there is no alternative
route. In the discussion at the end of the paper we will con-
sider how similar effects occur in communication systems
by way of analogy to our agent based model.

This paper is organised as follows: the next section below
describes the model swinging agent and its general dynami-
cal features. The analysis in the following section shows the
information hiding phenomenon by analysing the informa-
tion transfer between each component of the system. The
final section discusses this result and considers the implica-
tions for the study of embodied autonomous agents in terms
of information theory.
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Table 1: Variables and parameters

Symbol Type/Value Description

θ Variable Angle of pendulum from downward vertical
ω Variable Angular velocity of pendulum (dθ/dt)
r Variable Current pendulum extension
v Variable Rate of pendulum extension (dr/dt)
u Variable Force control variable – force on bob due to effector
Fa Intermediate Force on bob due to acceleration
Fs Intermediate Force on bob due to spring
A Independent variable (0-80) Motor neuron output at saturation
g 9.81 Acceleration due to gravity
b 0.3 Pendulum damping coefficient
ρ 2 Motor neuron sensitivity
φ 20 Control parameter
k 100 Spring force constant
c 20 Spring damping (= 2

√
k for critical damping)

Reactive swinging agent

The system studied here is a simplified model of a child
swinging on a swing. The swing itself will be modelled as a
rigid massless rod attached to a fixed pivot at one end with
a mass (being the mass of the agent) at the other end. The
agent’s motor control consists in its ability to move the mass
up and down (towards and away from the pivot). There are
two general ways to approach the dynamical modelling of
such a system. It is possible to use a “kicked pendulum”
approach where a periodic forcing function is used to per-
turb the mass (e.g. Belyakov et al., 2009). However it has
been found that even though a pendulum can be made to
swing this way, the limit cycle produced is in fact unstable,
and thus this is in a practical sense impossible to achieve
in the real world, suggesting that a better approach is the
“self-excited” oscillator (Pinsky and Zevin, 1999; Zevin and
Filonenko, 2007). Here the agent creates a positive feed-
back loop by adjusting the distance from the mass to the
pivot point (e.g. by raising and lowering the centre of mass
of the agent relative to a fixed attachment point at the end of
the rod). This create a stable limit cycle as well as a rest-
ing point (where the swing is pointing straight downwards
and there are no vibrations to amplify). Thus if the swing
is given an initial “push”, the movement of the agent will
sustain the oscillation, hence the system is described as self-
excited. This approach treats the agent as a reactive system
in the sense of Brooks (1986). This section provides further
details on the implementation of this system.

A representation of the model is shown in figure 1. There
is a massless rod with length normalised to one arbitrary
unit. It makes an angle θ with the vertical axis along which
the gravitational force g applies. The “agent” consists of a
mass-spring-damper system attached to the end of the rod.
The mass is influenced by the gravitational force, along with

Figure 1: Spring based model of the swinging agent

the centrifugal effect of rotation and the forces created by
the spring: linear contraction kr where k is a constant and r
is the extension of the spring, and damping cv with c another
constant and v = ṙ – the linear velocity of the mass in the
direction of the spring. The agent creates an effector force u
which acts on the mass, but this is derated according to the
current absolute extension of the spring, modelling a linear
motor which produces less force output when it is already
extended.

The full system can be described by the following equa-
tions. Table 1 lists each of the variables and parameters
used. Dots represent differentiation with respect to a non-
dimensionalised time variable t1:

1For simplicity all variables are treated as dimensionless,
though the choice of g = 9.81 suggests the system could be treated
as a one metre long pendulum with the agent mass at one kilogram,
and time in seconds.
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θ̇ = ω (1)

ω̇ = − g

1 + r
sin(θ)− bω (2)

ṙ = v (3)

v̇ =
u

1 + |r| + Fa + Fs (4)

u̇ = φ(A tanh(ρv)− u) (5)

The last equation describes the internal dynamics of the
agent’s reactive controller. The agent senses the current
velocity v of its spring, and passes this through a simple
sigmoidal neuron, which determines a desired output force
A tanh(ρv) where A and ρ are parameters. The actual out-
put force u moves towards this desired value in proportion
to its current error according to the rate parameter φ.

The acceleration of the mass in the direction of the pen-
dulum rod v̇ is given by the resultant force (we assume the
mass is normalised to one arbitrary unit). That is, equation
4 shows v̇ is the sum of the force due to acceleration Fa (i.e.
gravity and centrifugal forces, equation 6) and the force due
to the spring Fs (equation 7) along with the effector force
described above.

Fa = g cos(θ) + (1 + r)ω2 (6)
Fs = −kr − cv (7)

We can treat the different dynamical variables as compo-
nents of either the agent or environment, and further subdi-
vide the agent into “brain” and “body” as shown in figure
2. The intention is to treat the agent as dynamical system
which is “embodied” in the sense that its overall behaviour
is a result of the close coupling of the agent’s body, brain
and environment (Pfeifer et al., 2007a). The main sensor
variable is v – the input to the neuron, though the spring ex-
tension r can also be conceptualised as a component of the
agent’s sensory system. The motor output is represented by
u, and the environment consists of the pendulum system: ω
and θ.

The fixed parameter values used in the following simula-
tions are shown in table 1. The parameter A effectively con-
trols the feedback gain and will be varied as the independent
variable in what follows.

The bifurcation plot in figure 3 gives an indication of
the general dynamical features of the system. These plots
are obtained by recording the angular speeds at which the
swing passes through the downward direction, having been
intialised with a random angular velocity and the “transient”
time while the system is still far from a stable cycle or point
discarded. Data is obtained using Runge-Kutta integration
– all results in this paper are based on an integration step
size of 1/50th of a time unit, with a simulation length of
1000 time units. With A low, less than about 10, there is a

u
θ

ω

r

v

Figure 2: The agent and environment in terms of dynamical
variables

single, globally stable fixed point – i.e. there is insufficient
feedback for the agent to actually swing. Between feedback
gains of around 10 and around 50, the agent usually swings
side to side (represented in blue in the figure) – where the
agent returns to θ = 0 swinging in a different direction each
time. Above A = 30 another stable cycle appears where the
pendulum swings over the top rather than side-to-side, i.e.
it returns to θ = 0 travelling in the same direction (same
sign of ω) each time. Note that the two cycles coexist be-
tween values of A around 30 to 50, but above that only the
rotating motion occurs. Finally, above A = 70, a transition
to chaotic motion occurs – above this point the system will
sometimes rotate and sometimes swing side to side during a
single trajectory. The fixed point where the system does not
swing is locally stable for values of A less than around 33,
meaning that sometimes the system will tend towards rest-
ing rather than either of the limit cycles. Thus the ultimate
behaviour of the system is in general dependent on the initial
conditions as well as the particular value of A chosen.

We now consider a slight alteration to the model. In prac-
tice, no sensor is perfect, and thus the input to the neuron
might conceivably be modelled as a stochastic variable with
a slight perturbation εv , so equation 5 becomes:

u̇ = φ(A tanh(ρ(v + εv))− u)

Assuming εv is small we can linearise its effect model it
as a random additive perturbation on u̇:

u̇ = φ(A tanh(ρv)− u) + φAρsech2(ρv)εv

In order to practically simulate the system, it must be writ-
ten as stochastic differential equations. Specifically, we con-
vert the equation for u (which is the only variable where we
directly add noise) into Langevin equation form:

du = φ(A tanh(ρv)− u)dt+ φAρsech2(ρv)σdW

Where W represents a Wiener process, and a new param-
eter σ is introduced to control the strength of the random
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Figure 3: Bifurcation plot showing the behaviour of the sys-
tem as the internal gain A is increased. Simulations are
performed at each of 300 linearly spaced points between
A = 0 and A = 80. Plot shows absolute angular velocity
of the pendulum recorded as it passes through the “down-
ward” (θ = 0) plane of its state space – points in blue are
returns to θ = 0 where the sign of ω changed in between
returns (i.e. the agent is swinging side to side) and points
in red show returns in the same direction (the pendulum has
swung over the top). The grey area shows the numerically
estimated stability region for the fixed point where ω = 0
– i.e. if the system is within this region it will eventually
stop swinging. Outside of this region, it will go to either a
swinging or rotating stable cycle.
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Figure 4: Bifurcations with noise σ = 0.25

noise. This equation can be numerically solved using the
stochastic strong order 1.0 Runge-Kutta algorithm. The full
details of this approach including integration algorithm are
found in Sauer (2012). The overall effect is that u behaves
as if the neuron senses the current velocity v with additive
Gaussian white noise, where the noise power is increased by
increasing the newly introduced parameter σ. Figures 4 and
5 show the effect of increasing σ on the bifurcation structure
– the main features remain much the same, but the crossing
points are now somewhat random.

As well as making the model more “realistic”, introducing
this random perturbation ensures that the system is generally
ergodic, which facilitates the correct calculation of transfer
entropy. Without this property, the probabilities estimated
from time series data tend to make little sense (see Breiman,
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Figure 5: Bifurcations with noise σ = 0.5. Note that since
the system is stochastic, the stability regions are not deter-
ministically defined (close to the edge of the region shown,
some trajectories may tend towards the fixed point and some
towards the limit cycle depending on chance). The region
shown shaded corresponds to the median stable boundary
found in 20 simulation runs at each value of A.

1969, for a discussion). This slight randomness also means
that even for very closely synchronised variables there will
likely be at least some transfer entropy measured, as there
will be a constant introduction of entropy inside the system.

Information transfer analysis
Transfer entropy is generally defined for two time series X
and Y as a relative entropy or conditional mutual informa-
tion:

TEX→Y =
∑

P (xt, yt+δ, yt) log
P (yt+δ|xt, yt)

P (yt+δ|yt)

The data points being taken at discrete time intervals δ,
e.g. X = (xt0, xt0+δ . . . xt0+nδ). The sum is taken over the
support of P (xt, yt+δ, yt) – i.e. all possible combinations
of values for the three variables. In this analysis we use the
time interval δ = 1 (i.e. 50 integration steps, corresponding
to approximately one quarter of a cycle).

It is problematic to calculate the transfer entropy on
continuous-valued time series such as we have here. We
have used symbolic transfer entropy (Staniek and Lehn-
ertz, 2008), which uses a convenient rank transform to
find an estimate of the transfer entropy on continuous data
without the need for kernel density estimation.2 First an
embedding dimension m is chosen (we use 4), for each
n ≥ m we set x̂t0+nδ = rank[(xt0+(n−m+1)δ . . . xt0+nδ)],
where rank converts a sequence into its sort order, e.g.
(0.0, 0.4, 0.3, 0.25) becomes (1, 4, 3, 2). That is, each origi-
nal observation (after embedding in m dimensions) is a con-
tinuous vector (xt ∈ �m) and after transformation each ob-
servation is assigned one of the m! possible permutations

2Alternatives exist such as k nearest-neighbour methods
(Kraskov et al., 2004; Evans, 2008). At this time we are not aware
of a reason to prefer one method over the other in this instance.
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Figure 6: Symbolic transfer entropy in bits from each dynamical variable to each other one as the internal gain A is varied in
the system with noise σ = 0.25. Note that figure 7 shows some of the same data in a form that is easier to interpret for the
effects we are primarily interested in – the current figure is provided to show the context for the particular values of A chosen
for re-plotting in figure 7. The background of each plot shows in grey a copy of the bifurcation diagram from Figure 4 – this
is intended to help identify the correspondence between recorded transfer entropy and system behaviour. The results from 20
runs are shown after grouping by behaviour mode (color online): red for stable (non-swinging), green for side-to-side swinging
and blue for rotational motion. For each behaviour the median is calculated for plotting and the shaded area around each line
shows the 10th-90th percentile range where it is visible (for most values of A there was very little variation in the results). For
comparison, the bifurcation plot for the system is shown in grey in the background. Some key points on the graphs are labelled
in the θ → v and ω → v plots (the same features are present on some of the other plots as can be seen): at X the transfer
entropy for low feedback gains (stable behaviour) is often high; at Y there is a peak in the curve for side-to-side swinging
behaviour at around A = 12; Z1 is a notable peak in the rotational swinging behaviour, which appears to correspond to some
complexity in the behaviour not captured by the bifurcation diagram, Z2 is a trough at around A = 50; Z3 and Z4 show peaks
in transfer entropy which can easily be related to features of the bifurcation diagram which indicate higher complexity – the
chaotic behaviour at very high gains and the behaviour close to the bifurcation point.
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Figure 7: Median transfer entropy under three different behavioural regimes represented by arrow widths. Arrows are colored
blue for information transfer within the agent (variables u, r and v), green for within the environment (variables θ and ω), red
for agent to environment and black for environment to agent. See Figure 2 for classification of variables. (a) Low feedback gain
(A = 2.6), the system cannot maintain a periodic motion and tends towards the stable state. Higher transfer entropy is seen
within the agent. (b) Moderate gain (A = 12), the agent will swing side to side. This graph illustrates the information hiding
effect (see text). (c) High feedback (A = 50), the system rotates over the top. At this value almost no transfer entropy is seen in
any direction. Note that the arrow widths in (a) are 1/3rd the scale of the widths in (b) and (c) since the transfer entropy values
are generally much larger in (a).

of a sequence of lenth m. The permutation is denoted x̂t

and for ease of calculation could obviously be assigned an
integer representation according to an arbitrary one-to-one
mapping. The formula for symbolic transfer entropy is then

STEX→Y =
∑

P (x̂t, ŷt+δ, ŷt) log
P (ŷt+δ|x̂t, ŷt)

P (ŷt+δ|ŷt)
With the probabilities estimated in the natural manner for

discrete variables according to frequency of occurrence, i.e.
P (x̂t = X) would simply be the number of time points
where x̂t is found to be X divided by the total number of
observations taken.

On every experimental run, the system is initiated with
all dynamical variables set to zero except for ω which is
taken uniformly at random from [−10, 10). The first 100
time units are treated as transient non-stationary data and
discarded, and the remaining 900 data points are fed to the
symbolic transfer entropy calculation. This process is re-
peated ten times with different initial conditions, and the
trajectories recorded are classified according to their final
behaviour mode: resting, swinging or rotating.

The set of results in figure 6 shows all the transfer entropy
values calculated for the system using a noise amplitude of
σ = 0.25, taking each possible combination of source and
target variables. This shows a few basic features of the re-
sults. We see as expected that the transfer entropy does not

straightforwardly correspond to physical coupling – there is
no simple correspondence between the independent variable
A and the transfer entropy value. We also see that very dif-
ferent patterns of information transfer are observed for the
different behavioural regimes, even at the same value of A.

A simpler graphical representation of the transfer entropy
is shown in figure 7. This shows the median transfer entropy
for a particular behaviour at a chosen value of A as the width
of an arrow pointing in the direction of information transfer.
The arrows have been colour coded by the way in which they
connect the brain, body and environment components.

The most striking result for our purposes is shown in fig-
ure 7b, where the feedback gain is moderate, resulting in
a natural swinging behaviour. Here, the highest informa-
tion transfer is along the paths coloured red which emanate
from the agent (according to the classification in Figure 2)
and flow towards the environment. This includes the arrows
which directly connect the output of the motor neuron u to
the environment variables θ and ω. However, there is no di-
rect physical connection along this path since the coupling
between the brain and environment is always mediated by
the body. This is shown in equations 1 to 5 – the neuron
output u does not appear on the right hand side of the equa-
tions for θ̇ and ω̇, and hence it can only influence these vari-
ables through the intermediate coupling to its body (since the
body displacement r does influence ω). Thus the informa-
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tion transferred from u to ω (shown by a thick red arrow) for
example is surely carried across the chain u → v → r → ω,
yet there is low information transfer from u to v and r (il-
lustrated by the thin blue arrows). It is in this sense that we
claim this shows a form of hidden information transfer – we
know that the brain can only influence the environment by
going through the body, but even when a high information
transfer is measured from brain to environment, there is a
smaller amount from brain to body

Figures 7a and 7c do not clearly show this phenomenon,
since it is in no sense necessary for it to be present. Fig-
ure 7a seems to show the strongest connections within the
agent when the feedback gain is low and the system is rest-
ing, which can be explained by the fact that the source of
entropy here is the sensor noise inside the agent, and since
the agent is not swinging it may move up and down, but is
not likely to influence the angle of the pendulum. In figure
7 the very high feedback coupling is likely creating a highly
synchronised dynamic where the observed transfer entropy
is very low.

Discussion
The key result of this work is shown in figure 7b, where dur-
ing the entrained oscillatory motion of the system, the trans-
fer entropy is shown to be higher from the brain to the en-
vironment than it is from the brain to the body, even though
it is not possible for the brain to influence the environment
without that influence passing through the body.

It appears that the entrained behaviour leads to a reduc-
tion in the transfer entropy measured within the agent, as
can be seen by comparing the blue arrows between figures
7a and 7b. This is likely due to the close synchrony between
these variables when the agent is swinging – a factor that is
known to generally reduce measured transfer entropy. What
is interesting is that though the swinging behaviour appears
to decrease the transfer entropy within the agent, it also cor-
responds to increased information transfer from the agent to
its environment. This is a clear demonstration of the impor-
tance of the agent’s embodiment to the information dynam-
ics of the system – the interesting (as in measurable) inter-
action takes place between the agent and the environment
rather than within the agent.

What we are calling information hiding is the way in
which information coming from a variable we specifically
associate with the agent’s neural system, i.e. u, appears
to pass straight to the environment without having to “go
through” the body, in spite of that the fact that we already
know that, in a physical sense, it must, since only the agent’s
body is physically coupled to the environment.

It is worth attempting to gain a little intuition for how
this effect is working. For an analogy that is perhaps use-
ful in the current context, consider the simplest type of en-
cryption system based on a symmetric key illustrated in fig-
ure 8. A key is a randomly chosen binary sequence that

01101 01101

11010

10111+ +

11010Key

XOR Signal ReceivedTransmit

High MI
Low MI

Figure 8: A simple encryption system

has been previously shared between a sending and receiving
party. The sender can encrypt a message by performing the
XOR operation bit-wise between the key and the message.
However, since the key was chosen randomly, the resulting
encrypted signal should be statistically independent of the
transmitted message – the encryption operation appears (to
anyone without the key) to flip bits of the message at ran-
dom (i.e. it randomly changes some 1’s to 0’s and some
0’s to 1’s). However, with the key, it is trivial to recon-
struct the original message – the same XOR operation is
simply applied using the previously shared key. Symboli-
cally, if we have a transmitted message T , encrypted signal
S and received signal R then we have a very low I(T ;S)
yet high I(T ;R). Though expressed in terms of mutual
information rather than transfer entropy, this is essentially
the same information hiding phenomenon as we have been
discussing. Indeed if we assume the individual bits of the
message and the key are independent of each other then
TET→S = I(T ;S|history(S)) = I(T ;S) and so on.

The information hiding process can thus be seen as a
message being obscured by at some point and later recon-
structed. In the example above this function is performed by
the encryption system and is dependent on having a piece
of secondary data (the key) shared between the two end-
points via some alternative channel to the main signal path.
Of course, the encryption system is carefully designed to
achieve this – it requires the deliberate sharing of the key.
However, comparable processes have been found relying
only on chaotic synchronisation: Cuomo and Oppenheim
(1993) demonstrated that synchrony between a pair of cou-
pled Lorenz attractor systems can be used to “hide” infor-
mation in a similar way.3 Their experiment suggests that it
is plausible that information could be hidden by a dynamical
process such as the one studied here without the need for the
deliberate design of an encryption system.

This phenomenon should not be viewed as information
being completely lost to the world and then coming back

3Note that this system is not generally regarded as computa-
tionally secure as an encryption mechanism since the reconstruc-
tion circuit (which effectively serves as the “key”) can be relatively
easily inferred using attractor reconstruction on the transmitted sig-
nal.
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– rather it is simply hidden and then reconstructed by the
action of some dynamical system. We have interpreted in-
formation here as a statistical summary of collected data –
not as a physical quantity that exists in the world.

We have said little explicitly about causation, though of
course to say that the brain must influence the environment
via the body suggests a causal interpretation. Recent work
has studied the relationship between transfer entropy and
causal inference in part motivated by phenomena similar to
the one described here (e.g. Ay and Polani, 2008; Lizier and
Prokopenko, 2010). Information theory has also been ap-
plied successfully in the context of embodied systems (e.g.
Ay et al., 2008; Klyubin et al., 2008). Both of these connec-
tions are relevant: can information hiding as presented here
be useful in any sense as a guide to causal inference? How
should the current case study be connected to wider theories
of embodied behaviour? We aim to address these questions
in future work.
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Kraskov, A., Stögbauer, H., and Grassberger, P. (2004). Estimating
mutual information. Physical Review E, 69(6):16.

Lizier, J. T. and Prokopenko, M. (2010). Differentiating informa-
tion transfer and causal effect. The European Physical Jour-
nal B, 73(4):605–615.

Lungarella, M. and Sporns, O. (2006). Mapping information
flow in sensorimotor networks. PLoS computational biology,
2(10):e144.

Moioli, R. C., Vargas, P. A., and Husbands, P. (2012). Synchronisa-
tion effects on the behavioural performance and information
dynamics of a simulated minimally cognitive robotic agent.
Biological cybernetics, pages 407–427.

Pfeifer, R., Lungarella, M., and Iida, F. (2007a). Self-organization,
embodiment, and biologically inspired robotics. Science
(New York, N.Y.), 318(5853):1088–93.

Pfeifer, R., Lungarella, M., Sporns, O., and Kuniyoshi, Y. (2007b).
On the information theoretic implications of embodiment -
principles and methods. In Lungarella, M., Iida, F., Bongard,
J., and Pfeifer, R., editors, 50 Years of Artificial Intelligence,
volume 4850 of Lecture Notes in Computer Science, pages
76–86, Berlin / Heidelberg. Springer.

Pinsky, M. and Zevin, A. (1999). Oscillations of a pendulum with
a periodically varying length and a model of swing. Interna-
tional Journal of Non-Linear Mechanics, 34(1):105–109.

Pitti, A., Lungarella, M., and Kuniyoshi, Y. (2009). Generating
spatiotemporal joint torque patterns from dynamical synchro-
nization of distributed pattern generators. Frontiers in Neuro-
robotics, 3(2).

Sauer, T. (2012). Numerical solution of stochastic differential
equations in finance. In Handbook of Computational Fi-
nance.

Schmidt, N. M., Hoffmann, M., Nakajima, K., and Pfeifer, R.
(2012). Bootstrapping Perception Using Information The-
ory: Case Studies in a Quadruped Robot Running on Dif-
ferent Grounds. Advances in Complex Systems, 16:1250078.

Schreiber, T. (2000). Measuring information transfer. Physical
Review Letters, 85(2):461–464.

Staniek, M. and Lehnertz, K. (2008). Symbolic Transfer Entropy.
Physical Review Letters, 100(15):1–4.

Thorniley, J. (2011). An improved transfer entropy method for
establishing causal effects in synchronizing oscillators. In
Lenaerts, T., Giacobini, M., Bersini, H., Bourgine, P., Dorigo,
M., and Doursat, R., editors, ECAL 2011: Proceedings of the
Eleventh European Conference on the Synthesis and Simula-
tion of Living Systems. MIT Press.

Williams, P. and Beer, R. D. (2010). Information Dynamics of
Evolved Agents. In From Animals to Animats 11, pages 38–
49. Springer, Berlin / Heidelberg.

Zevin, A. and Filonenko, L. (2007). A qualitative investigation
of the oscillations of a pendulum with a periodically varying
length and a mathematical model of a swing. Journal of Ap-
plied Mathematics and Mechanics, 71(6):892–904.

ECAL - General Track

ECAL 2013 520




