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Abstract. We propose a new learning method to infer a mid-level fea-
ture representation that combines the advantage of semantic attribute
representations with the higher expressive power of non-semantic fea-
tures. The idea lies in augmenting an existing attribute-based repre-
sentation with additional dimensions for which an autoencoder model is
coupled with a large-margin principle. This construction allows a smooth
transition between the zero-shot regime with no training example, the
unsupervised regime with training examples but without class labels,
and the supervised regime with training examples and with class labels.
The resulting optimization problem can be solved efficiently, because sev-
eral of the necessity steps have closed-form solutions. Through extensive
experiments we show that the augmented representation achieves bet-
ter results in terms of object categorization accuracy than the semantic
representation alone.
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1 Introduction

Representations in terms of semantic attribute have recently gained popular-
ity in computer vision, where they were used mainly for two different tasks: to
solve classification problems based on class descriptions instead of training data
(zero-shot learning) [1, 2], and to automatically create (textual) descriptions of
images [3, 4]. In this work we build on the first of these aspects and we extend
it transparently to the case when few training examples are given (small shot),
either with class annotation (supervised), or without it (unsupervised). The un-
derlying idea is to extend the attribute representation with additional mid-level
features, which are not necessarily semantic by themselves, but that augment the
semantic features minimally in the sense that they offer additional representative
power where necessary, and only there.

Figure 1 illustrates this concept: assume we are given semantic representa-
tions (a1, . . . , a5) for three object classes, zebra, white tiger and elephant. As
zebras and white tigers differ only in one entry in this representation, they will
easily be confused when performing zero-shot classification with an imperfect,
image-based attribute predictor. The representation of elephants, on the other
hand, is clearly distinct from the other two classes, and classification errors are
unlikely for them. The topic of our work is to reduce the total risk of misclassifi-
cations by learning an augmentation of the attributes with features (b1, . . . , b3)
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Fig. 1. Proposed hybrid representation: a fixed semantic (a1, . . . , a5) part is augmented
by a non-semantic (b1, . . . , b3) part, where the latter is learned by enforcing a large
margin separation criterion between classes. See Section 1 for a detailed description.

that are learned automatically, even if this causes them to not necessarily be
semantic anymore. Specifically, we obtain values (b1, . . . , b3) for each image by
enforcing a large-margin criterion: the distance between representations of any
pair of images of different classes should differ by at least a constant (here 3). As
a result, different values are chosen for (b1, b2) for the zebra images than for the
white tiger image. For the elephant, the semantic representation alone is already
sufficient to enforce the distance criterion to the other classes. Therefore, no
specific values for (b1, b2) are enforced. Similarly, the value of b3 can be chosen
freely for all examples, which allows satisfying other criteria of the model, in our
case a reconstruction criterion. Note that, contrary to the above description, the
method we propose learns all entries of b jointly, not by an iterative reasoning
as used above for the purpose of illustration.

To implement the above intuition, we rely on two recently successful con-
cepts for learning of image representations: the autoencoder framework [5] and
the large margin concept [6]. The autoencoders follow a generative approach
to learning an intermediate representation by identifying features that allow re-
construction of the image representation with only a small error. In the large
margin nearest neighbor framework, we learn a representation in a discrimina-
tive way by trying to reduce the nearest neighbor classification on a training
set in a robust way. In the rest of the manuscript, we formalize these concepts
and formulate them as a joint optimization problem over projection matrices.
We show how to solve the optimization problem using alternating optimization
in which some parts have efficient closed form solutions. We perform an exper-
imental evaluation on the Animals with Attribute dataset that shows that the
learned hybrid representations improve over the representation purely in terms
of semantic attributes when additional training data is available.



Augmented Attribute Representations 3

2 Learning to Augment Features

For the rest of the manuscript we will assume the following situation: we are given
N images in a d-dimensional feature representation, x1, . . . , xN , for example a
bag-of-visual-words, from which we form a data matrix X = (x1, x2, .., xN ) ∈
Rd×N . Each xi ∈ X has a known attribute representation ai ∈ A, e.g. obtained
from an existing set of attribute classifiers, such as [1]. Our goal is to augment ai
with a non-semantic bi ∈ B, forming a hybrid [ai, bi] ∈ AB, where [·] denotes the
concatenation of vectors and AB = A×B. From the new, hybrid representation
we expect better properties than from the semantic part alone with respect to
a target task. For simplicity, in this work we consider only a binary represen-
tation for the semantic attribute space A = {0, 1}n, and binary or probabilistic
representations for the non-semantic space B = [0, 1]m, and we assume that the
target task is nearest-neighbor based object categorization. As it will become
clear from the description, generalization of this setup are not hard to obtain,
as they only require exchange of a loss function.

In learning the augmented representations, we look at two scenarios: unsu-
pervised and supervised. The unsupervised case is applicable whenever we have
training examples, regardless if we know their labels or not, whereas for the
supervised case, we need to know the class labels. Again, it will become clear
from the description that a semi-supervised case that combines properties of the
unsupervised and supervised can easily be obtained by a suitable choice of loss
function, but we do not explore this option in this manuscript.

2.1 Unsupervised Learning of a Feature Space Augmentation

As main idea in learning the augmenting features in an unsupervised way we use
the autoencoder principle. In general, an autoencoder aims for finding a latent
representation for a set of data that 1) is low-dimensional and therefore com-
pact, and 2) preserves as much of the information in the original input signal as
possible. This is achieved by forming a two-layered construction, in which a first
layer encodes the input data into the latent representation, and a second layer
decodes this representation back into the original data space. Each of the layers
is parametrized, and training the autoencoder means to identify parameters for
both layers such that the overall reconstruction error for a set of training exam-
ples is minimized. Intuitively, a representation that allows good reconstruction
of the input sample has captured more of the contained information than one
that doesn’t.

In our case, we are interested not in any ad-hoc latent representation, but we
want to augment the existing semantic attributes. We achieve this by making
the attribute vector ai, a fixed part of the latent representation for any xi,
and learning an encoding only for the second part, bi. In the decoding layer,
we try to reconstruct xi from the joint [ai, bi], which has the effect that the bi
representation only needs to encode the information that ai lacks, see Figure 2.
Consequently, we have found a simple way to factorize the information in xi into
a semantic part in A, and an additional, potentially non-semantic, part in B.
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Fig. 2. Autoencoder model for learning hybrid representations: input image x ∈ Rd,
(encoded) hybrid representation [a, b] ∈ Rn+m, (decoded) reconstructed image x̃ ∈ Rd.
The reconstruction error guides the learning, and a folk wisdom principle influences
good discrimination between classes in the latent attribute space.

Encoding function. As described above, the encoder function, e, maps an in-
put x ∈ Rd to the latent space AB. As the first, semantic, component a ∈ A is
obtained from a separate method for attribute-prediction, we only parametrize
the second, non-semantic component as b = σe(WBx), where WB ∈ Rm×d con-
tains all parameters, and σe(z) = 1

1+exp(−z) is a sigmoid non-linearity that we

apply component-wise to ensure that the latent layer takes values in a range
comparable to the binary-valued a. Together, we write

e(x) = [a, b] = [a, σe(WBx)] (1)

Decoding function. The decoder function g : AB→ Rd aims at reconstructing
the image in its original input space X from the latent space AB. We assume
the following linear form:

g([a, b]) = U [a, b] (2)

parametrized by a matrix, U ∈ Rd×(n+m), that we decompose as U = [UA, UB ]
with UA ∈ Rd×n, UB ∈ Rd×m. To simplify notation, we denote the result of first
encoding x then decoding it again by x̃. For the complete data X we can write
this as

X̃ = UAA+ UBB (3)

where A ∈ AN , and B ∈ BN are the encoded representations of the data X.

Reconstruction loss. The reconstruction loss measures the loss incurred by
mapping the input data to the latent space and then reconstructing the input
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from the latent space. As such, it can be used to judge the quality of a choice
of parameters WB and U . We follow the usual choice for real-valued x ∈ Rd and
use a squared error loss [7] that has the form

LR =

N∑
i=1

‖xi − x̃i‖2 = ‖X − X̃‖2Fro (4)

where ‖ · ‖Fro denotes Frobenius norm of a matrix.

2.2 Supervised Learning of a Feature Space Augmentation

If we have access to ground truth annotation during the learning phase we can
improve the augmented representation by adding an additional loss term that
more directly reflects the object categorization task than the reconstruction loss.

Folk Wisdom Loss. This loss term is inspired by the intuitive principle ”stay
close to your friends and run away from your enemies”. We can incorporate
this loss for learning in the latent space AB, because in a supervised setup a
natural friendship (enemy) relation between samples is given by having the same
(different) class labels. The folk wisdom loss [8] then directly reflects the idea
that we would like to make few mistakes in nearest neighbor classification.

The idea of preserving the friendship while projecting the data to the latent
space was earlier described in [6], where Weinberger and Saul showed how to
learn a linear transformation over the data such that k-nearest neighbor belong
to the same class while examples from different classes are separated by a large
margin. In our work we rely on the large margin nearest neighbor (LMNN) for-
mulation that they propose. First, for each sample we identify a set of friends
and non-friends based on their class label. We use the notation i ∼ j to indicate
that xi and xj are friends, and the notation i 6∼ k to indicate that xi and xk are
non-friends. The folk wisdom loss can then be formalized as:

LFW =
∑
i∼j

d2AB(xi, xj) +
∑
i∼j,
i 6∼k

max
{

0, C + d2AB(xi, xj)− d2AB(xi, xk))
}

(5)

where dAB denotes the Euclidean distance in the AB space, i.e. d2AB(xi, xj) =
‖[ai, bi] − [aj , bj ]‖2 = ‖ai − aj‖2 + ‖bi − bj‖2. The first term in (5) penalizes
large distances between objects of the same class. The second term penalizes
small distances between objects of different classes, i.e. each sample is enforced
to be C-units further from its non-friends than from its friends, where C is a
application dependent parameter, that we set to be the median of the square
distance between classes in the A space.

2.3 Regularization Risk Functional

To avoid overfitting, especially in the regime when little data is available, we
introduce regularizers on all parameters:

Ω(WB) = ‖WB‖2Fro, Ω(UA) = ‖UA‖2Fro, Ω(UB) = ‖UB‖2Fro (6)
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In combination, we obtain the following regularized risk functional for learning
the hybrid attribute representations

L(WB , U) = LR(WB , U) + ηLFW (WB) + αΩ(UA) + βΩ(UB) + γΩ(WB) (7)

where we have made the dependence of the loss terms on the unknowns WB and
U explicit. The objective function expresses the properties we expect from the
latent representation: 1) it should be compact (automatic, because A and B are
low-dimensional), 2) it should retain as much information as possible from X
(enforced by LR), 3) it should have higher discriminative power than A alone
(enforced by the folk wisdom loss LFW ), and 4) it should generalize from X
to unseen data (enforced by the regularization). The trade-off variables η, α, β,
and γ control the relative influence of the aspects 2)–4). Setting η = 0 we obtain
a formulation that allows unsupervised feature learning, because only the folk
wisdom loss requires knowledge of labels (through the definition of friends and
non-friends). Even though we do not enforce property 3) in this case, we can
still hope for better classification performance, because property 2) will cause
additional information to be present in the hybrid representation that in the
semantic one alone.

3 Optimization

Minimizing the expression (7) is a non-convex optimization problem. The re-
construction loss is non-convex with respect to the weight matrix WB due to
the nonlinear transformation in the encoder function (1). The folk wisdom loss
is non-convex with respect to the weight matrix WB when optimizing the non-
friends relation part, i.e. the second term in (5). One potential approach to solve
the optimization problem is to use alternating optimization with respect to one
weight matrix at the time while fixing the others.

The key observation is that when the weight matrices WB , UB in (7) are fixed
we can obtain the closed form solution for updating the matrix UA by solving a
ridge regression problem. The closed form solution to:

min
UA∈Rd×n

‖UAA+ UBB −X‖2Fro + α‖UA‖2Fro (8)

for fixed X, and UB , A, B is:

UA = (X − UBB)AT (AAT + αIn)−1 (9)

where In is the identity matrix of size n, and αIn reflects the regularization on
the matrix UA. Essentially UA aims to capture the information, which was lost
by decoding from the latent space B, i.e. X − UBB. By analogy, for fixed X,
and UA, A, B we obtain the closed from solution for updating the matrix UB :

UB = (X − UAA)BT (BBT + βIm)−1 (10)

where Im is the identity matrix of size m, and βIm regularizes the matrix UB .
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Algorithm 1 Learning Feature Augmentation

Input Training set X with attribute representation A
Input Regularization constants α, β, γ
Input If supervised : training labels Y , regularization constant η
repeat
UA ← update from closed form solution (9)
UB ← update from closed form solution (10)
if supervised then

Randomly pick friend and non-friend pairs based on class label Y
WB ← argminWB

LR(WB) + ηLFW (WB) + γΩ(WB)
else
WB ← argminWB

LR(WB) + γΩ(WB)
end if

until convergence, or for a maximal number of iterations
Return WB , UA, UB

For WB the non-linearity of encoding prevents a closed form expression. After
updating UA, UB several existing optimization solvers can be used for updating
the matrix WB . In this work we use Broyden-Fletcher-Goldfarb-Shanno gradient
descent method with limited-memory variation (L-BFGS). Note, we do not need
to run full L-BFGS procedure at each pass to update the matrix WB , few steps
only. To speed up the training, we use a step size of 2 in our experiments. While
training the autoencoder, because A is fixed whereas B is learned, we expect
UA to vary less strongly, so we can accelerate the optimization by updating
the matrix UA less frequent, e.g. at every t-th iteration. The proposed training
procedure is summarized in the Algorithm 1.

4 Related Work

While semantic attributes [9] have received a lot of attention recently, most of
the existing work studies either zero-shot learning with no training examples [1,
2], or the more classical case of many training examples, that allow training of
discriminative probabilistic or maximum-margin classifiers [10, 11]. Our interest
lies on the case inbetween, where some, but few examples per class are available.
It appears wasteful to use zero-shot learning in this case, but it has also been
observed previously that discriminative techniques tend to fail in this regime [12,
13], unless specific transfer learning techniques can be incorporated [14, 15].

A characteristic aspect of our work is that we want to extend the set of se-
mantic attributes. Prior approaches aimed at preserving the property that all
attributes have a semantic meaning. Therefore, they required additional human
knowledge, obtained either by the analysis of textual sources [16], or by interac-
tion with human users [17]. By adopting a hybrid model in which semantic and
non-semantic attributes occur together, we get away without such an additional
source of human input.
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Our approach of using an autoencoder to find a useful feature representa-
tion follows the recent trend of learning feature representations in an unsuper-
vised way [18, 5, 19]. Splitting the feature representation of the autoencoder into
heterogeneous groups has been discussed in [20], [21] among others. However,
in our case factorization of the autoencoder is different due to asymmetry of
the semantic and non-semantic parts. The semantic part reflects the human-
interpretable attributes and is fixed, whereas the non-semantic part is learned
to overcome shortcomings of the semantic attributes at the expense of not being
interpretable. To our knowledge, our work is the first that explores the idea of
autoencoders jointly with the large margin nearest neighbor principle [6]. Other
approaches to preserve class structure during feature learning exist, however. For
example, [22] trains a deep network and afterwards uses Neighborhood Compo-
nent Analysis (NCA) to improve the k-NN classification accuracy. NCA is also
the basis of [23], which conceptually is most related to our method. It aims at
learning a feature representation which is suitable for the object categorization
especially with a small training set. Its focus, however, does not lie on leveraging
existing attribute annotation, but to make optimal use of the available training
examples by constructing many virtual training sets. We compare to their results
in our experimental evaluation.

5 Experiments

We use the Animals with Attributes (AwA)3 dataset introduced in [1]. The
dataset consists of 30475 images. Each of the image is attached with a cate-
gory label which corresponds to the animal class. There are 50 animals classes
in this dataset. The dataset also contains semantic information in the form of an
85-dimensional Osherson’s [24] attribute vector for each animal class. Following
the studies of [1], we use 24295 images from 40 classes to learn the semantic
attribute predictors. From the remaining 10 classes, we take 4680 images for
training the autoencoder model, and use the rest of 1500 images, i.e. 150 from
each class, to test the performance of the model. We repeat the whole proce-
dure of training and test 5 times to get better statistics of the performance. In
our experiments, we use the representation by SURF descriptors [25] provided
with the dataset and referred to as original feature representation. We further
normalize the features to have zero mean and unit standard deviation for each
dimension.

Algorithms. We analyze two variants of our proposed method: in the first
variant the hybrid representation is learned in an unsupervised way via the
autoencoder architecture while minimizing only the reconstruction loss; in the
second variant the hybrid image representation is learned with additional su-
pervision via the folk wisdom principle. The supervision comes from friendship
and non-friendship relations based on class label. In this experiment, we define
friends to be samples coming from the same class and non-friends to be from

3 http://attributes.kyb.tuebingen.mpg.de/
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different classes. To keep the terms in balance we sample the pairs such that
the cardinality of the non-friends set has the same order as the friends set. We
find that 3 friends and 3 non-friends for each sample is a good balance between
computational efficiency and accuracy performance. Further, we stochastically
change the pairs of friends and non-friends as the optimization solver cycles
through the steps.

Evaluation metric. We use k-nearest neighbor classification accuracy as the
evaluation metric with k = 3. We compare the classification performances of our
proposed unsupervised and supervised hybrid representations to baselines using
original bag-of-visual-words image representation and pure semantic attribute
representation of [1]. The semantic attribute representation is currently the only
method that is able to predict a class label without seeing any examples of the
class and thus this attribute representation shows significant advantage in the
small shot setting over bag-of-visual-words representation. However the latter,
in principle, can benefit from the availability of more training data points.

Model selection. For the semantic attribute baseline, we learn a predictor for
all of the 85 attributes based on samples and semantic information on the set of
40 animal classes. We use an `2 -regularized logistic regression model with the
2000 dimensional bag-of-visual-words image representations. We perform a cross
validation model selection for choosing the regularization trade-off variable.

We also perform a cross validation model selection approach in choosing
the regularization parameters for our unsupervised learning variant, α, β and
γ, and then for our supervised variant η given the trade-off parameters of the
unsupervised from the previous model selection.

Results. We demonstrate the performance in a small shot setting, when we have
2, 4, 6, 8, 10, 20, 30 number of training samples per class. These samples are the
only ones used to train the autoencoder model and to assess k-nearest neighbor
performance. We randomly select the required number of training samples from
the available training samples per class, which in total is 4680 images. We are
interested in exploring how the latent attribute space AB benefits when aug-
menting the A with only few dimensions, and up to the case when we double
the size of the latent space representation compare to semantic attribute space
A. Guided by this interest, we augment the semantic attribute space A with a
m = 10, 20, 50, 85 dimensional space B, and we study the performance of the
methods across dimensions. The results are summarized in Figure 3.

Our experiments show that categorization performance of the proposed un-
supervised variant is always better or on the par with semantic attribute repre-
sentation. Further, in a majority of cases we observe that our supervised vari-
ant shows an increased improvement over the unsupervised counterpart. As ex-
pected, in the small training samples regime, performance of both proposed hy-
brid models and semantic attribute representation are significantly better than
the original representation.
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Fig. 3. Augmented attribute representations using proposed hybrid unsupervised and
supervised methods. Comparison with baselines methods using original feature repre-
sentation (SURF features), and predicted attribute representation [1] (mean and stan-
dard deviation over 5 runs). View of the classification performance across dimensions
of the latent space B.

Looking at Figure 3 more closely for m = 10 dimensional space B, we can
see that our hybrid unsupervised model shows only minute improvements over
semantic attributes representation when augmenting with only few dimensions.
This is expected as the effect of few additional dimensions is overwhelmed by a
strong semantic prior which is by itself already discriminative enough. Whereas
at higher dimensions such as m = 50, the unsupervised variant becomes clearly
better in comparison to the semantic attribute representation alone. When we
double the size of the latent space, i.e. m = 85, we observe saturation in the
improvements at small number of training samples, due to highly redundant
information in the encoded B space. As number of samples grow, the trend of
increased recognition performance continues.

We also observe a more positive effect of incorporating the folk wisdom prin-
ciple into the learning of latent attribute space when more samples become avail-
able. The proposed hybrid supervised representation integrates the knowledge
about object classes by enforcing a large margin between images from different
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classes. The margin concept helps to improve recognition performance even at
low dimension of the B space. But we note that in some cases the performance of
our supervised method only matches the unsupervised counterpart. Such cases
can be seen in Figure 3 at dimension m = 20, and at dimension m = 50. This
is caused by sensitivity of the method to the model selection on the trade-off
variables between reconstruction loss and folk wisdom loss.

We also look into the case when we are given the ground truth semantic at-
tributes of the input images for training the autoencoder model. One could hope
that this leads to better results, as it eliminates the effect of noisy predictions at
training time. On the other hand, using the ground truth attributes prevents the
training stage from learning to compensate for such errors. The results of these
experiments for m = 10 and m = 85 dimensional space B are shown on Figure
4. Note, because the ground truth attributes are defined per class, the semantic
attribute representation of the image directly corresponds to its class represen-
tation, and therefore prevents a completely unsupervised setting. Moreover, the
nearest neighbor performance using semantic attribute representation (red line)
does not gain from more training data because all examples of one class have the
same ground truth attribute representation. We observe an advantage of using
the hybrid representations with and without folk wisdom loss over the baseline
methods for higher dimensional B space, as for m = 85 on Figure 4. Similar to
the case with predicted semantic attributes, augmenting the semantic attribute
space only with few dimensions, as for m = 10 on Figure 4, does not give essen-
tial advantage in performance, which highlights again the discrimination power
of the semantic attribute representation alone.

We also provide more extensive experimental analysis of the impact of differ-
ent model components on Figure 5. As we can see in our setting, augmenting the
semantic attributes with proposed hybrid unsupervised and supervised methods
is clearly better than learning a representation ”from scratch” (baselines with
A = 0). We also illustrate the dominating role of the folk wisdom criterion over
the reconstruction criterion in the proposed hybrid supervised model. In this
case, the augmented attribute representations are learned using the folk wisdom
criterion while eliminating the reconstruction term in (7).

Comparison to related work. Earlier work on object categorization for the
Animals with Attributes dataset followed different experimental setups than the
one we use, so numeric results are not directly comparable to ours. For com-
pleteness, we nevertheless give an overview here: the original work of [1] reports
classification accuracies of 40.5% in a zero-shot setup with direct attribute pre-
diction (DAP), and 27.8% with indirect attribute prediction (IAP). However, the
work makes use of a multiple-kernel learning strategy with six different feature
types, whereas we rely only on a single feature type. Note that the ”Attribute”
baseline we report in Figure 4 corresponds approximately the DAP model. [26]
performed experiments on 1– and 10–nearest neighbor classification accuracy.
For the same SURF features that we use, the authors achieve 11.7% accuracy
for the `2-norm and 16.4% accuracy for the `1-norm, which is comparable to
the ”Original Feature Representation” we report in Figure 3 and Figure 4. [23]
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Fig. 4. Learning hybrid representations with and without folk wisdom loss using ground
truth semantic attributes. Comparison with baselines methods using original feature
representation (SURF features), and ground truth attribute representation [1] (mean
and standard deviation over 5 runs). View across dimensions of the latent space B.

Fig. 5. In-depth analysis of the model components. Comparison of the proposed meth-
ods to augment semantic attribute representations with learning feature representations
without semantic attributes (A = 0). Role of the Folk Wisdom criterion alone in the
proposed hybrid supervised method. Mean and standard deviation over 5 runs. View
across dimensions of the latent space B.
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learned feature representations in a one-shot setup. Using the same combination
of 6 different feature descriptors as [1], the authors report 23.7% for linear rep-
resentations, 27.2% for non-linear, and 29.0% for a combinations of non-linear
with semantic attribute features.

6 Discussion and Conclusion

In this work we introduced a method to augment a semantic attribute repre-
sentation by additional, non-semantic, mid-level features. The main idea is to
learn only the non-semantic part of the representation by an autoencoder in
combination with an (optional) maximum-margin loss term, while keeping the
semantic part fixed. The effect is that the additional feature dimension overcome
shortcomings of the semantic original ones, but do not copy their behavior. We
interpret the result as an orthogonal decomposition of the image features into
semantic, and non-semantic information.

Our experiments showed that the additional flexibility offered by the hybrid
features improve the nearest neighbor classification accuracy over the purely se-
mantic representation. In particular, they allow for a smooth transition between
the zero-shot case (no training images), the unsupervised case (training images
without labels) and the supervised case (training images including their labels).

A drawback of the setup we chose is that it requires regularization, and there-
fore the choice of regularization parameters. We used standard cross-validation
for this, but if the number of training examples is small – and this is exactly
the case of interest to us– this step can become unreliable. Instead, it could be
promising to decide on free parameters using a Bayesian criterion that does not
require splitting the available data into parts. A second task we plan to address
is how to make use of the learned representation beyond classification itself. Be-
cause a significant part of the hybrid representation is semantic, we expect that
techniques, e.g., for generating image descriptions are still applicable. In this re-
spect is that very useful that the modular setup of our method allows replacing
the folk wisdom with any other suitable loss. We plan to explore this and the
questions mentioned previously in future work.
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