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Abstract

We present a compositional program logic for call-by-value imperative higher-order functions with general
forms of aliasing, which can arise from the use of reference names as function parameters, return values, content
of references and parts of data structures. The program logic extends our earlier logic for alias-free imperative
higher-order functions with new modal operators which serve as building blocks for clean structural reasoning
about programs and data structures in the presence of aliasing, which has been an open issue since the pioneering
work by Cartwright-Oppen and Morris twenty-five years ago. We illustrate usage of the logic for description and
reasoning through concrete examples including a higher-order polymorphic Quicksort. The logical status of the
new operators is clarified by translating them into (in)equalities of reference names. The logic is observationally
complete in the sense that two programs are observationally indistinguishable iff they satisfy the same set of
assertions.

1. Introduction

In high-level programming languages names can be used to indicate either stateless entities like procedures, or
stateful constructs such as imperative variables. Aliasing, where distinct names refer to the same entity, has no
observable effects for the former, but strongly affects the latter. This is because if state changes, that change
should affect all names referring to that entity. Consider for example

P
def
= x := 1; y :=!z ; !y := 2,

where, following ML notation, !x stands for the content of an imperative variable or reference x. If z stores a
reference name x initially, then the content of x after P runs is 2; if z stores something else, the final content
of x is 1. But if it is unclear what z stores, we cannot know if !y is aliased to x or not, which makes reasoning
difficult. Or consider a program

Q
def
= λy.(x := 1; y := 2).

If Q is invoked with an argument x, the content of x ends up as 2, otherwise it stays 1. In these examples, what
have been syntactically distinct reference names in the program text may be coalesced during execution, making
it difficult to judge which name refers to which store from the program text alone. The situation gets further
complicated with higher-order functions because programs with side effects can be passed to procedures and
stored in references. For example let:

R
def
= λ( f α×α⇒Unit,xα,yα). ( let z = !x in !x := 1; !y := 2; f (x,y) ; z := 3 )

where α = Ref(Ref (Nat)). R receives a function f and two references x and y. Its behaviour is different
depending on what it receives as f . If we pass a function λxy.() as f , then, after execution, !x stores 3 and
!y stores 2. But if the standard swapping function swap

def
= λab.let c = !b in (b :=!a;a := c) is passed,

the content of x and y is swapped and !x now stores 2 while !y stores 3. Such interplay between higher-order
procedures and aliasing is common in many non-trivial programs in ML, C and more recent typed and untyped
low-level languages [1, 17, 35].
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Hoare logic [20], developed on the basis of Floyd’s assertion method [14], has been extensively studied as
a verification method for first-order imperative programs, with diverse applications. However Hoare’s original
proof system is sound only when aliasing is absent [4, 11]: while various extensions have been studied, a general
solution which extends the original method to treat aliasing, retaining its semantic basis [15, 21] and tractability,
has not been known, not to speak of its combination with arbitrary imperative higher-order functions.

Resuming studies by Cartwright-Oppen and Morris from 25 years ago [9, 10, 30], the present paper introduces
a simple and tractable compositional program logic for general aliasing and imperative higher-order functions.
A central observation in [9, 10, 30] is that (in)equations over names, simple as they may seem, are expressive
enough to describe general aliasing in first-order procedural languages, provided we distinguish between
reference names (which we write x) and the corresponding content (which we write !x) in assertions. In
particular, their work has shown that alias robust substitution, written C{|e/!x|} in our notation, defined by:

M |=C{|e/!x|} iff M [x 7→ [[e]]M ] |= C (1.1)

(i.e. an update of a store at a memory cell referred to by x with value e) can be translated into (in)equations of
names through inductive decomposition of C, albeit at the expense of an increase in formula size. This gives us
the following semantic version of Hoare’s assignment axiom:

{C{|e/!x|}}x := e{C} (1.2)

where the pre-condition in fact stands for the translated form mentioned above. The rule subsumes the original
axiom but is now alias-robust. As clear evidence of descriptive power of this approach, Cartwright and Oppen
showed that the use of (1.2) leads to a sound and (relatively) complete logic for a programming language with
first-order procedures and full aliasing [9, 10]: Morris showed many non-trivial reasoning examples for data
structures with destructive update, including the reasoning for Schorr-Waite algorithm [30].

The works by Cartwright-Oppen and Morris, remarkable as they are, still beg the question how to reason
about programs with aliasing in a tractable way. The first issue is calculation of validity in assertions involving
semantic substitutions. This is hardly practical because inductive decomposition of {|e/!x|} into (in)equations
has been the only syntactic tool available. As demonstrated through many examples by Morris [30] and, more
recently, Bornat [7], this decomposition should be distributed to every part of a given formula even if that part is
irrelevant to the concerned state change, making reasoning extremely cumbersome. As one typical example, if
we use the decomposition method for calculating the logical equivalence C{|c/!x|}{|e/!x|} ≡C{|c/!x|} for general
C, with c being a constant, we need either meta-logical reasoning, induction on C, or an appeal to a semantic
means. Because such logical calculation is a key part of program proving (cf. [20]), practical usability of this
approach becomes unclear. The second problem is the lack of structured reasoning principles for deriving precise
description of extensional program behaviour with aliasing. This makes reasoning hard, because properties
of complex programs often crucially depend on how sub-programs interact through shared, possibly aliased
references. Finally, the logics in [9, 10, 30] and its successors do not offer a general treatment of higher-order
procedures as well as mutable data structures which may store such procedures.

We address these technical issues by augmenting the logic for imperative higher-order functions introduced
in [24] with a pair of mutually dual logical primitives called content quantifiers. They offer an effective middle
layer with clear logical status for reasoning about aliasing. The existential part of the primitives, written 〈!x〉C,
is defined by the following equivalence:

M |= 〈!x〉C def
≡ ∃V.(M [x 7→V ] |= C) (1.3)

The defining clause says: “for some possible content of a reference named x, M satisfies C” (which may not
be about the current state, but about a possible state, hence the notation). Syntactically 〈!x〉C does not bind free
occurrences of x in C. Its universal counterpart is written [!x]C, with the obvious semantics.
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We mention a couple of notable aspects of these operators. First, introduction of these operators gives us
a tractable method for logically calculating assertions with semantic update, solving a central issue posed by
Cartwright-Oppen and Morris 25 years ago. We start from the following syntactic representation of semantic
update using the well-known decomposition:

C{|e/!x|} ≡ ∃m.(〈!x〉(C∧ !x=m)∧m=e). (1.4)

From (1.3) and (1.4), the logical equivalence (1.1) is immediate, recovering (1.2) as a syntactic axiom. Not
only does C{|e/!x|} now have concrete syntactic shape without needs of global distribution of update operations,
but also these operators offer a rich set of logical laws coming from standard quantifiers and modal operators,
enabling efficient and tractable calculation of validity while subsuming Cartwright-Oppen/Morris’s methods.
Intuitively this is because logical calculation can now focus on those parts which do get affected by state
change: just like lazy evaluation, we do not have to calculate those parts which are not immediately needed.
In later sections we shall demonstrate this point through examples.

Closely related with its use in logical calculation is a powerful descriptive/reasoning framework enabled
by content quantification, in conjunction with standard logical primitives. By allowing hypothetical statement
on content of references separately from reference names themselves (which is the central logical feature of
these operators), complex aliasing situations are given clean, succinct description, combined with effective
compositional reasoning principles. This is particularly visible when we describe and reason about disjointness
and sharing of mutable data structures (in this sense it expands the central merits of “separating connectives”
[31, 34], as we shall discuss in later sections). The primitives work seamlessly with the logical machinery for
capturing pure and imperative higher-order behaviour studied in [22–24], enabling precise description and
efficient reasoning for a large class of higher-order behaviour and data structures. The descriptive power of
the logic is formally clarified in Section 4 by showing the assertion language is observationally complete in the
sense that two programs are contextually indistinguishable exactly when they satisfy the same set of assertions.

Third, and somewhat paradoxically, these merits of content quantification come without any additional
expressive power: any formula which contains content quantification can be translated, up to logical equivalence,
into one without. While establishing this result, we shall also show that content quantification and semantic
update are mutually definable. Thus name (in)equations, content quantification and semantic update are all
equivalent in sheer expressive power: the laws of content quantification are reducible to the standard axioms
for the predicate calculus with equality, which in turn are equivalent to semantic update through its axioms for
decomposition. This does not however diminish the significance of content quantification: without identifying
it as a proper logical primitive with associated axioms, it is hard to consider its use in reasoning, both in logical
calculation and in its applications to structured reasoning for programs and shared data structures in the presence
of general aliasing. To our knowledge [2, §10], neither the calculation method nor the reasoning principle
proposed in the present paper is discussed in the foregoing work.

In the remainder, Section 2 introduces the programming/assertion languages. Section 3 presents axioms and
proof rules. Section 4 records key technical results on the logic. Section 5 illustrates the use of the logic
through concrete reasoning examples including a higher-order, polymorphic Quicksort. Section 6 concludes
with discussions on related work and further issues. A long version [2] serves as a technical reference containing
detailed proofs, further examples and an extensive historical survey.

2. Assertions and their Semantics

2.1 Programming Language.

As a target programming language, we use call-by-value PCF with unit, sums and products, augmented with
imperative constructs [32]. Let x,y, . . . range over an infinite set of names. Then types, values and programs are
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given by the following grammar.

(types) α,β ::= Unit | Bool | Nat | α⇒β | α×β | α+β | Ref(α)

(values) V,W ::= c | x | λxα.M | µ f α⇒β.λyα.M | 〈V,W 〉 | ini(V )

(program) M,N ::= V | MN | M := N | !M | op(M̃) | πi(M) | 〈M,N〉 | ini(M)

| if M then M1 else M2 | case M of {ini(x
αi
i ).Mi}i∈{1,2}

We use standard boolean/arithmetic constants and operations. Types can carry reference types: hence proce-
dures, references and data structures may pass/return/store reference names, leading to general forms of aliasing
as discussed in the Introduction. We freely use obvious shorthands like M;N and let x = M in N.

A basis Γ;∆ is a pair of finite maps one from names to non-reference types (Γ, ..., called environment basis)
and the other from names to reference types (∆, ..., called reference basis). Θ,Θ ′, ... combine two kinds of bases.
The typing rules are standard and omitted [32]. We write Γ;∆ ` M : α when M has type α under Γ;∆.

A program is semi-closed if its environment basis is empty, written ∆ ` M : α. A store (σ, . . .) is a finite
map from reference names to semi-closed values, to which the typing extends in the obvious way. Using
configurations of the form (M, σ) with semi-closed M and store σ typable under a common basis, the call-by-
value, one step reduction, written (M,σ) −→ (M ′,σ′), is defined in the standard way [18, 32]. We write (M,σ)⇓
if ∃V,σ′. (M,σ) −→∗ (V,σ′) 6−→. Henceforth we only consider well-typed programs and configurations.

2.2 Models.

We introduce a class of models which concisely represent computational situations of interest. We follow our
previous work [24] except for using distinctions to describe aliasing, an innovation coming from the π-calculus
[29]. Our models are immediately faithful to the observable behaviour of programs, which is important for our
logic’s observational completeness, established below.

A distinction over ∆ (D, . . .) is a type-respecting equivalence relation over dom(∆). The equivalence classes
of a distinction are called its identicals (i, j, . . .). Let ∆ ` M : α and let D be a distinction over ∆. Regarding
identicals of D as names, we can substitute a D-identical i for each name x ∈ i in M, which we write MD .
Intuitively, MD is a program whose names are coalesced following D . MD is typed by ∆D , which is defined
similarly. For example, given M

def
= if x = y then 0 else 1, if D only equates x and y and i def

= {x,y}, then we
have M D def

= if i = i then 0 else 1. Note M D reduces as (M D,σ) −→ (0,σ) which is quite different from
M itself, showing that distinctions affect observable behaviour of programs.

A typed context C[ · ]Γ;∆;α is a context with a hole typed with α under Γ;∆. A typed context is semi-closing if
it does not λ-abstract any reference name in the hole and the resulting program is semi-closed. ∆ is complete if,
whenever Ref (α) occurs in a type in ∆’s range, there is a name of that type in ∆. Let ∆ be complete and D be
a distinction over ∆ and assume Γ;∆ ` M1,2 : α. Then we write Γ;∆ ` M1 ∼=D M2 : α iff, for each semi-closing
C[ · ]Γ;∆;α and well-typed store σ, we have (C[M1D],σ) ⇓ iff (C[M2D],σ) ⇓.

An abstract value of type (D;∆;α) is a ∼=D -congruence class of semi-closed values which are typed as α
under ∆. We let v, w,... range over abstract values. In short, abstract values are semi-closed values taken modulo
the typed congruence relative to a given distinction. Since reference names are values, identicals are also abstract
values (of appropriate types). We write [V ]D;∆;α for an abstract value whose representative is V , and [[α]]∆

D for
the set of all abstract values of type (D;∆;α). We can now define a model.

Definition 1 A model of type Γ;∆, written M Γ;∆, is a triple (D,ξ,σ) where

• D is a distinction on ∆;
• ξ, called environment, is a finite map from dom(Γ,∆) to abstract values which is type-respecting in the sense

that each x ∈ dom(Γ,∆) is mapped to an abstract value of type D;∆;Γ(x);
• σ, called (abstract) store, is a finite map from the identicals of D to abstract values which is type-respecting

in the sense that each i ∈ D is mapped to an abstract value of type D;∆;α assuming (∆D)(i) = Ref (α).
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2.3 Syntax of Assertions.

The logical language is standard first-order logic with equality [28, § 2.8], extended with assertions for
evaluation with side effects [24] and quantifications over store content. Let ? ∈ {∧,∨,⊃} and Q ∈ {∀,∃}.
We highlight changes from [24].

e ::= xα | () | n | b | op(ẽ) | 〈e,e′〉 | πi(e) | inj
α+β
i (e) | !e

C ::= e = e′ | ¬C | C ?C′ | Q x.C | {C} e• e′ ↘ x {C′} | [!e]C | 〈!e〉C

The first set of expressions (ranged over by e,e′, . . .) are terms while the second set are formulae (ranged over by
A,B,C,C′ . . .). The constants include unit, numerals and booleans, while op(ẽ) ranges over first-order operations,
both coming from the underlying programming language. We have paring, projection and injection operations.
The final term !e dereferences e. Unlike in [24], quantification can abstract variables of all types including
references. We also use truth T (definable as 1 = 1) and falsity F (which is ¬T). x 6= y stands for ¬(x = y). The
formula {C} e•e′ ↘ x {C′} is called evaluation formula [24], where the name x binds its free occurrences in C ′.
Intuitively, {C} e•e′ ↘ x {C′} asserts on evaluation of an application with pre/post conditions, and can be read:

an invocation of e with an argument e′ under hypothetical initial state C (pre-condition) terminates with
a final state and a resulting value, the latter named x, both described by C ′ (post-condition).

The pre/post conditions are about hypothetical state since we often need to describe imperative behaviour
independent from a current state. For example,

!x = 1 ∧ ∀i.∀ j.{!x = i} f • j ↘ z{z = !x = i+ j}

asserts that (1) the current content of x is 1; and (2) if, hypothetically, the content of x is i and f is invoked with
j, then the return value and the resulting content of x are both i + j. Content quantifications 〈!e〉 and [!e] are
illustrated through examples later.

fv(C) denotes the set of free variables in C. C-x̃ indicates fv(C)∩{x̃}= /0. Binding in formulae is induced only
by standard quantifiers, ∀, ∃, and by evaluation formulae. In particular, fv(〈!e〉C) = fv([!e]C) = fv(e)∪ fv(C).
Formulae are taken up to α-convertibility (some care is needed to avoid name capture, as illustrated in [2, §5.2],
though all concrete examples in this paper can be read without this concern).

Starting from variables, each term can be typed inductively. Using typed terms is not strictly necessary but
contributes to clarity and understandability. We write Θ ` e : α when e has type α under Θ. We also write
Θ `C when terms in C are well-typed under Θ. Henceforth we only treat well-typed terms and formulae. Type
annotations for variables are often omitted in examples.

Logical substitution plays an important role in the present logic. We define, with m fresh:

C{|e2/!e1|}
def
= ∃m.(〈!e1〉(C ∧ !e1 = m) ∧ m = e2)

Intuitively C{|e2/!e1|} describes the situation where a model satisfying C is updated at a memory cell referred
to by e1 (of a reference type) with a value e2 (of its content type), the latter interpreted in the current model.
Through the help of axioms discussed later, logical substitution interacts with content quantification just as
syntactic substitution does with conventional quantification. For example, [!x]C ⊃ C{|e/!x|} for any x, e and C,
which corresponds to the familiar ∀x.C ⊃ C[e/x]. C{|e/!x|} ⊃ 〈!x〉C also holds, corresponding to the standard
entailment C[e/x] ⊃ ∃x.C.

Convention. Logical connectives are used with standard precedence/association, with content quantification
given the same precedence as standard quantification (i.e. they associate stronger than binary connectives).
For example, ¬A ∧ B ⊃ ∀x.C ∨ 〈!e〉D ⊃ E is a shorthand for ((¬A) ∧ B) ⊃ (((∀x.C) ∨ (〈!e〉D)) ⊃ E).
Further we write {C}e • e′{C′} for {C}e • e′ ↘ x{x = ()∧C′} with x 6∈ fv(C′); and {C}e • e′ ↘ e{C′} for
{C}e• e′ ↘ x{x = e∧C′} with x 6∈ fv(C′) and e non-variable. Formulae are often called assertions.
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2.4 Semantics of Assertions.

The interpretation of terms, written [[e]]M , is straightforward and omitted. The defining clauses for the satisfac-
tion relation is standard (e1 = e2 is interpreted by the identity; connectives are interpreted classically [22–24]),
except: M |= {C}e• e′ ↘ x{C′} is given following [24] (to wit: “if the given environment and any hypothetical
state together satisfy C, then the application of [[e]]M to [[e′]]M converges to a value (named x) and a state which
together satisfy C”); whereas standard and content quantifications are interpreted as:
• M |= ∀xα.C if M ′ |= C for each M ′ such that M ≤x:α M ′.
• M |= ∃xα.C if M ′ |= C for some model M ′ such that M ≤x:α M ′.
• M |= [!eRef (α)].C if [[e]]M = [[x]]M and for each V ∈ [[α]]∆D we have M [x 7→V ] |= C.
• M |= 〈!eRef (α)〉.C if [[e]]M = [[x]]M and some V ∈ [[α]]∆M exists with M [x 7→V ] |= C.

Above M ≤x:α M ′ means that M ′ is exactly like M , except that the latter has an additional entry for x (in
detail: one new entry for x is added to the environment; if x has a reference type, it may either be adjoined to
an existing identical or form a new identical for which a new entry is added to the store). M [x 7→ V ] with x a
reference name in M , is exactly like M except that it stores [V ] at the identical containing x.

2.5 Examples of Assertions

We illustrate usage of our assertion language through simple examples. Throughout we assume x,y,z are typed
as Ref (Nat), while i, j are typed as Nat, unless otherwise stated.

1. (dereference) The assertion x = 2 says that a (functional) variable has the value 2. The assertion !x = 2 says
the content of a reference named x is 2. Finally the assertion !!x = 2 says the content of a reference which is
itself the content of a reference named x is 2.

2. (content quantification, 1) A simple formula using existential content quantification is 〈!x〉!x = 3. It is
equivalent to T because all it says is that x can possibly store 3, which is surely true regardless of its current
value (just as ∃i.i = 3 is always true). Dually [!x]!x = 3 is equivalent to F since it claims that x stores 3
whatever value x may store, which is impossible regardless of the current content of x (just as ∀i.i = 3 is a
contradictory statement).

3. (content quantification, 2) Consider 〈!x〉!y = 3. Since if x and y are equal the content of both references
are hidden, and because !y = 3 is equivalent to (x = y∧!x = 3)∨ (x 6= y∧!y = 3), the assertion 〈!x〉!y = 3
is equivalent to x = y∨ (x 6= y∧!y = 3) hence to x 6= y ⊃!y = 3. Next consider [!x]!y = 3. It says whatever
natural number x may store, the number stored in y is 3. For this to hold, it is sufficient and necessary that x
and y name distinct memory cells and that the content of y is 3. Thus the assertion is logically equivalent to
x 6= y ∧ !y = 3. In general, 〈!e〉C claims C holds if any reference whose content is qualified in C is distinct
from e; whereas [!e]C claims C holds and any reference whose content is discussed in C is distinct from e.

4. (swap, 1) Recall swap def
= λ(x,y).let z = !x in (x :=!y;y := z) from the Introduction. The behaviour of this

program, named u, can be described by the following assertion.

∀xyi j.{!x = i∧!y = j}u• (x,y){!x = j∧!y = i} (2.1)

Above and henceforth we use an evaluation formula with multiple arguments for readability.
5. (swap, 2) swap above in fact works for a pair of references of an arbitrary type, and is indeed typable as such

in polymorphic languages like ML and Haskell. Following [23], we can capture its polymorphic behaviour
by adding ∀X.C (and dually ∃X.C) to the assertion language, with the grammar of types extended with type
variables (X,Y, . . .) and quantifiers (∀X.α and ∃X.α). With this extension, we can refine (2.1).

∀X.∀xRef (X).∀yRef (X).∀iX.∀ jX.{!x = i∧!y = j}u• (x,y){!x = j∧!y = i} (2.2)

The assertion should be read naturally. Types in assertions are interpreted syntactically, incorporating a map
from type variables to closed types to the environment part of models [23].

6 2005/4/18



6. (swap 3) The assertions (2.1) and (2.2) may not fully capture the behaviour of swap in that they do not say
swap only modifies the content of references it receives as arguments (which can be crucial if we are to use
swap as part of a larger program). To capture this property, we may assert, refining (2.1):

∀Y.∀zRef (Y).∀hY.∀xyi j. (z 6=xy ⊃ {!x= i ∧ !y= j ∧ !z=h} u• (x,y) {!x= j ∧ !y= i ∧ !z=h}) (2.3)

Above “z 6= xy” stands for “z 6= x∧ z 6= y”, similarly henceforth. z, j are polymorphically typed since we
wish to say any reference of any type except xy are left unmodified. The assertion (2.3) now captures the
whole observable behaviour of (monomorphic) swap in the sense that any program satisfying the assertion is
observationally congruent to swap under arbitrary distinctions. Since (2.3) is slightly verbose, we may wish
to use a shorthand, writing:

∀xyi j. {!x = i∧!y = j}u• (x,y){!x = j∧!y = i} @ xy (2.4)

which formally stands for (2.3) (note the translation is mechanical). The general form of this construction is:

{C}e• e′ ↘ x{C′} @ {e0,e1, . . . ,en−1} (2.5)

where {e0,e1, . . . ,en−1} (usually written as a sequence, as in (2.4)) is a finite set of terms of reference types,
called write set, in which dereferences should not occur as subterms. The shorthanded form (2.5) is called
located assertion and used extensively from now on.

7. (double) Let double? def
= λ(x,y).(x :=!x+!x ; y :=!y+!y). Note double? will double the content of each of

its two argument only if x and y are distinct. We give a located assertion for double?, named u.

∀xyih. {!x = i∧ !y = j∧ x 6= y} u• (x,y) {!x = 2 · i∧ !y = 2 · j} @ xy. (2.6)

The above specification does not talk about the case of x = y. A full specification of double? is given as:

∀xyi j. {!x = i∧ !y = j}u• (x,y){(x = y∧!x = 4i)∨ ( x 6= y∧!x = 2i∧!y = 2 j)} @ xy (2.7)

The specification (2.7) suggests how we can refine this program so that it is robust with respect to aliasing.
Let double! def

= λ(x,y).if x = y then x :=!x+!x else x :=!x+!x ; y :=!y+!y . This meets the “expected”
specification obtained by deleting “x 6= y” from the precondition of (2.6). The relationship between semantics
of a program and its specification is clarified by observational completeness, discussed in Section 4.

3. Proof Rules and Axioms

3.1 Judgement and its Validity.

A judgement consists of a program and a pair of formulae following Hoare [20], augmented with a fresh name
called anchor [22–24], written {C} MΓ;∆;α :u {C′}. This sequent is used for both validity and provability. If we
wish to be specific, we prefix it with either ` (for provability) or |= (for validity). In {C} M Γ;∆;α :u {C′}:
• M is the subject of the judgement with Γ;∆ ` M : α;
• u is the anchor of the judgement, which should not be in dom(Γ,∆)∪ fv(C); and
• C is the pre-condition and C′ is the post-condition.

An anchor is used to name the value resulting from M, and specifies its behaviour. As in Hoare logic, the
distinction between primary and auxiliary names plays an important role in our logic. In {C} M Γ;∆;α :u {C′}, the
primary names are dom(Γ,∆)∪{u}, while the auxiliary names are those free names in C and C ′ which are not
primary. Henceforth we assume judgements are always well-typed, in the sense that, in {C} M Γ;∆;α :u {C′},

Γ,∆,Θ `C and u :α,Γ,∆,Θ `C′ such that dom(Θ)∩ (dom(Γ,∆)∪{u}) = /0.
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Figure 1 Main proof rules. The difference from the rules in [24] is highlighted.

[Var] −
{C[x/u]} x :u {C}

[Const] −
{C[c/u]} c :u {C}

[Add]
{C}M1 :m1 {C0} {C0}M2 :m2 {C′[m1 +m2/u]}

{C}M1 +M2 :u {C′}

[Abs]
{C∧A-x} M :m {C′}

{A} λx.M :u {{C}u• x↘ m{C′}}
[App]

{C} M :m {C0} {C0} N :n { C1 ∧ {C1} m•n ↘ u {C′}}

{C} MN :u {C′}

[If ]
{C} M :b {C0} {C0[t/b]} M1 :u {C′} {C0[f/b]} M2 :u {C′}

{C} if M then M1 else M2 :u {C′}

[In1]
{C} M :v {C′[in1(v)/u]}
{C} in1(M) :u {C′}

[Case]
{C-x̃} M :m {C-x̃

0 } {C0[ini(xi)/m]} Mi :u {C′ -x̃
}

{C} case M of {ini(xi).Mi}i∈{1,2} :u {C′}

[Pair]
{C} M1 :m1 {C0} {C0} M2 :m2 {C′[〈m1,m2〉/u]}

{C} 〈M1,M2〉 :u {C′}
[Proj1]

{C} M :m {C′[π1(m)/u]}
{C} π1(M) :u {C′}

[Deref ]
{C} M :m {C′[!m/u]}

{C} !M :u {C′}
[Assign]

{C} M :m {C0} {C0} N :n {C′{|n/ !m|}}
{C} M := N {C′}

[Rec]
{A-xi ∧∀ j � i.B( j)[x/u]} λy.M :u {B(i)-x}

{A} µx.λy.M :u {∀i.B(i)}

As a convenient notation, when α = Unit, we write {C}MΓ;∆;α{C′} for {C}MΓ;∆;α :u {C′} with u 6∈ fv(C′),
recovering a Hoare triple [20]. Validity of judgement is given by the following clause.

Definition 2 (validity of judgement) We say {C} MΓ;∆ :m {C′} is valid, written |= {C} MΓ;∆ :m {C′}, if,
whenever (D, ξ, σ)Γ′;∆′

|= C, we have (Mξ,σ) ⇓ (v,σ′) such that (D,ξ·m :v,σ′) |= C′, for each Γ′ and ∆′ which
respectively extend (i.e. are supersets of) Γ and ∆.

Thus a valid judgement demands termination. By using arbitrary models under arbitrary extensions of bases,
the validity is robust with respect to arbitrary aliasing and weakening.

3.2 Main Proof Rules.

Figure 1 presents the main compositional proof rules. There is one rule for each language construct following
its typing. In addition, there are structural rules which simply manipulate formulae. Some of the main structure
rules are listed in Figure 2. For each rule we stipulate:
• Free i, j, . . . range over auxiliary names. Further no primary names in the premise(s) occur as auxiliary names

in the conclusion (this may be considered as a variant of the bound name convention).
• A,A′,B,B′, . . . range over stateless formulae, i.e. those formulae which do not contain active dereferences (a

dereference !e is active if it does not occur in pre/post conditions of evaluation formulae nor under the scope
of content quantification of !e).

Despite the added complexity of models due to aliasing, the only essential textual change in the proof rules from
the logic for alias-free imperative higher-order functions in [24] is the replacement of syntactic with logical
substitution in [Assign] (highlighted), demonstrating clean, rigorous stratification of logics. Below we discuss
two rules for imperative constructs, using simple inferences.

[Deref]. [Deref] infers the property of !M for an arbitrary program M of a reference type, saying:
If we wish to have C′ as a result of dereference !M named u starting from the initial state C, we should
assume the same thing about M (to be evaluated into a reference) named x, substituting !x for u in C.
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Figure 2 Structural rules.

[Promote]
{A}V :u {B}

{A∧C}V :u {B∧C}
[Consequence]

C ⊃C0 {C0} M :u {C′
0} C′

0 ⊃C′

{C} M :u {C′}

[∧-⊃]
{C∧A}V :u {C′}
{C}V :u {A ⊃C′}

[⊃-∧]
{C}M :u {A ⊃C′}
{C∧A}M :u {C′}

[∨-Pre]
{C1}M :u {C} {C2}M :u {C}

{C1 ∨C2}M :u {C}
[∧-Post]

{C}M :u {C1} {C}M :u {C2}
{C}M :u {C1 ∧C2}

[Aux∀]
{C-i} M :u {C′}
{C} M :u {∀i.C′}

[Aux∃]
{C} M :u {C′ -i

}
{∃i.C} M :u {C′}

[Invariance]
{C} MΓ;∆;α :m {C′}

{C∧A} MΓ;∆;α :m {C′∧A}

A simple example of using [Deref] follows.

1. {T} x :z {z = x} (Var, Conseq)

2. {T} λx.x :m {∀x.{T}m• x↘ z{z = x}} (Abs, Aux∀)

3. {∀x.{T}m• x↘ z{z = x}} y :n {n = y ∧ {T}m•n↘ z{z = y}} (Var, Conseq)

4. {T} (λx.x)y :z {!z =!y} (App, Conseq)

5. {T} !((λx.x)y) :u {u =!y} (Deref)

In Line 2 we use a structural rule [Aux∀]. Lines 3 and 4 use the standard equality laws (e.g. z=y ⊃!z=!y).

[Assign]. The rule [Assign] treats assignment of an arbitrary expression (of type α) to an arbitrary expression
(of type Ref(α)), both possibly inducing side effects. It reads:

If the result after executing M := N should satisfy C ′ starting from C, then, starting from the same state C,
M named m should terminate to reach some C0, and, in turn, N named n evaluates from C0 to reach C′,
with its occurrences of n substituted for !m.

Note the rule assumes the left-right evaluation order (the rule which assumes the right-left evaluation order, or
no order at all, can be easily formulated). The next example starts from Line 4 in the previous inference.

1. {T} (λx.x)y :m {m = y} above

2. {m = y ∧ 1 = 1} 1 :n {m = y∧n = 1} (Const)

3. (m = y∧n = 1) ⊃ (!y = 1){|n/!m|} (?)

4. {m = y ∧ 1 = 1} 1 :n {(!y = 1){|n/!m|}} (2, 3, Conseq)

5. {T} (λx.x)y := 1{!y = 1} (1, 4, Assign)

Line 3, which involves semantic update, is derived later. The case with side effects can be reasoned similarly.
[Assign] treats the most general form of assignment. From this rule, we can derive specialised assignment

rules which offer more efficient reasoning. For example, if both sides of the assignment are simultaneously both
logical terms and programs, we have the following simplified rule.

[AssignS] {C{|e2/!e1|}} e1 := e2 {C}

The rule is directly derivable from [Assign] and {C[e/u]}e :u {C} (which is also derivable).

3.3 Structured Reasoning for Programs with Aliasing.

One of the central problems in large-scale software development is to prevent inadvertent interference between
programs through shared variables, especially in the presence of aliasing. The located assertions in §2.5 address
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Figure 3 Derived proof rules for located assertions (other rules directly follow Fig.1 and 2).

[Abs]
{C∧A-x} M :m {C′}@ẽ

{A} λx.M :u {{C}u• x↘m{C′}@ẽ}@ /0 [App]
{C}M :m {C0}@ẽ {C0}N :n {C1 ∧ {C1}m•n↘ u{C′}@ẽ2}@ẽ1

{C} MN :u {C′}@ẽẽ1ẽ2

[Deref ]
{C} M :m {C′[!m/u]}@ẽ

{C} !M :u {C′}@ẽ
[Assign]

{C} M :m {C0}@ẽ1 {C0} N :n {C′{|n/ !m|}}@ẽ2 C0 ⊃ m = e′

{C} M := N {C′}@ẽ1ẽ2e′

[Invariance]
{C} M :u {C′}@ẽ C0 !ẽ-free
{C ∧ C0} M :u {C′∧C0}@ẽ

[SeqI]
{C1} M {C′

1}@ẽ1 {C2} N {C′
2}@ẽ2

{C1 ∧ [!ẽ1]C2} M;N {〈!ẽ2〉C
′
1 ∧ C′

2}@ẽ1ẽ2

[Weak]
{C} M :m {C′}@ẽ
{C} M :m {C′}@ẽẽ′

[Thinning]
{C∧!e′ = i} M :m {C′∧!e′ = i}@ẽe′ i fresh

{C} M :m {C′}@ẽ

this concern by delineating part of the store a program may affect. Below we extend this idea to judgements.

{C}M :u {C′}@ ẽ
def
≡ {C∧ y 6= ẽ∧!y = i}M :u {C′∧ y 6= ẽ∧!y = i}

where y and i are fresh and distinct (to be precise, y and i are respectively typed as Ref(X) and X for a fresh X)
and ẽ is a write set as for located assertions, cf. §2.5 (6). For example {!x = i} x :=!x+1 {!x = i+1}@x says
the command increments the content of x and does nothing else.

Valid located judgements are derivable by the proof rules for non-located judgements by translating located
judgements to non-located ones. A more efficient method is to use compositional proof rules which are derivable
in the original system but which are tailored for located judgements, the main ones of which are listed in Figure
3. The initial four rules should be naturally read (note [Assign] demands the assigned reference to be among a
write effect, while [Deref] does not have such a condition). In [Invariance], we say C is !e-free when [!e]C ≡C.
Since !e-freedom of C is (up to ≡) equivalent to C having the shape [!e]C ′ or 〈!e〉C′ for some C′, the rule is in
fact equipotent to each one of the following rules:

[InvUniv]
{C} M :u {C′}@ẽ

{C∧ [!ẽ]C0} M :u {C′∧ [!ẽ]C0}@ẽ
[InvExist]

{C} M :u {C′}@ẽ

{C∧〈!ẽ〉C0} M :u {C′∧〈!ẽ〉C0}@ẽ

[Invariance] and its variants improve the standard invariance rules in Hoare logics in that they need no
extra-logical side condition (which says “M does not modify variables in C0”). The next rule [SeqI] (“I” for
independent) is directly derivable from [InvUniv], [InvExist] and the standard sequencing rule. The rule looks
lopsided, but its meaning is operationally transparent:

Assume (1) {C1}M1{C′
1}@ẽ1 and (2) {C2}M2{C′

2}@ẽ2. Suppose C1 and C2 initially hold, the latter
regardless of the content of ẽ1. Let first M1 run: then by (1), C′

1 holds. Since M1 only modifies ẽ1, C2
still holds, so that if M2 runs next, we reach C′

2 by (2). This next run only modifies ẽ2, hence if C′
1 does not

talk about ẽ2, then it should continue to hold in the final state.

The rule directly infers a judgement for a sequenced pair of programs from independent judgements for the
component programs. Here we show a very simple usage of this rule.

1 {T} x := 2 {!x = 2}@x (AssignS)

2 {T} y :=!z {!y = !z}@y (AssignS)

3 {T} x := 2;y :=!z {〈!y〉!x = 2 ∧ !y =!z}@xy (SeqI)

Note 〈!y〉!x = 2 is equivalent to x 6= y ⊃ !x = 2. We used the following located version of (AssignS):

[AssignS] {C{|e2/!e1|}} e1 := e2 {C}@ẽ (C ⊃ e1 ∈ ẽ)

For the last two rules, [Weakening] is easily understood, while [Thinning] recovers extensionality (for example
the judgement {T} x :=!x {T}@ /0 becomes derivable).
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3.4 Laws of Content Quantification

Content quantification is introduced because aliasing cuts off the unique bond between a reference name and its
content, so that (hypothetical) properties of content need to be described independently from names. Practically,
content quantification offers tractable reasoning on aliased references through their succinct logical laws. These
laws are deduced starting from axioms and applying inference rules in the standard way [28]. The axiom system
includes the standard axioms and rules of first-order logic with equality [28, §2.8], formal number theory,
as well as axioms for evaluation formulae, data types and content quantification. Here we focus on content
quantification (other proper axioms follow our previous work [24], as detailed in [2, §6.3/6.4]).

Axioms for [!x] and 〈!x〉 may be given following either those of standard quantifiers [28, §2.3] or those of
modal operators [6]. Here we take the former approach, which is more concise. First we regard 〈!x〉C as standing
for ¬[!x](¬C). Then there are three axioms.

(CA1) [!x](C-!x
1 ⊃C2) ⊃ (C1 ⊃ [!x]C2) (CA2) [!x]C ⊃C (CA3) [!x](!x = m ⊃C) ≡ 〈!x〉(C∧ !x = m)

In (CA1), C-!x indicates C is syntactically !x-free. We generate the set of syntactically !x-free formulae, S -!x, as
follows: (1) [!x]C ∈ S -!x; and (2) C∧

V

i ei 6= x ∈ S -!x where {ei} exhaust all active dereferences (cf.§3.2) in C;
(3) the result of applying any of the logical connectives (including negation) or standard/content quantifiers to
formulae in S -!x is again in S -!x. (CA1) corresponds to familiar ∀x.(C1 ⊃C2) ⊃ (C1 ⊃ ∀x.C2) with x 6∈ fv(C1).
(CA2) is a degenerate form of ∀x.C ⊃C[e/x]. (CA3) says two ways to represent logical substitutions coincide,
which is important to recover all properties of semantic update as studied in [7, 9, 10, 30], as discussed in the
next section. Finally, to the rules of inference, we add the following analogue of standard generalisation.

(CGen) C ⇒ [!x]C

In deduction with non-trivial assumptions, we demand assumptions are syntactically !x-free if the deduction
uses (CGen) for !x. By the standard argument, we obtain the deduction theorem [28, §2.4].

Let us list some of the useful laws (focussing on existentials for our later convenience), which are all
deducible from the axiom system.

(L1) C ⊃ 〈!x〉C (L2) 〈!x〉〈!x〉C ⊃ 〈!x〉C
(L3) 〈!x〉!x = e (L4) ∃m.〈!x〉C ≡ 〈!x〉∃m.C (m 6= x)
(L5) 〈!x〉(C1 ∨C2) ≡ 〈!x〉C1 ∨〈!x〉C2 (L6) [!x]C1 ∧〈!x〉C2 ⊃ 〈!x〉(C1 ∧C2)
(L7) 〈!x〉(C1 ∧C2) ≡C1 ∧〈!x〉C2 (C1 !x-free) (L8) if C ≡C-!x

0 then C is x-free.

All are analogues of the well-known laws for existential quantifiers and “May” modality. (L7) implies (C1 ∧
C2){|e/!x|} ≡C1 ∧ (C2{|e/!x|}) when C1 is !x-free, suggesting the use of content quantification for realising the
following locality principle which has been missing so far (a similar point is observed by Bornat [7], after his
extensive exploration of logical calculations involving semantic update using Morris’s method):

“If part of a formula does not concern the content of x, then an update (substitution) at x by some value
should not affect that part.”

As a simple application of these laws, we derive C{|c/!x|}{|e/!x|} ≡C{|c/!x|} mentioned in the Introduction. Let
C′ def

= C{|c/!x|} and m be fresh. (fol) indicates use of laws of first-order logic with equality [28, §2.8].

∃m.(〈!x〉(C′∧ !x = m)∧m = e) ≡ ∃m.(C′ ∧ 〈!x〉( !x = m) ∧ m = e) (L8, L7)
≡ C′ ∧ ∃m.〈!x〉( !x = m ∧ m = e) (fol, L8)
≡ C′ ∧ 〈!x〉∃m.( !x = m ∧ m = e) (L4)
≡ C′ ∧ 〈!x〉 !x = e (fol)
≡ C′ (L3, fol)

Note the inference never touches C′ (as it should not).
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As another example, we infer (?), Line 3, from the inference in Page 9.
(m=y ∧ n=1) ≡ [!m](m=y ∧ n=1) (L8)

≡ [!m](m=y ∧ n=1) ∧ 〈!m〉!m=n (L3)
⊃ 〈!m〉(m=y ∧ n=1∧ !m=n) (L6)
⊃ (!y = 1){|n/!m|}. (fol)

As noted in Introduction, the proposed framework effectively subsumes the known calculation methods based
on semantic update, which are often useful. Below we list simple ones (all are easily justifiable by the laws
given above). Some others are also discussed in the next section.
(S0) C{|e′/!e|} ≡C, assuming C is !e-free.
(S1) (a) (e′ =!e1){|e′′/!e2|} ≡ ((e1 = e2 ∧ e′ = e′′)∨ (e1 6= e2 ∧ e′ =!e2)) or, as its special instance,

(b) (e′ =!e){|e′′/!e|} ≡ e′ = e′′, in both cases assuming e and e′ do not contain dereferences.

4. Technical Results

This section records key theoretical properties of the logic.

4.1 Soundness

Theorem 1 (soundness for the proof rules) If ` {C} MΓ;∆;α :u {C′} then we have |= {C} MΓ;∆;α :u {C′}.

PROOF. We show [Deref ] and [Assign]. Write (Mξ,σ) ⇓m (ξ·m : v,σ′) for (Mξ,σ) ⇓ (v,σ′). For [Deref ]:
(ξ, σ) |= C ⇒ (Mξ, σ) ⇓m (ξ·m : i, σ′) |= C′[!m/u]

⇒ ((!M)ξ, σ) ⇓u (ξ·u :σ′(i), σ′) |= C′

For [Assign] we reason, with ξ0 = ξ ·m : i:
(ξ, σ) |= C ⇒ (Mξ, σ) ⇓m (ξ·m : i, σ0) |= C0

⇒ (Nξ0, σ0) ⇓n (ξ0·n :w, σ′) |= C′{|n/!m|}
⇒ ((M := N)ξ, σ) ⇓u (ξ0 ·u :(), σ′[i 7→ w]) |= C′

The last line is by the logical equivalence between M |= C ′{|n/!m|} and M [ [[m]]M 7→ [[n]]M ] |= C′, which is
immediate. See [24, §5.5] and [2, §8.1] for other cases.

Proposition 1 (soundness of the axioms) (1) (CA1–3) in § 3.4 are valid. (2) (CGen) is sound in the sense that
if C is valid then so is [!x]C.

For the proofs, see [2, §8.1]. Since proof rules in Figure 3 are derivable by those in Figures 1 and 2 (as well as
Kleymann’s strengthened consequence rule for (Thinning)), we also know:

Corollary 1 (soundness of located judgements) If ` {C} MΓ;∆;α :u {C′} @ ẽ by the rules in Figure 3, then
|= {C} MΓ;∆;α :u {C′} @ ẽ.

4.2 Elimination of Content Quantification.

We show how any formula containing content quantification can be transformed into a formula without them,
up to logical equivalence. This is closely related with the decomposition result in [10]. In the course of the
proof, we also establish mutual representability between content quantification and Cartwright-Oppen/Morris’s
semantic update.

Proposition 2 1. Let m be fresh. Then we have [!e]C ≡ ∀m.C{|m/!e|} and dually, 〈!e〉C ≡ ∃m.C{|m/!e|}.

2. (following [10]) Let ? ∈ {∧,∨,⊃}, Q ∈ {∀,∃} and z 6∈ {x,y}.

(C1 ?C2){|y/!x|} ≡ C1{|y/!x|}?C2{|y/!x|} (¬C){|y/!x|} ≡ ¬(C{|y/!x|})
(Q z.C){|y/!x|} ≡ Q z.(C{|y/!x|}) C-!x{|y/!x|} ≡ C-!x

{C}e• e′ ↘ x{C′}{|y/!x|} ≡ ∃uv.({C}u• v ↘ w{C′} ∧ (u = e ∧ v = e′){|y/!x|})
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3. If C has no content quantification we can rewrite C up to ≡ as ∃r̃c̃.( (∧ici =!ri)∧C′), where r̃c̃ are fresh and
C′ has no active dereference.

PROOF. Mechanical through the use of the axioms, see [2, §5.4].

Proposition 2 (1, 2), which depend on (CA3) in §3.4, establish a direct connection between content quantification
and semantic update, allowing us to restore the latter’s reasoning methods from [9, 10, 30].

Now transform (!u = z){|m/!x|} with m fresh into: 〈!x〉(!u = z∧!x = m) which is equivalent to (x = u∧m =
z) ∨ (x 6= u∧!u = z). Write [[(!u = z){|m/!x|}]] for the formula on the right. Using Proposition 2, 〈!x〉C ≡
∃m.(∃r̃c̃.((∧i[[(!ri = ci){|m/!x|}]]) ∧C′)) with C′ without content quantification and m etc. fresh. Performing
this transformation repeatedly, we obtain:

Theorem 2 (elimination) For each C, there exists C ′ s.t. C ≡C′ and no content quantification occurs in C′.

4.3 Observational Completeness

A central property of our logic is its precise correspondence with the observational congruence, in the sense that
two programs are contextually equivalent iff they satisfy the same set of assertions. This offers foundations of
modular software engineering, where replacement of one module with another with the same specification does
not violate the observable behaviour of the whole software, up to the latter’s global specification

We use the standard contextual congruence ∼= (which coincides with the result of closing ∼=D under arbitrary
distinctions). For the proof we extend the method we used in [24], which we now outline. We first define a
subset of programs which represent a limited class of behaviours, called finite canonical forms (FCFs, ranged
over by F,F ′, . . .), whose construction comes from game semantics [3]. Now let us say (C,C ′) is a characteristic
assertion pair (or a CAP) of F at u when F is the least behaviour w.r.t. v s.t. |= {C}M :u {C′}, where v is
the preorder counterpart of ∼=. We then derive CAPs for FCFs by introducing tailored proof rules which refine
those in [24] with located judgements (cf. Figure 3). By translating discernibility of FCFs into their CAPs, we
can represent any finite contexts by logical assertions, hence we are done. Following [24] we work with total
correctness assertions (TCAs) which represent properties closed upwards w.r.t. v, which is enough (see [2,
§8.3] for detail). Writing `char {C} F :u {C′} when {C} F :u {C′} is provable with the derived rules, we obtain:

Proposition 3 If `char {C} F :u {C′}, then (C,C′) is a CAP of F at u.

Such (C,C′) gives the most general formula for total correctness in the sense of [4], so that we observe:

Corollary 2 (relative completeness for FCFs) If |= {C}F :u{C′} such that (C,C′) are TCAs, then `{C}F :u{C′}.

We conjecture that Corollary 2 extends to general programs by a similar argument. Now write Γ;∆ ` M1 ∼=L
M2 : α when |= {C}MΓ;∆;α

1 :u {C′} iff |= {C}MΓ;∆;α
2 :u {C′}. We conclude:

Theorem 3 (observational completeness) Γ;∆ ` M1 ∼= M2 : α iff Γ;∆ ` M1 ∼=L M2 : α.

PROOF. “Only if” is direct from the definitions. For “if” suppose M1 ∼=L M2 but M1 6∼= M2. By abstraction, we
assume M1,2 are semi-closed. By construction there is semi-closed FCF F and F̃ ′ such that (FM1, r̃ 7→ F̃ ′) ⇓
and (FM2, r̃ 7→ F̃ ′) ⇑. By Proposition 3, there are assertions which characterise F and F̃ ′. Let such formula for
F at f be written [[F]]( f ). We now reason:

(FM1, r̃ 7→ F̃ ′) ⇓ ⇒ f : [F ]·m : [M1] |= {∧i[[F ′
i ]](!ri)} f •m ↘ z {T}

⇒ |= {T} M1 :m {∀ f .{[[F]]( f ) ∧ (∧i[[F ′
i ]](!ri))} f •m ↘ z {T}}

But 6|= {T} M2 :m {∀ f .{[[F]]( f ) ∧ (∧i[[F ′
i ]](!ri))} f •m ↘ z{T}}, that is M1 6∼=L M2.
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5. Reasoning Examples

This section illustrates the use of our logic for verifying correctness of programs, starting from simple examples
and finishing with highlights from the derivation for a higher-order generic Quicksort [26] (extracted from
the full derivation in [2, §9]). Along the way we also show how easily the present approach to logic can
accommodate generalisations in type structures. Throughout we use the rules for the located assertions from
Figure 3.

5.1 Swap and Double

The swap procedure is a classical example for reasoning about aliased programs [9, 10, 12]. We can either
use [SeqI] as done for double? below, or use the traditional decomposition method via our result in §4.2. For
reference we present inferences in both methods in the Appendix.

We next consider double? from § 2.5 (6), which exhibits different behaviour under different distinctions. We
derive the specification (2.6). The key point is a use of [SeqI] in Figure 3 for a short inference, focussing on the
extensional property of each part.

1. {!x= i} x := !x+!x {!x=2i}@x (AssignS)

2. {!y= j} y := !y+!y {!y=2 j}@y (AssignS)

3. {!x= i ∧ [!x]!y= j} x := !x+!x ; y := !y+!y {〈!y〉!x=2i ∧ !y=2 j}@xy (SeqI)

4. {x 6=y ∧ !x= i ∧ !y= j} x := !x+!x ; y := !y+!y {x 6=y ⊃ (!x=2i∧ !y=2 j)}@xy (Conseq)

5. {x 6=y ∧ !x= i ∧ !y= j} x := !x+!x ; y := !y+!y {!x=2i∧ !y=2 j}@xy (⊃-∧)

6. {T}double? :u { ∀x,y. {x 6=y∧!x= i∧!x= j}u• (x,y){!x=2i∧!x=2 j}@xy }@ /0 (Abs, Aux∀)

where Lines 1 and 2 are instantly derivable by (S1-b) in §3.4.

5.2 Circular References

Next we consider x :=!!x, an example of a circular data structure. Typing this program requires recursive types,
which we outline first. Taking the equi-isomorphic approach [32] where recursively defined types are equated
iff their representation as regular trees are isomorphic, the grammar of types is extended as follows, for both the
programming language and for the assertion language.

α ::= ... | X | µX .α

The typing rules do not change except for taking types up to tree isomorphism. Accordingly no change is needed
in the axioms and proof rules. We wish to prove the following judgement.

{!x = y∧!y = x} x :=!!x {!x = x}@x

For the proof we start by converting the pre-condition into a form that is usable by [AssignS].
(!x = y ∧ !y = x) ⊃ !!x = x ≡ (!x = x)[!!x/!x] ≡ (!x = x){|!!x/!x|} (??)

Given (??), the inference is immediate:
1. {(!x = x){|!!x/!x|}} x :=!!x {!x = x} (AssignS)

2. {(!x = x){|!!x/!x|}} x :=!!x {!x = x} (1, (??), Conseq)

Similarly we can easily derive

{!y = x} x := (1,inr(!y)) {!x = (1,inr(x))} @ x

where x is typed with µX .Ref((Nat× (Unit+ X))), the type of a mutable list of natural numbers (one may
also use the null pointer as a terminator of a list). The assertion !x = (1,inr(x)) says x stores a pair of 1 and
the right injection of a reference to itself, precisely capturing graphical structure of the datum. Similarly we
can readily assert and reason about stored procedures including programs with Landin’s recursion (such as
x := λz.if z = 0 then 1 else z× (!x)(z−1), after whose run (!x)n computes n’s factorial), see [24] for details.

14 2005/4/18



5.3 A Polymorphic, Higher-Order Procedure: Quicksort

Hoare’s Quicksort is an efficient algorithm for sorting arrays using recursion. Apart from recursive calls to
itself, Quicksort calls Partition, a procedure which permutes elements of an array so that they are divided into
two contiguous parts, the left containing elements less than a “pivot value” pv and the right those greater than
pv. The pivot value pv is one of the array elements which may ideally be their mean value. In the following we
specify and derive a full specification of one instance of the algorithm, directly taken from its well-known C
version [26, §5.1.1]. First we present the code, assuming a generic swapping procedure from §2.5 (4-6). We use
indentation for scoping.

quicksort
def
=

µq. λ(a,c, l,r).
if l < r then

let p′ = partition(a,c, l,r) in
q(a,c, l, p′−1);
q(a,c, p′ +1,r)

partition
def
=

λ(a,c, l,r)
let pv =!a[r] in

p := l; i := l;
while !i < r

if c(!a[!i], pv) then
swap(a[!p],a[!i]) ; p :=!p+1 ;

i :=!i+1;
swap(a[r],a[!p]); !p

In these programs we omit type annotations for variables, the main ones of which (for both programs) are:

a : X[ ], c : (X×X)⇒Bool, l,r : Nat

X[ ] is the type of a generic array, see below. Quicksort itself has the function type from the product of these
types to Unit. Partition is the same except that it return type is Nat.

This program exhibits several features which are interesting from the viewpoint of capturing and verifying
behavioural properties using the present logic.

• Its correctness crucially relies on the extensional behaviour of each part: when recursively calling itself twice
in the last two lines of the Quicksort code, it is essential that each call modifies only the local subarray it is
working with, without any overlap. We shall show how this aspect is transparently reflected in the structures
of assertions and reasoning, realising what O’Hearn and Reynolds called “local reasoning” [31, 34] through
the use of logical primitives of general nature rather than those introduced for that specific purpose.

• The program makes essential use of a higher-order procedure, receiving as its argument a comparison
procedure which is used for permuting elements.

• The program is fully polymorphic, in the sense that it can sort an array of any type (as far as a proper
comparison procedure is provided).

In the following we shall discuss how these aspects can be treated in the present logic. Even including a recent
formal verification of Quicksort in Coq [13], we believe a rigorous verification of Quicksort’s extensional
behaviour with higher-order procedures and polymorphism is given here for the first time.

Preparation: Arrays. We first introduce arrays, both for programs and assertions. The presentation may offer
basic ideas on how a new data type can be systematically incorporated in the presented logic. We add:

(types) α ::= ... | α[ ]

(programs) M ::= ... | M[N]

(Terms) e ::= ... | e[e′] | size(e)

[Array]
Γ ` M : α[ ] Γ ` N : Nat

Γ ` M[N] : Ref(α)

An array consists of a sequence of references: selecting an entry will return the corresponding reference which
can then be dereferenced (we can equally treat less analytical presentation). In models, an array is regarded as a
finite partial injection from Nat to references.

Any data type is equipped with axioms characterising its behaviour. The main ones for arrays are:
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• Each array of size n is made up of n distinct references:

∀i, j. ( 0 ≤ i, j � size(x) ∧ i 6= j ⊃ x[i] 6= x[ j] )

• Two arrays are equal iff their size and component references coincide.

(size(x) = size(y) ∧ ∀i. ( 0 ≤ i < size(x)−1 ⊃ x[i] = y[i] ) ⊃ x = y

• Two distinct arrays never overlap (not applicable in some languages).

x 6= y ⊃ ∀i, j. ( 0 ≤ i < size(x)−1 ∧ 0 ≤ j < size(y)−1 ⊃ x[i] 6= y[ j] )

We also need proof rules for arrays, one introduction rule for array identifiers and one elimination rule for
indexing. Since the former is common to all variables, we only add the latter.

[Array]
{C}M :m{C0}@ẽ {C0}N :n{C′[m[n]/u]}@ẽ′ C′[m[n]/u] ⊃ 0≤n<size(m)

{C} M[N] :u {C′} @ ẽẽ′

The third premise prevents the out-of-bound error (treatment of errors is further discussed in [2]).
Specification. We now present a full specification of Quicksort (For simplicity, partition and swap are
assumed inlined: treating them as external procedures is straightforward).

{T} qsort :u {∀X.Qsortu}@ /0. (5.1)

where we set, omitting types:

Qsortu
def
= ∀abclr.{Equal(ablr)∧Order(c)}u• (a,c, l,r){Perm(ablr)∧Sorted(aclr)}@a[l...r]ip (5.2)

a[l...r]ip is short for a[l], ...,a[r], i, p. The variable b is auxiliary and is of the same array type as a, denoting
the initial copy of a, so that we can specify the change of a in the post-condition is only in the ordering of its
elements. Each predicate used in (5.2) has the following meaning. For the precondition:
• Equal(ablr) says: distinct arrays a and b coincide in their content in the range from l to r (with l and r being

in the array bound). In addition, it also stipulates freshness and distinctness of variables p and i.
• Order(c) says: c calculates a total order without side effects. Formally, it is the conjunction of:

1. ∀xy.(c • (x,y) ↘ T ∨ c • (x,y) ↘ F) where we write “c • (x,y)↘ e” for “{T}c • (x,y) ↘ z{z = e}@ /0”
(“the comparison always terminates and has no side effects”);

2. ∀xy.(x 6= y ⊃ (c• (x,y) ↘ T∨ c• (y,x) ↘ T)) (“two distinct elements are always ordered”); and
3. (c• (x,y) ↘ T∧ c• (y,z) ↘ T) ⊃ c• (x,z) ↘ T (“the ordering is transitive”).
The use of this predicate instead of (say) a boolean condition embodies the higher-order nature of Quicksort.

For the post-condition:
• Perm(ablr) says: entries of a and b in the range from l to r are permutations of each other in content. It also

stipulates the same distinctness condition as Equal(ablr).
• Sorted(alrc) says: the content of a in the range from l to r are sorted w.r.t. the total order implemented by c.

Formally: Sorted(aclr)
def
≡ ∀l ≤ i < j ≤ r. c• (!a[i], !a[ j]) ↘ T.

So Qsortu in (5.2) as a whole says:
Initially we assume two distinct arrays, a and b, of the same content from l to r (“Equal(ablr)”), together
with a procedure which realises a total order (“Order(c)”). After the program runs, one array remains
unchanged (because the assertion says it touches only a), and this changed array is such that it is the
permutation of the original one (“Perm(ablr)”) and that it is well-sorted w.r.t. c (“Sorted(aclr)”).

Located assertions play a fundamental role in this specification: for example, it is crucial to be able to assert
c has no unwanted side effects. In the rest of this section, we present highlights from a full derivation of the
judgement (5.1) recorded in [2, §9].
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Reasoning (1): Sorting Disjoint Subarrays. First we focus on the last two lines of quicksort which sort
subarrays by recursive calls. The reasoning demonstrate how the use of our refined invariance rule offers quick
inference by combining two local, extensional specifications. Concretely our aim is to establish:

{C1} q(a,c, l, p′−1) ; q(a,c, p′ +1,r) {C′
1}@a[l...r]ip (5.3)

where

C1
def
≡

(

Perm(ablr) ∧ Parted(aclrp′) ∧ Order(c) ∧
∀ j<k.QsortBounded(q j) ∧ r− l≤k

)

C′
1

def
= Perm(ablr)∧Sorted(aclr).

Two newly introduced predicates are illustrated below.
• QsortBounded(q j) with j of Nat type is used as an inductive hypothesis for recursion. It is the same as

Qsortq, given in (5.2), Page 16, except that it only works for a range no more than j and that it replaces
“Equal(ablr)” in the precondition of (5.2) with “Perm(ablr)”, which is necessary for induction to go through.

• Parted(aclrk) says the subarray of a from l to r is partitioned at an intermediate index k w.r.t. the order
defined by c. Formally it is given as:

l≤k≤r ∧ ∀ j.(l≤ j≤k ⊃ c• (!a[ j], !a[k])↘T) ∧ ∀ j.(k≤ j≤r ⊃ c• (!a[k], !a[ j])↘T)

A key feature of these two recursive calls is that neither modifies/depends on subarrays written by the other.
As mentioned already, this feature allows us to localise reasoning: the specification and deduction of each part
has only to mention local information it is concerned with. Joining the resulting two specifications is then
transparent through the invariance rule and basic laws of content quantification. Let ẽ2

def
= a[l..p′ − 1]pi and

ẽ3
def
= a[p′ +1..r]pi (which are the parts touched by the first/second calls, respectively). We now derive:

R.1. {C2} q(l,p′−1) {C′
2} @ ẽ2 (AppS)

R.2. {C3} q(p′ +1,r) {C′
3} @ ẽ3 (AppS)

R.3. {C2 ∧ [!ẽ2]C3} q(l,p′−1) ; q(p′ +1,r) {〈!ẽ3〉C′
2 ∧ C′

3}@ẽ2ẽ3 (R.1-2, SeqI)

R.4. C1 ⊃ ∃b′.(([!ẽ3]C2 ∧ C2 ∧ [!ẽ2ẽ3](C′
2 ∧〈!ẽ2〉C′

3 ⊃ C′
1))

R.5. {C1} q(l,p′−1) ; q(p′ +1,r) {C′
1}@ẽ2ẽ3 (R.3/4, Conseq-Aux)

The derivation uses the following abbreviations.

C2
def
= Equal(ab′l(p′−1)) ∧ Order(c) ∧ ∀ j<k.QsortBounded(q j) ∧ p′−1− l <k

C′
2

def
= Perm(ab′l(p′−1)) ∧ Sorted(acl(p′−1))

C3
def
= Equal(ab′(p′+1)r) ∧ Order(c) ∧ ∀ j<k.QsortBounded(q j) ∧ r−(p′+1)<k

C′
3

def
= Perm(ab′(p′ +1)r) ∧ Sorted(ac(p′ +1)r)

Note each of C2/C′
2 and C3/C′

3 mentions only the local subarray each call works with. The auxiliary variable b ′

serves as a fresh copy of a immediately before these calls (we cannot use b since, e.g. Perm(abl(p ′ −1)) does
not hold). (R.1–3) are asserted and reasoned using b′, which (R.4) mediates into the judgement on b, so that
(R.5) only mentions b. The inference uses the following derived rules (the first one is due to Kleymann).

[Conseq-Aux]
{C0} M :u {C′

0}@ẽ C ⊃ ∃ j̃.(C0[ j̃/ĩ] ∧ [!ẽ](C′
0[ j̃/ĩ] ⊃C′))

{C} M :u {C′}@ẽ
[AppS]

C ⊃ {C}e• (e1..en)↘u{C′}@ẽ
{C} e(e1...en) :u {C′}@ẽ

Using these rules and [SeqI], (R.1/2/3/5) are immediate. The remaining step is the derivation of (R.4), the
condition for [Conseq-Aux]. For this, the first step is to see:

(Dist ∧ !a[p′] =!b′[p′] ∧ Perm(bb′lr) ∧ Parted(bclrp′)) ⊃ ((C′
2 ∧ C′

3) ⊃C′
1) (5.4)

is valid, which is elementary (Dist says a and b′ are distinct and do not overlap with p and i). Then by (CGen)
(cf. §3.4) we can universally content quantify !ẽ2ẽ3 over (5.4). By Dist, the antecedent of (5.4) is !ẽ2ẽ3-robust,
hence we can apply (CA1) (cf. §3.4) to reach (R.4).
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Reasoning (2): Using Comparison. Next we focus on the use of a comparison procedure in the while loop in
Partition, which is originally passed to Partition as an argument. We start with the loop invariant.

Invar
def
≡





Cpre
part ∧ l ≤!p, !i ≤ r ∧ Leq(acl(!p−1)pv)

∧
Geq(ac(!p0)(!i−1)pv) ∧ (!p <!i ⊃ c• (!a[!p], pv) ↘ T)





Leq(aclrv) (resp. Geq(aclrv)) says the entries from l to r in a are smaller (resp. bigger) than v. When inside the
loop, the values of p and i differ from the invariant slightly, so that we also make use of: Cinloop

def
≡ Invar∧!i <

r∧ r−!i = j. The following assertions specify two cases of the conditional branch.

Cthen
def
≡ Cinloop ∧ c• (!a[!i], pv) ↘ T C¬then

def
≡ Cinloop ∧ c• (!a[!i], pv) ↘ F.

We now present the derivation for the if sentence of the loop, where the comparison procedure received as an
an argument is used at the conditional branch. Below we assume the conditional body (“ifbody”) has been
verified already and let j to be a freshly chosen variable of Nat-type.

L.1. (Invar∧ r−!i > 0) ⊃ {Invar∧ r−!i>0} c• (!a[!i], pv)↘ z {c• (!a[!i], pv)↘ z∧ Invar∧ r−!i>0}@ /0

L.2. {Invar∧ r−!i > 0} c(!a[!i], pv) :z {c• (!a[!i], pv)↘ z∧ Invar∧ r−!i > 0}@ /0 (L1, AppSimple)

L.3. {Cthen} ifbody {Invar{|!i+1/!i|}∧ r−!i≤ j)}@a[l...r−1]ip (omitted)

L.4. C¬then ⊃ (Invar{|!i+1/!i|}∧ r−!i≤ j)

L.5. {Cinloop} if c(!a[!i], pv) then ifbody {Invar{|!i+1/!i|}∧ r−!i≤ j)}@a[l...r−1]pi (L.2/3/4, IfThen)
Thus reasoning about a conditional branch which involves a call to a received procedure is no more difficult
than treating first-order expressions. Above we used the following simplification of [If ].

[IfThen]
{C} M :m {C0}@ẽ {C0[T/m]} N {C′}@ẽ′ C0[F/m] ⊃C′

{C} if M then N {C′}@ẽẽ′

The rest of the verification for Partition is mechanical, so that we reach the following natural judgement:
{Perm(ablr)∧Order(c)} partition(a,c, l,r) :p′ {Parted(aclrp′)∧Perm(ablr)∧Order(c)}@a[l..r]pi.
Reasoning (3): Polymorphism. We are now ready to derive the whole specification of Quicksort (5.1). As
noted at the beginning, the algorithm is generic in the type of data being sorted, so we conclude with deriving its
polymorphic specification. We need one additional rule for type abstraction (for further details of treatment of
polymorphism, see [23]). We also list the rule for “let” which is easily derivable from [Abs] and [App] through
the standard encoding. Below ftv(Θ) indicates the set of type variables in Θ, similarly for ftv(C).

[TAbs]
{C}V Γ;∆;α :m {C′} X 6∈ ftv(Γ,∆)∪ ftv(C)

{C}V Γ,∆;∀X.α :u {∀X.C′}
[Let]

{C} M :x {C0}@ẽ {C0} N :u {C′}@ẽ′

{C} let x = M in N :u {C′}@ẽẽ′

We now present the derivation. For brevity we use the following abbreviations: C?
def
= Perm(ablr)∧Sorted(aclr),

B′ def
= Perm(ablr)∧Order(c)∧∀ j < k.QsortBounded(q j) ∧ r − l≤ k, and B

def
= B′ ∧ l < r. We also write

qsort′ for qsort in Page 15 without the first line (i.e. without µ/λ-abstractions).
M.1. {B} partition(a,c, l,r) :p′ {Parted(aclrp′)∧B}@a[l..r]pi (Invariance)

M.2. {Parted(aclrp′)∧B} q(a,c, l, p′−1) ; q(a,c, p′ +1,r) {C?}@a[l...r]ip (R.5)

M.3. {B} let p′ = partition(a, l,r,c) in (q(l, p′−1) ; q(p′ +1,r)) {C?}@a[l...r]ip (M.1/2, Let)

M.4. {B′} qsort′ {C?}@a[l...r]ip (M.3, IfThen)

M.5. {∀ j < k.QsortBounded(q j)} λ(a,c, l,r).qsort′ :m {QsortBounded(mk)}@ /0 (M.4, Abs)

M.6. {T} qsort :u {Qsortu}@ /0 (M.5, Rec, Consequence)

M.7. {T} qsort :u {∀X.Qsortu}@ /0 (M.6, TAbs)
This concludes the derivation of a full specification for polymorphic Quicksort.
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6. Conclusion

This paper introduced a program logic for imperative higher-order functions with general forms of aliasing,
presented its basic theory, and explored its use for specification and verification through simple but non-trivial
examples. Distinguishing features of the proposed program logic include a general treatment of imperative
higher-order functions and aliasing; its precise correspondence with observational semantics [15, 19]; provision
of structured assertion/reasoning methods for higher-order behaviour with shared data in the presence of
aliasing; and clean extensibility to data structures. We expect that compositional program logics which can fully
capture behaviours of higher-order programs will have applications not only in specification and verification of
individual programs but also in combination with other engineering activities for safety guarantee of programs.
In the following we conclude the paper with discussions on remaining topics and related work.
Local References. Apart from aliasing and higher-order features, one of the focal points in reasoning about
(imperative) higher-order programs is new name generation, as studied by Pitts and Stark [33]. Its clean logical
treatment is possible through a rigorous stratification on top of the present logic. At the level of programming
language, the grammar is extended by new x := M in N with x 6∈ fv(M). For its logical treatment, there are
two layers. In one, when local references are never allowed to go out of the original scope (hence they are only
used during each run of a procedure body), we do not have to change the assertion language but only add the
following proof rule (for detailed illustration, see [2, §10]).

{C-x}N :n {C0} {([!x]C0)[!x/n]∧ x 6= ỹ}MΓ;∆·x:Ref (α);β :m {C′-x
} fv(∆) = ỹ

{C} new x := N in MΓ;∆;β :u {C′}
(6.1)

which says that, when inferring for M, we can safely assume that the newly generated x is distinct from
existing reference names, and that the description of the resulting state and value, C ′, should not include this
new reference. This rule for the restricted form of local references allows us to treat the standard parameter
passing mechanism in procedural languages such as C and Java through the following simple translation: a
procedure definition “f(x,y) {...}” is transformed into “λ(x′,y′).new x := x′ in new y := y′ in ...”. Since x and
y are freshly generated, they are never aliased with each other nor with existing reference names. This aspect
is logically captured by (6.1). Thus the (lack of) aliasing in stack variables can be analysed as a special case of
aliasing in general references, allowing uniform understanding. Full local state is incorporated by enriching the
assertion language with a construct reminiscent of the ν-operator in π-calculi, with a rule generalising (6.1). We
shall report on this topic in a forthcoming exposition.

Related Work. A detailed historical survey of the program logics which treat aliasing is presented in [2, §10],
where the main efforts in this genre in the last five decades are discussed. Below we focus on some of the
directly related Hoare-like program logics which treat aliasing. Janssen and van Emde Boas [25] first introduce
distinctions between reference names and their content in the assertion method. The assignment rule based on
semantic substitution is discussed by Cartwright and Oppen [10], Morris [30] and Trakhtenbrot et al. [36]. The
last also presents an invariance rule reminiscent of ours. As arrays introduce aliasing between elements, studies
of proof rules for arrays such as [4, 16] contain logical analyses of aliasing. More recently Kulczycki et al. [12]
study possible ways to reason about aliasing induced by call-by-reference procedure calls.

A different approach to the logical treatment of aliasing, based on Burstall’s early work, is Separation Logic
by Reynolds, O’Hearn and others [31, 34]. They introduce a novel conjunction ∗ that also stipulates disjointness
of memory regions. Separation Logic uses the semantics and rules of Hoare logic for alias-free stack-allocated
variables while introducing alias-sensitive rules for variables on heaps. We discuss their work in some detail
since it exhibits an interesting contrast with our approach, both philosophically and technically. Their logic
starts from a resource-aware assignment rule [34]: {e 7→ −} [e] := e′ {e 7→ e′} where e and e′ do not include
dereference of heap variables and “x 7→ −” stands for ∃i.(x 7→ i)”. The rule demands that a memory cell is
available at address e, demonstrating resource-oriented nature of the logic (motivated from reasoning for low-
level code such as assemblers). Consequently, {T} [e] := [e] {T} is unsound in their logic. This command
corresponds to x := !x in our notation. {T} x :=!x {T} is trivially sound in original Hoare logic [20] and ours.
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On the basis of these resource-oriented proof rules, [31, 34] propose a variant of the invariance rule.

{C} P {C′} fv(C0)∩modify(P) = /0
{C ∗C0} P {C′ ∗C0}

(6.2)

The second premise is the standard side condition (modify(P) is the set of all stack-allocated variables
which P may write to). Apart from this side condition, soundness of this rule hinges on the resource-oriented
assignment/dereference rules noted above, by which all the variables (addresses) in the heap which P may write
to are explicitly mentioned in C. Like the standard invariance rule, this rule is intended to serve as an aid for
modular verification of program correctness.

Separation Logic’s ability to reason about aliased references crucially depends on its resource-oriented nature,
the separating conjunction ∗ and a special predicate 7→ to represent content of memory cells. In contrast, the
present work aims at a precise logical articulation of observational meaning of programs in the traditions of both
Hennessy-Milner logic and Hoare logic, as exemplified by Theorem 3. Another difference is that our logic aims
to make the best of the standard logical apparatus of first-order logic with equality to represent general aliasing
situations. These differences come to life for example in the [Invariance] rule of §3, which plays a role similar to
(6.2). Our rule relies on purely compositional reasoning about observable behaviour, which, as examples in the
previous section may suggest, contributes to tractability in reasoning. Concrete examples will serve to elucidate
the difference. The following shows a possible inference for x := 2; y :=!z through a direct application of (6.2).

1 {x 7→ −} x := 2 {x 7→ 2} (Assign)

2 {y 7→ − ∧ z 7→ i} y :=!z {y 7→ i ∧ z 7→ i} (Assign)

3 {x 7→ − ∗ (y 7→ − ∧ z 7→ −)} x := 2;y :=!z {x 7→ 2 ∗ ∃i.(y 7→ i ∧ z 7→ i)} (Inv, Seq, Consequence)

For the same program, a direct application of our invariance rule gives:

1 {T} x := 2 {!x = 2}@x (Assign)

2 {T} y :=!z {!y = !z}@y (Assign)

3 {T} x := 2;y :=!z {〈!y〉!x = 2 ∧ !y =!z}@xy (SeqI)

Reflecting observational nature, the pre-condition simply stays empty. Note also that 〈!y〉!x = 2 ∧ !y =!z is
equivalent to (x 6= y ⊃ !x = 2) ∧ !y =!z, which is more general than x 7→ 2 ∗ ∃i.(y 7→ i ∧ z 7→ i). Intuitively this
is because the content quantification (here 〈!y〉) offers a more refined form of protection from sharing/aliasing.

These examples suggest a gain in generality in using the proposed logical framework for representation of
sharing and disjointness of data structures. While C1 ∗C2 is practically embeddable as [!ẽ2]C1 ∧ [!ẽ1]C2 where ẽi

exhausts active dereferences of Ci, the examples suggest the use of write sets in located judgements/assertions
offers a more precise description and smooth reasoning. On its observational basis, the present logic may
incorporate resource-sensitive aspects through separate predicates (for example a predicate allocated(e) may
say e of a reference type is allocated). Because of differences in orientation, we also expect a fruitful interplay
between ideas from Separation Logic and the proposed logic. As one such instance, our long version [2, §10]
reports a generalisation of a refined version of (6.2) studied by O’Hearn, Yang and Reynolds [31]. We also note
elimination procedures similar to our Theorem 2 are studied by Lozes [27] and Calcagno et al. [8].
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Appendix: Verification of Swap
Below we verify swap satisfies (2.4), § 2.5. First we present the method which starts from extensional reasoning
for each method, using [SeqI]. Let A

def
= x = y ⊃ i = j.

1. {!y = j} x :=!y {!x = j} (AssignS)

2. {z = i} y := z {!y = j}@y (AssignS)

3. {!y = j ∧ [!x]z = i} x :=!y ; y := z {〈!y〉!x = j ∧ !y = j}@xy (1, 2, SeqI)

4. {!x = i∧!y = j∧ z = i} x :=!y ; y := z {(x 6= y ⊃!x = j) ∧ !y = j} (3, Conseq)

5. {A∧ !x = i∧!y = j∧ z = i} x :=!y ; y := z {A∧ (x 6= y ⊃!x = j) ∧ !y = j} (4, Invariance)

6. {!x = i∧ !y = j∧ z = i} x :=!y ; y := z {x = j ∧ y = i} (5, Consequence)

7. {!x = i∧!y = j} !x :z {!x = i∧!y = j∧ z = i}@ /0 (Deref)

8. {!x = i∧!y = j} let z = !x in (x :=!y ; y := z) {!x = j∧!y = i}@xy (6, 7, Let)

9. {T} swap :u {Swapu} (8, Abs)

In Line 5, note A is stateless. In Line 6, we used !x = i∧ !y = j entails A. The rest is immediate.
We can also use the direct reasoning, basdd on the traditional method, as below.

1. {(!x = j∧!y = i){|z/!y|}{|!y/!x|}} x :=!y {(!x = j∧!y = i){|z/!y|}}@x (AssignS)

2. {(!x = j∧!y = i){|z/!y|}} y := z {!x = j∧!y = i}@y (AssignS)

3. {(!x = j∧!y = i){|z/!y|}{|!y/!x|}} x :=!y ; y := z {!x = j∧!y = i}@xy (1, 2, Seq)

4. (!x = i∧!y = j∧ z = i) ⊃ (!x = j∧!y = i){|z/!y|}{|!y/!x|} (???)

5. {!x = i∧!y = j∧ z = i} x :=!y ; y := z {!x = j∧!y = i}@xy (3, 4, Conseq)

6. {!x = i∧!y = j} !x :z {!x = i∧!y = j∧ z = i}@ /0 (Deref)

7. {!x = i∧!y = j} let z = !x in (x :=!y ; y := z) {!x = j∧!y = i}@xy (5, 6, Let)

8. {T} swap :u {Swapu} (7, Abs)

In Line 6 we used the following derived rule, using the encoding let x = M in N
def
= (λx.N)M.

[Let]
{C} M :x {C0}@ẽ {C0} N :u {C′}@ẽ′

{C} let x = M in N :u {C′}@ẽẽ′

Except Line 4, all inferences are direct from the proof rules. Below we derive (? ? ?), starting from the
consequence and reaching the antecedent.

(!x = j∧!y = i){|z/!y|}{|!y/!x|}
≡ (!x = j){|z/!y|}{|!y/!x|}∧ (!y = i){|z/!y|}{|!y/!x|} (Pro.2 (2))
≡ ((x = y ⊃ z = j) ∧ (x 6= y ⊃!x = j)){|!y/!x|} ∧ (z = i){|!y/!x|} (S1)
≡ (x = y ⊃ z = j){|!y/!x|} ∧ (x 6= y ⊃!x = j){|!y/!x|} ∧ (z = i){|!y/!x|} (Pro.2 (2))
≡ (x = y ⊃ z = j) ∧ (x 6= y ⊃ (!x = j{|!y/!x|}) ∧ z = i (L7)
≡ (x = y ⊃ z = j) ∧ (x 6= y ⊃!y = j) ∧ z = i (S1)
⊂ !x = i ∧ !y = j ∧ z = i (fol)

Note the compositional reasoning is shorter with the traditional method, but overall we need a longer
inference since we need to do a non-trivial reasoning. This is because the traditional method (nor, for example,
the separation-based method a la Burstall) cannot make the most of semantic independence between two
assignments, which [SeqI] can capture.

We can further universally abstract the program, using [TAbst] (which appears at the end of §5.3).
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