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A Neural Model for Context-dependent Sequence
Learning
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Abstract. A novel neural network model is described that implements context-dependent
learning of complex sequences. The model utilises leaky integrate-and-fire neurons to extract
timing information from its input and modifies its weights using a learning rule with synaptic
noise. Learning and recall phases are seamlessly integrated so that the network can grad-
ually shift from learning to predicting its input. Experimental results using data from the
real-world problem domain demonstrate that the use of context has three important benefits:
(a) it prevents catastrophic interference during learning of multiple overlapping sequences, (b)
it enables the completion of sequences from missing or noisy patterns, and (c) it provides a
mechanism to selectively explore the space of learned sequences during free recall.
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1. Introduction

The importance of context in storing and recalling (sequential) information has
been thoroughly studied both in the animal and in the human domain. The con-
textual priming of memories seems to be one means that insects use to orga-
nise their knowledge and to retrieve memories appropriately. Collett et al. [1],
for example, showed that spatial contextual cues condition the recall of visuomo-
tor associative memories in the honeybee. Experimentation with snails [2] showed
long-term memory (LTM) to occur only when the animals were tested in the con-
text in which they were trained. In humans, motor learning studies also provide
evidence that temporal information can be stored for different contexts without
carryover from one to another [3]. When a subject’s arm was trained on overhand
throws and then tested on underhand throws, for most individuals the overhand
training did not carry over to the subsequent underhand throws [4]. Yet, the over-
hand training persisted through to subsequent overhand throws, readapting with
repeated throws. Finally, various theories of hippocampal functioning have stressed
the role of context in both learning and predicting sequences [5, 6].

From a computational viewpoint, context can be seen as a stimulus environment
that is changing much slower than the stimuli being learned [7]. Its (relative) stabil-
ity generates invariants which facilitate the detection and identification of events [8].
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Yet, existing neural models of sequence learning have mostly assumed context as a
cumulative record of previous inputs [9, 10] used to determine the next pattern.

The purpose of this paper is to describe a context-dependent sequence learning
mechanism and to analyse it in terms of its ability to handle multiple, complex and
possibly overlapping sequences, a problem that existing sequence learning models
do not address properly.

2. Model

2.1. outline

The proposed architecture is shown in Figure 1. The core component of the model
is a central module consisting of an array of independent columns of leaky inte-
grate-and-fire neurons. Each column is characterized by the time constant of its
neurons (see Section 2.2). Incoming input patterns are sequentially presented to
an input module with no processing function. This input module has fixed, unit
weight, one-to-one connections to each column of the central module. Context

Figure 1. Schematic of the proposed architecture. The input module (IN) is a placeholder with no
processing function. IN connects to each column of the central module via one-to-one connections.
Each column in the central module is of the same size as IN. There are no lateral connections between
each column of the central module. P-OUT is the output module. The same size as IN, it predicts the
next input to the network by combining information from all neurons in the central module. P-OUT
feeds back to each column of the central module via one-to-one connections. Context is processed in a
similar fashion. Context module CON connects to all columns of the central modules via all-to-all con-
nections. It receives both external contextual information and feedback information from the predicted
context module (P-CON) of same size. The size of CON and IN are not necessarily identical.
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patterns, instead, are fed to a context module of arbitrary size with fixed, random
weight, all-to-all connections to each column of the central module. Each column
has modifiable all-to-all connections to both the output module and the predicted
context module. The weights are updated when the current pattern has been pro-
cessed by the central module and the next one is presented to the input module.
The learning rule (Section 2.4) aims to minimize the error between the current out-
put and the next input. An efferent copy of the predicted context is fed back to
the context module through fixed, unit weight, one-to-one connections. Finally, a
set of fixed, unit weight, one-to-one connections link the output module and each
column of the central module. This efferent copy is integrated to incoming activa-
tions from both input and context modules using a function described in Section
2.3.

2.2. neuron model

The design of the neurons in the central module is based on the Spike Accumula-
tion Model by Shigematsu et al. [11] Each neuron has an accumulated potential u

that is calculated using a leaky integration of its input I :

u(t)= I (t)+ τ ·v(t −1) (1)

where v(t) is the internal potential of the neuron at time t and τ is the decay rate
of that internal potential. In conjunction with the firing threshold (see Equation
3), this last parameter determines the time to first pulse by controlling the mini-
mum activation needed for the neuron to accumulate and fire.

The internal potential v is defined as:

v(t)=u(t)−ρ ·o(t) (2)

where o(t) is the output of the neuron at time t and ρ is the subtraction constant
of the internal potential. This parameter controls the refractory period [12] of the
neuron after firing, i.e. the time during which it cannot be excited (absolute refrac-
toriness) or only with a much larger input (relative refractoriness).

In the original model, the output function o was defined by a Heaviside of the
accumulated potential. In this model, however, it is given by:

o(t)=f (u(t))= 1
1+ e−c(u(t)−T )

(3)

where c is the efficacy constant of the accumulated potential u(t) and T is the fir-
ing threshold. From a neuronal dynamics viewpoint, this use of a sigmoid func-
tion as output function is justified by studies of the average of large numbers of
neurons [13]. Indeed, the effect of averaging is to smear the all-or-nothing thresh-
old potential of individual neurons into a sigmoid relationship between local mean
dendritic potential and local mean firing rate [14]. Another justification can be
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found at the dendritic level. Mel [15], for example, discussed how each dendritic
compartment applies expansive nonlinearity to its synaptic input so that weak
inputs are made weaker, and/or strong inputs are made stronger. With a simpli-
fied version of this model [16], it was shown that the use of nonlinear output
pulses improved the robustness of the network to noise in the input sequence, and
reduced its sensitivity to the choice of parameters.

By controlling for the time to first response, duration of the response, and time
till the neuron settles back to quiescence (i.e. the time-constant of the neuron), τ , ρ

and T also determine the network’s ability to encode the timing information con-
tained in an incoming sequence. A similar computing principle was used by Reiss
and Taylor [17].

2.3. activation propagation to the central module

Neurons in the central module receive a combination of the output of neurons
from the input and context modules, and the output of neurons from the output
module. Such recurrent connection is not novel. In Jordan [18], for example, the
hidden layer is fed with the average of the outputs of both input and context neu-
rons. In this network, the input I to neuron i in the central module is given by:

Ii =
|oI

i −oO
i | ·oI

i +oO
i +oC

i

2.0+|oI
i −oO

i | (4)

where oI
i , oO

i are the output values of the ith neuron from, respectively, the input
and output modules, and oC

i is the contribution of the context module to the
ith neuron of the central module (see Equation 5). Unlike the function used in
Jordan’s networks, this function does not simply normalize the combined input,
it also implements novelty filtering. When a sequence is recognized, the difference
between oI

i and oO
i is small and the network shifts to recall (or predictive mode).

This recall phase reinforces learned sequences (consolidation) and prevents over-
training.

Since the context module connects to the central module through fixed, ran-
domly distributed, weights wC in the range [−1.0,1.0], its contribution oC

i to
neuron i of the central module is given by:

oC
i =f

⎛
⎝∑

j

wC
jia

C
j

⎞
⎠ (5)

where f is a simple sigmoid function

f (x)= 1.0
1.0+ e−x

(6)
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and aC
j is the activation of neuron j in the context module. This activation is com-

puted from the input context pattern and the output of neurons from the predicted
context module through one-to-one connections such that:

aC
j =

|IC
j −oPC

j | · IC
j +oPC

j

1.0+|IC
j −oPC

j | (7)

where oPC
j is the output of neuron j in the predicted context module, and IC

j is
the j th component of the input context pattern. As in the central module, this
recurrent connection enables the network to recall a sequence when contextual cues
are incomplete or noisy.

2.4. learning rule

Neurons in the output (and predicted context) module perform population coding
of all neuron outputs in the central module. The output of neuron i is given by:

oi = 1
1+ e−ai

(8)

with

ai =
∑

k

∑
j

wk
ij ·ok

j (9)

where ok
j represents the output of neuron j in column k.

The weights w from the columns in the central module to the output module
are updated according to an error-correction rule with synaptic noise given by:

�wij =α · (ini −outi ) ·oj +η (10)

where ini is the output of neuron i in the input module (i.e. the next pattern in
the sequence), outi is the output of neuron i in the output module, oj is the out-
put of neuron j in the central module, α is the learning rate, and η is a noise
parameter1 of random value in the uniformly distributed range [−ηmin, ηmax]. This
learning rule forces the weights to adapt to the difference between the actual out-
put and the feedback information from the input module, multiplied by the acti-
vation distribution in the column. Since the input module holds the next pattern
in the sequence, this rule minimizes the error between actual and predicted pattern
at time t +1.

1In artificial neural networks, the application of synaptic noise to the learning process has been shown
to improve convergence time and generalization performance to longer sequences [19]. In neurobiol-
ogy, synaptic noise has been hypothesized to constrain the coding accuracy in neural structures [20] and
enhance signal detection [21] among other roles.
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3. Simulations

3.1. training procedure

A balanced learning of all sequences reduces the possibility of catastrophic inter-
ferences. In the following simulations, the following training procedure was used.
Each sequence (and the corresponding context) of a permuted subset (initially, one
sequence only) of sequences was trained for 10 iterations (an epoch). Each epoch
was followed by a recall of each sequence of the subset. If the recall was success-
ful, a new sequence was added to the subset (a block). Otherwise, an additional
epoch of learning was carried out. A simulation was ended when all sequences
were correctly recalled or when the number of epochs exceeded a predefined cri-
terion in which case the network was said to have failed the learning task. This
training procedure was also used by Dominey [9]. Retraining all sequences pre-
vent instabilities that emerge when training a specific sequence shifts the weights
excessively. In such case, the network finds a local minimum that solves the current
sequence, but not all sequences. Repeatedly training all sequences forces the net-
work to search for a global minimum. For complex sequences, Dominey [9] man-
ually changed the learning rates to prevent deadlocks in the system. In this model,
however, such step was not necessary since the network autonomously shifts to
consolidation when a sequence is recognized, thus preventing overtraining.

3.2. memory capacity

Memory capacity was tested on a set of single sequences of 16-bit patterns. These
patterns were constructed by binarizing random values from an uniform distribu-
tion in the interval [0, 1] with a threshold of 0.3. The context inputs were set to
zero for all sequences to allow for comparisons with an Elman network of similar
complexity [10]. An Elman network is a three-layered feed-forward neural network
that uses backpropagation-through-time learning and is widely used for sequence
learning.

Unless specified otherwise, the same parameter values were used for all
simulations. The values are provided in Appendix.

3.2.1. Sequence length

Sequence length was varied from an initial 5 patterns to a maximum of 75 pat-
terns in steps of 5. For each sequence length, 10 different sets of random patterns
were created and both networks were trained on each sequence for 10 runs. The
number of columns in the central module was set to 8 (see Section 3.2.2) with 16
neurons (i.e. the pattern size) in each column. Sixteen hidden neurons were used
in the hidden layer of the Elman network.

In both networks, the relation between the number of epochs and the length
of the sequence was found to be exponential (Figure 2). However, whereas the
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Figure 2. Effect of sequence length (horizontal axis) on the number of epochs (vertical axis, logarith-
mic scale) required for correct recall for both the proposed model (circles) and the Elman network (solid
squares).

proposed network learned sequences up to a length of 60 patterns, the Elman net-
work failed to learn sequences longer than 25 patterns (at least within the pre-set
limit of 100,000 epochs), and otherwise required 33 times more epochs on average.

3.2.2. Number of columns in the central module

The relationship between the number of columns in the central module and recall
performance was investigated by varying the number of columns from 1 to 50 for a
given sequence of length 10. As shown by Figure 3, the proposed network showed
a performance profile typical of overlearning followed by underlearning. The recall
error sharply decreased initially until a maximum recall performance was reached
(8-column configuration). With additional columns, however, performance became
unstable.

While an overly large number of degrees of freedom might not allow the net-
work to escape from local minima, another factor to consider was the complex-
ity of the sequence itself, in particular, the number of degrees of freedom involved
in each transition of the sequence. In a separate simulation, 10 different sequences
of length 5 and pattern size 4 were used to investigate the correlation between the
number of epochs required for correct recall and the complexity of the sequence,
including the occurrence of repeated patterns or subsequences. The complexity
of the sequence was evaluated in terms of the spread of its histogram of activi-
ties, and inter-pattern distances as evaluated by two different Minkowski distance
functions. The number of epochs required to correctly recall each of the sequences
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Figure 3. Effect of the number of columns in the central module (horizontal axis) on recall error (ver-
tical axis). The error is computed as the square sum of errors between recalled sequence and correct
sequence, averaged over the number of patterns in the sequence.

ranged from 932 to 30797, with a clear inverse correlation (r < −0.83) between
inter-distance pattern and number of epochs (see Figure 4).

3.2.3. Pattern size

Using sequences of length 5–50, pattern sizes were varied from 4 to 20 in steps
of 2. As expected from the discussion in Section 3.2.2, sequences of smaller pat-
terns required more epochs because of the smaller inter-pattern distance. Still, the
proposed network largely outperformed Elman’s network, both in terms of the
number of epochs needed to learn each sequence, and in terms of the length of
sequences that could be learned (Figure 5).

The difficulty of Elman networks to learn long sequences might stem from the
fact that, unlike the central module in the proposed network, the hidden layer only
carries information relevant to the previous time step. This hypothesis was tested
by comparing the performance of both networks in learning sequences in which
one pattern at least was repeated.

3.2.4. Encoding of timing information

Given a sequence of length 5 and pattern size 16 (represented, for simplicity,
by the string ABCDE), the capacity of both networks to encode timing infor-
mation was analyzed by systematically incrementing the number of consecutive
presentations of each pattern in the sequence: ABCDE, AABCDE, AABBCDE,



CONTEXT-DEPENDENT SEQUENCE LEARNING 35

Figure 4. Inverse correlation between the number of epochs required to train a sequence (horizontal
axis) and the complexity of the sequence (vertical axis), as approximated by the distance between con-
secutive patterns (using Minkowski functions of order 1 and 2) and the spread of activities of the pat-
terns in the sequence.

Figure 5. Effect of pattern size (horizontal axis) on the number of epochs (vertical axis, logarithmic
scale) required to learn the sequence when the number of columns (proposed model, panel a) and hid-
den layer units (Elman network, panel b) varied from 4 (light gray) to 20 (black) in steps of 2.
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. . . , AAAAABBBBBCCCCCDDDDDEEEEE. Sequences for which the number of
epochs required for successful recall exceeded a preset criterion of 20,000 for 3
of the 5 sequences were excluded. The simulation consisted of 5 runs of 5 differ-
ent random pattern sequences. As shown by Figure 6, the proposed network per-
formed robustly, with an exponential relationship between the number of epochs
required for successful recall and the complexity of the timing information. The
Elman network, on the other hand, failed to learn any sequence that had at least
one repetition, thus confirming our hypothesis of Section 3.2.3.

Since repeating patterns resulted in the lengthening of the sequence, the con-
tribution of the repetitions to the overall complexity of the task was assessed by
comparing the slope of the linear regression in the data of Section 3.2.1 and that
of the data presented in this section (both using a logarithmic scale for the epoch
numbers). A factor 2 (roughly) was observed (0.186 versus 0.081) for the repetition
data.

3.3. learning multiple, overlapping, sequences

3.3.1. Problem

To test performance with overlapping and branching sequences, a training set
was derived from a real-world problem. In the PlaystationTM game TekkenTM by
NamcoTM, fighting characters are controlled by a human player using a console.
Connected sequences of wrestling moves can be obtained via a complex sequence
of button presses. Two distinct single moves (which will be referred to as A and F
hereafter) provide a partial context to distinguish between otherwise overlapping

Figure 6. Effect of timing complexity (the horizontal axis denotes the number of repetition) on the num-
ber of epochs (vertical axis, logarithmic scale) required to learn the sequence.
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sequences. The published multi-throw chart (see Figure 7) shows 10 possible com-
plete sequences, 6 in context A and 4 in context F , with any subsequence consti-
tuting a valid move provided order is preserved.

Each multi-throw was converted into a 16-bit vector with the first 4 bits of the
vector encoding the direction of movement, and the last 12 bits encoding a suc-
cession of up to 3 combinations of button presses. The context for each sequence
was also constructed as a 16-bit string indicating for each sequence its starter and
index.

3.3.2. Learning of the Tekken sequences

The complexity of the task was assessed by first learning the sequences without
context module. The network failed to learn a second sequence, displaying a clear
catastrophic interference effect [22]. Switching between sequences resulted in small,
highly correlated (r > 0.9), shifts in weight space (Figure 8) that prevented a suit-
able distribution of the representations.

With context, however, all sequences were learned (Figure 9) with an expected
increase in the average number of epochs required for correct recall at each new
sequence. On the other hand, the number of iterations required to train each
sequence before consolidation (Section 2.3) decreased suggesting that once the
structure of the input domain had been acquired, the network merely fine-tuned
the weights to generate correct recalls for all sequences.

As a generalization of the finding of Section 3.2.2, the number of epochs
required to train a set of sequences was found to be correlated to the overlap

Figure 7. Multi-throw chart for the character King of NamcoTM’s TekkenTM game, obtained from an
internet published documentation. Each letter corresponds to a multithrow, the combination of up to
3 button presses. Sequences of multithrows produce complex wrestling sequences. These sequences can
only start with either of two starters A and F.
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Figure 8. Changes in weights (vertical axis) of connections between a single neuron in the central mod-
ule to the output layer during learning without context. The graph focuses on the low-amplitude oscil-
latory regime that follows an initial phase of large changes. In the oscillatory regime, the network keeps
switching between a configuration that produces a correct recall of the first sequence and one that pro-
duces a correct recall of the second sequence.

Figure 9. Average number of epochs (solid squares) for each sequence (horizontal axis) over 25 success-
ful runs during which sequences were presented in permuted order. The circles denote the average num-
ber of iterations required to train each sequence (horizontal axis). The maximum number of epochs was
set to 5000.
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Figure 10. Effect of sequence overlap (sequences 1 to 6 and 7 to 10 have increasing overlap) on the aver-
age number of epochs (solid line) for each sequence (horizontal axis) when sequences are presented in
non-permuted order. The bars and sticks denote the range (factor 10) and variance (factor 100) respec-
tively of weight changes when sequences 2,4,5 and 10 are added. Learning the 4-th sequence required
only a few epochs with a low variance of weight changes, indicating that memory for this sequence fitted
well into the existing weight configuration. Adding the 5-th and 10-th sequences, however, required far
more epochs, with an increased variance in weight changes. The large range of weight changes observed
when adding the last sequence indicate a reconfiguration of the weight space.

between sequences. When presented in the order shown in Figure 7, each new
‘A’-sequence required an increasing number of epochs, in particular the last 2
‘A’-sequences which not only share a long partial sequence, but also introduce a
new branch at move ‘G’. At peak overlap (when the last two ‘F’-sequences were
introduced), the number of epochs required to train the whole set was significantly
larger. A strong increase in epochs might also correspond to a reconfiguration of
the weight space to accommodate a new sequence (the learning of specific tran-
sitions provided evidence for large weight rearrangements, as shown by Figure 10
for example), which raises the issue of memory structure.

3.3.3. Structure of sequence representations

To test the hypothesis that the network constructs a similarity structure between
overlapping sequences of the training set, three additional simulations were real-
ized. In the first one, an alternative training method was used to quantify whether
learning complexity covaried with similarity structure complexity. A richer simi-
larity structure was created by adding all possible sub-sequences (e.g., AB, ABC,
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Figure 11. Stacked percentile contribution (vertical axis) of each sequence to the number of epochs
required to train all sequences up to the current one (horizontal axis). When adding sequence ABCDE,
for example, no retraining of AB was required while the retraining of ABC and ABCD took roughly
25% each of the total number of epochs required to correctly recall all sequences from AB to ABCDE.

ABCD) to the sequences of the original training set, for a total of 21 sequences.
A linear sequence presentation (starting from AB and ending with FGHIJK) was
used to avoid any order-related artifact in performance. Each set of sequences was
repeatedly trained until each one of them was correctly recalled. The occurrence
of a reconfiguration of the weights was determined by verifying which sequence
needed retraining after presentation of a new sequence. As shown by Figure 11, a
retraining phase of previous sequences only occurred when a new sequence intro-
duced a branching point. Adding ABCDE to a set comprising ABCD, for exam-
ple, mostly involved the training of this new sequence and the consolidation of pre-
vious sequences. On the other hand, the addition of ABCDJ, which introduces a
branching point D{EJ}, required significantly more training. This observation was
consistent across training blocks. The addition of ABG, for example, required the
retraining of all sequences but AB. Further additions of sequences with alterna-
tive endings only required minor retraining of overlapping sequences. When a new
pattern was introduced, as with H in ABGH, additional epochs were required to
incorporate the new pattern as well as the extra subsequence GH. In addition,
AB required more training trials with the introduction of a new starter F in FG.
These results thus suggest that the learning of sequences proceeds by extracting the
underlying similarity structure, defined by overlapping and branching parts.

In a second simulation, the prediction that introducing a sequence that did not
match the similarity structure already acquired by the network would result in
more epochs, was systematically tested by considering three conditions: addition
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Figure 12. Main effects of learning a new pattern M (bars ABGM and FGHM), a transition between
previously unconnected patterns (bar FC), and a shortcut between patterns of a same sequence (bar
FH). Stars denote statistical significance (p < 0.1) in t-tests with control conditions LC and LH. Statis-
tical significance (p <0.05) was reached when comparing either FC or FH with ABGM and FGHM.

of a new ending move, addition of a new context, and addition of a new transi-
tion connecting previously unlinked moves (shortcut). As a control condition, two
new sequences were constructed by adding a new ending move M to sequences
ABGH and FGH. A new sequence FC connected two moves that had not been
used in the same sequence. To verify the effect of adding sequence FC to exist-
ing F-sequences, a sequence LC was also added linking C with a new starter L.
Finally, a new sequence FH (shortcut for FGH) was compared with LH which
involves a new context. To avoid any weight-related artifact in performance, the
same weight configuration (obtained after successful training of the 21 sequences)
was used to train each of the 6 new sequences. As shown by Figure 12, introduc-
ing a new terminator M did not have a significant effect on the number of epochs
required to train the final set of sequences. A significant effect, however, was found
when learning transitions (FH,FC) that broke the similarity structure. Shortcut
FH, for example, required nearly 2200 more epochs than LH to be learned. This
shortcut, which amounts to adding a new branching point at F, resulted in the
retraining of FG and FGH, and to a lesser extent of all other sequences contain-
ing GH. Similarly, learning FC took significantly more epochs than learning LC
(p <0.1).

The third simulation involved the free recall of the memory structure after sever-
ing the feedback loop between predicted context module and context module. By



42 LUC BERTHOUZE AND ADRIAAN TIJSSELING

Figure 13. Number of occurrences (horizontal axis) for each sequence (partial and complete) during
1000 time-steps of free recall after cueing the network with starter A (partial context). The vertical bars
denote the expected number of occurrences of sequences of length 2–6 in a string of long length ran-
domly generated from an alphabet of 11 characters (A–K).

preventing the network from reconstructing the context, instabilities in the recall
were expected that should reveal stable states in the memory structure by way of
chaotic itinerancy [23]. A free recall was initiated with the network cued only with
the starter of the first sequence and a partial context for that starter. The longest
recognizable sequences were recorded over 1000 steps of recall, and their frequency
of occurence was compared to the probability that they appear in a randomly gen-
erated sequence of long length. The probability that a word of length l occurred
in a string randomly generated from an alphabet of n letter was computed as:

(
1
n

)l

(11)

As shown by Figure 13, longer sequences, in particular, were found to occur at a
rate significantly higher than that expected from a random draw. Sequence ABG-
HIE, for example, occurred 10 times when the probability that it occurred by
chance was 5.6E − 7. The starting partial sequence ABG was found to occur rel-
atively more often than ABC, thus reflecting its larger frequency of occurrence in
the training set. Interestingly, sequences ending in JK were not recalled. Since JK
was involved in three different sequences, its confusability was higher than that of
HIE (the most recalled terminating sequence) for example. This hypothesis on the
role of confusability in recall was tested by a second recall using starter F as par-
tial context. Since G was involved in 8 different sequences, a very limited recall
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was expected. Indeed, whereas G occurred most frequently and was sometimes fol-
lowed by H and I, no full sequences were recalled.

4. Discussion

A novel context-dependent sequence learning neural network was proposed. Its
learning process is driven by a dynamic adjustment of the learning rate, a pro-
cess that provides the network with the ability to learn only when learning is
necessary and revert to consolidation or rehearsal otherwise. It enables the network
to address the stability-plasticity issue that occurs when new sequential informa-
tion partially or completely overwrites memory of previously acquired sequences.
The integration of context, in turn, prevents catastrophic interference between
overlapping sequences. Context provides the network with slow-changing regular-
ities that help it distinguish between various sequences based on when and where
they occur. Without context, the network can only rely on individual patterns to
determine what it has to predict next. Free recall when the context feedback loop
was severed showed the network to exhibit chaotic itinerancy whereby the network
jumped from one low-dimensional attractor (sequence representation) to the other
because context could no longer stabilize network dynamics.

From a developmental viewpoint, an interesting feature of the model is its
ability to dynamically reconfigure its memory structure when new information
becomes available. This is made possible because the network does not match
sequences with a stored sequences but rather implements a dynamical filter
whereby incoming stimuli direct the network towards a portion of the state space
which has been shaped by previous exposures to similar sequences. Simulations
showed this mechanism to implement periodic-attractor rather than point-attractor
dynamics, thus providing the substrate for a reconfigurable similarity structure. As
such, the network could prove a useful component for a developing cognitive sys-
tem that must deal with temporal information of increasing complexity.

Appendix

Table A. Parameter settings used in the model.

Central module
τmax max decay rate 0.90
ρmax max subtraction constant 0.40
c efficacy constant 20.0
T firing threshold 1.0

Weight modification
ηmax maximum noise 0.0001
ηmin minimum noise −0.0001
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The decay rate τ and the subtraction constant ρ of the neurons in the cen-
tral module were evenly distributed in the interval [τmax, τmax/(c + 1)] and
[ρmax, ρmax/(c+1)] respectively, with c denoting the number of columns.
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