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Abstract

We develop an improved form of left-corner chart parsing for large context-free grammars, introducing

improvements that result in signi�cant speed-ups compared to previously-known variants of left-corner

parsing. We also compare our method to several other major parsing approaches, and �nd that our

improved left-corner parsing method outperforms each of these across a range of grammars. Finally, we

also describe a new technique for minimizing the extra information needed to eÆciently recover parses

from the data structures built in the course of parsing.

1 Introduction

Parsing algorithms for contex-free grammars (CFGs) are generally recognized as the backbone of

virtually all approaches to parsing natural-language. Even in systems that use a grammar formalism

more complex than CFGs (e.g., uni�cation grammar), the parsing method is usually an extension of

one of the well-known CFG parsing algorithms. Moreover, recent developments have once again made

direct parsing of CFGs more relevant to natural-language processing, including the recent explosion of

interest in parsing with stochastic CFGs or related formalisms, and the fact that commercial speech

recognition systems are now available (from Nuance Communications and Microsoft) that accept

CFGs as language models for constraining recognition.

These applications of context-free parsing share the common trait that the grammars involved can

be expected to be very large. A \treebank grammar" extracted from the sections of the Penn Treebank

commonly used for training stochastic parsers contains over 15,000 rules, and we also have a CFG

containing over 24,000 rules, compiled from a task-speci�c uni�cation grammar for use as a speech-

recognition language model. Grammars such as these stress established approaches to context-free

parsing in ways and to an extent not encountered with smaller grammars.

In this work we develop an improved form of left-corner chart parsing for large context-free gram-

mars. We introduce improvements that result in speed-ups averaging 38% or more compared to

previously-known variants of left-corner parsing. We also compare our method to several other major

parsing approaches: Cocke-Kasami-Younger (CKY), Earley/Graham-Harrison-Ruzzo (E/GHR), and

generalized LR (GLR) parsing. Our improved left-corner parsing method outperforms each of these

by an average of at least 50%. Finally, we also describe a new technique for minimizing the extra

information needed to eÆciently recover parses from the data structures built in the course of parsing.

�Revised version of paper appearing in Proceedings of the Sixth International Workshop on Parsing Technologies,

IWPT 2000. Revised 23 March 2000.



2 Evaluating Parsing Algorithms

In this work we are interested in algorithms for �nding all possible parses for a given input. We measure

the eÆciency of the algorithms in building a complete chart (or comparable structure) for the input,

where the chart includes information suÆcient to recover every parse without additional searching.1

We take CPU time to be the primary measure of performance. Implementation-independent measures,

such as number of chart edges generated, are sometimes preferred in order to factor out the e�ects of

di�erent platforms and implementation methods, but only time measurement provides a practical way

of evaluating some algorithmic details. For example, one of our major improvements to left-corner

parsing simply transposes the order of performing two independent �ltering checks, resulting in speed

ups of up to 67%, while producing exactly the same chart edges as the previous method. To ensure

comparability of time measurements, we have re-implemented all the algorithms considered, in Perl

5,2 on as similar a basis as possible.

One caveat about this evaluation should be noted. None of the algorithms were implemented with

general support for empty categories, due to the fact that none of the large, independently motivated

grammars we had access to contained empty categories. We did, however make use of a grammar

transformation (left factoring) that can produce empty categories, but only as the right-most daughter

of a rule with at least two daughters. For the algorithms we wanted to test with this form of grammar,

we added limited support for empty categories speci�cally in this position.

3 Terminology and Notation

Nonterminals, which we will sometimes refer to as categories, will be designated by \low order"

upper-case letters (A, B, etc.); and terminals will be designated by lower-case letters. We will use the

notation ai to indicate the ith terminal symbol in the input string. We will use \high order" upper-

case letters (X , Y , Z) to denote single symbols that could be either terminals or nonterminals, and

Greek letters to denote (possibly empty) sequences of terminals and/or nonterminals. For a grammar

rule A ! B1 : : : Bn we will refer to A as the mother of the rule and to B1 : : : Bn as the daughters of

the rule. We will assume that there is a single nonterminal category S that subsumes all sentences

allowed by the grammar.

All the algorithms considered here build a collection of data structures representing segments of the

input partially or completely analyzed as a phrase of some category in the grammar, which we will

refer to as a \chart". We will use the term \item" to mean an instance of a grammar rule with an

indication of how many of the daughters have been recognized in the input. Items will be represented

as dotted rules, such as A! B1:B2. An \incomplete item" will be an item with at least one daughter

to the right of the dot, indicating that at least one more daughter remains to be recognized before the

entire rule is matched; and a \complete item" will be an item with no daughters to the right of the

dot, indicating that the entire rule has been matched.

We will use the terms \incomplete edge" or \complete edge" to mean an incomplete item or complete

item, plus two input positions indicating the segment of the input covered by the daughters that have

1Formally, we require that for any m up to the total number parses of the input, we can extract from the chart m
parses of a string of length n in time proportional to m � n.

2We take advantage of Perl 5's ability to arbitrarily nest hash tables and linked lists to produce eÆcient implemen-
tations of the data structures required by the algorithms. In particular, the multi-dimensional arrays required by many
of the algorithms are given a sparse-matrix implementation in terms of multiply-nested Perl hash tables.



already been recognized. These will be written as (e.g.) hA! B1B2:B3; i; ji, which would mean that

the sequence B1B2 has been recognized starting at position i and ending at position j, and has been

hypothesized as part of a longer sequence ending in B3, which is classi�ed a phrase of category A.

Positions in the input will be numbered starting at 0, so the ith terminal of an input string spans

position i�1 to i. We will refer to items and edges none of whose daughters have yet been recognized

as \initial".

4 Test Grammars

For testing context-free parsing algorithms, we have selected three CFGs that are independently mo-

tivated by analyses of natural-language corpora or actual applications of natural language processing.

The CT grammar3 was compiled into a CFG from a task-speci�c uni�cation grammar written for

CommandTalk (Moore et al., 1997), a spoken-language interface to a military simulation system. The

ATIS grammar was extracted from an internally generated treebank of the DARPA ATIS3 training

sentences. The PT grammar was extracted from the Penn Treebank.4 We employ a standard test set

for each of the three grammars. The test set for the CT grammar is a set of sentences made up by

the system designers to test the functionality of the system, and the test set for the ATIS grammar

is a randomly selected subset of the DARPA ATIS3 development test set. The test set for the PT

grammar is a set of sentences randomly generated from a probabilistic version of the grammar, with

the probabilities based on the frequency of the bracketings occuring in the training data, and then

�ltered for length to make it possible to conduct experiments in a reasonable amount of time, given

the high degree of ambiguity of the grammar.

The terminals of the grammars are preterminal lexical categories rather than words. Preterminals

were generated automatically, by grouping together all the words that could occur in exactly the same

contexts in all grammar rules, to eliminate lexical ambiguity.

CT Grammar ATIS Grammar PT Grammar
Rules 24,456 4,592 15,039
Nonterminals 3,946 192 38
Terminals 1,032 357 47
# Test Sentences 162 98 30
Average Length 8.3 11.4 5.7
# Grammatical 150 70 30
Average # Parses 5.4 940 7:2� 1027

Table 1: Grammars and test sets for parser evaluations

Some statistics on the grammars and test sets are contained in Table 1. Note that for the CT and

ATIS sets, not all sentences are within the corresponding grammars. The most striking di�erence

among the three grammars is the degree of ambiguity. The CT grammar has relatively low ambiguity,

the ATIS grammar may be considered highly ambiguous, and the PT grammar can only be called

massively ambiguous.

3Courtesy of John Dowding, SRI International
4Courtesy of Eugene Charniak, Brown University



5 Left-Corner Parsing Algorithms and Re�nements

Left-corner (LC) parsing|more speci�cally, left-corner parsing with top-down �ltering|originated as

a method for deterministically parsing a restricted class of CFGs. It is often attributed to Rosenkrantz

and Lewis (1970), who may have �rst used the term \left-corner parsing" in print. GriÆths and Petrick

(1965), however, previously described an LC parsing algorithm under the name \selective bottom-to-

top"(SBT) parsing, which they assert to be an abstraction of previously described algorithms.

The origins of LC parsing for general CFGs (other than by naive backtracking) are even murkier.

Pratt's (1975) algorithm is sometimes considered to be a generalized LC method, but it is perhaps

better described as CKY parsing with top-down �ltering added. Kay's (1980) method for undirected

bottom-up chart parsing is clearly left-corner parsing without top-down �ltering, but in adding top-

down �ltering to obtain directed bottom-up chart parsing, he changed the method signi�cantly. The

BUP parser of Matsumoto et al. (1983) appears to be the �rst clearly described LC parser capable of

parsing general CFGs in polynomial time.5

LC parsing depends on the left-corner relation for the grammar, where X is recursively de�ned to

be a left corner of A if X = A, or the grammar contains a rule of the form B ! X�, where B is a

left corner of A. This relation is normally precompiled and indexed so that any pair of symbols can

be checked in essentially constant time.

Although LC parsing was originally de�ned as a stack-based method, implementing it in terms of a

chart enables polynomial time complexity to be achieved by the use of dynamic programming; which

simply means that if the same chart edge is derived in more than one way, only one copy is retained

for further processing. A chart-based LC parsing algorithm can be de�ned by the following set of

rules for populating the chart:

1. For every grammar rule with S as its mother, S ! �, add hS ! :�; 0; 0i to the chart.

2. For every pair of edges of the form hA ! �:X�; i; ki and hX ! 
:; k; ji in the chart, add hA !

�X:�; i; ji to the chart.

3. For every edge of the form hA ! �:aj�; i; j � 1i in the chart, where aj is the jth terminal in the

input, add hA! �aj :�; i; ji to the chart.

4. For every pair of edges of the form hA ! �:C�; i; ki and hX ! 
:; k; ji in the chart and every

grammar rule with X as its left-most daughter, of the form B ! XÆ, if B is a left corner of C, add

hB ! X:Æ; k; ji to the chart.

5. For every edge of the form hA ! �:C�; i; j � 1i, and every grammar rule with aj as its left-most

daughter, of the form B ! ajÆ, where aj is the jth terminal in the input, if B is a left corner of C,

add hB ! aj :Æ; j � 1; ji to the chart.

An input string is successfully parsed as a sentence if the chart contains an edge of the form hS !

�:; 0; ni when the algorithm terminates.

Rules 1{3 are shared with other parsing algorithms, notably E/GHR, but rules 4 and 5 are distinctive

to LC parsing. If naively implemented, however, they can lead to unnecessary duplication of work.

Rules 4 and 5 state that for every triple consisting of an incomplete edge, a complete edge or input

terminal, and a grammar rule, meeting certain conditions, a new edge should be added to the chart.

5Cyclic grammars and empty categories were not supported, however.



Inspection reveals, however, that the form of the edge to be added depends on only the complete edge

or input terminal and the grammar rule, not the incomplete edge. Thus if this parsing rule is applied

separately for each triple, the same new edge may be proposed repeatedly if several incomplete edges

combine with a given complete edge or input terminal and grammar rule to form triples satisfying the

required conditions. A number of implementations of generalized LC parsing have su�ered from this

problem, including the BUP parser, the left-corner parser of the SRI Core Language Engine (Moore

and Alshawi, 1991), and Schabes's (1991) table-driven predictive shift-reduce parser.

However, if parsing is performed strictly left-to-right, so that every incomplete edge ending at k

has already been computed before any left-corner checks are performed for new edges proposed from

complete edges or input terminals starting at k, there is a solution that can be seen by rephrasing

rules 4 and 5 follows:

4a. For every edge of the form hX ! 
:; k; ji in the chart and every grammar rule with X as its

left-most daughter, of the form B ! XÆ, if there is an incomplete edge in the chart ending at k,

hA! �:C�; i; ki, such that B is a left corner of C, add hB ! X:Æ; k; ji to the chart.

5a. For every input terminal aj and every grammar rule with aj as its left-most daughter, of the form

B ! ajÆ, if there is an incomplete edge in the chart ending at j� 1, hA! �:C�; i; j� 1i, such that

B is a left corner of C, add hB ! aj :Æ; j � 1; ji to the chart.

This formulation suggests driving the parser by proposing a new edge from every grammar rule exactly

once for each complete edge or input terminal corresponding to the rule's left-most daughter, and then

checking whether some previous incomplete edge licenses it via left-corner �ltering. If implemented

by nested iteration, this still requires as many nested loops as the naive method; but the inner-most

loop does much less work, and it can be aborted as soon as one previous incomplete edge has been

found to satisfy the left-corner check. Wir�en (1987) seems to have been the �rst to explicitly propose

performing left-corner �ltering in an LC parser in this way. Nederhof (1993) proposes essentially the

same solution, but formulated in terms of a graph-structured stack of the sort generally associated

with GLR parsing.

Several additional optimizations can be added to this basic schema. Wir�en adds bottom-up �ltering

(Wir�en uses the term \selectivity", following GriÆths and Petrick (1965)) of incomplete edges based

on the next terminal in the input. That is, no incomplete edge of the form hA! �:X�; i; ji is added

to the chart unless aj+1 is a left corner of X . Nederhof proposes that, rather than iterate over all

the incomplete edges ending at a given input position each time a left-corner check is performed,

compute just once for each input position a set of nonterminal predictions, consisting of the symbols

immediately to the right of the dot in the incomplete edges ending at that position, and iterate over

that set for each left-corner check at the position.6 With this optimization, it is no longer necessary

to add initial edges to the chart at position 0 for rules of the form S ! �. If Pi denotes the set of

predictions for position i, we simply let P0 = fSg.

Another optimization from the recent literature is due to Leermakers (1992), who observes that

in Earley's algorithm the daughters to the left of the dot in an item play no role in the parsing

algorithm; thus the representation of items can ignore the daughters to the left of the dot, resulting in

fewer distinct edges to be considered. This observation is equally true for LC parsing. Thus, instead

of A ! B1B2:B3, we will write simply A ! :B3. Note that with this optimization, A ! : becomes

6Nederhof proposes several other optimizations, which we evaluated and found not to repay their overhead.



the notation for an item all of whose daughters have been recognized; the only information it contains

being just the mother of the rule. We will therefore write complete edges simply as hA; i; ji, rather

than hA ! :; i; ji. We can also unify the treatment of terminal symbols in the input with complete

edges in the chart by adding a complete edge hai; i� 1; ii to the chart for every input terminal ai.
7

Taking all these optimizations together, we can de�ne an optimized LC parsing algorithm by the

following set of parsing rules:

1. Let P0 = fSg.

2. For every input position j > 0, let Pj = fB j there is an incomplete edge in the chart ending at j,

of the form hA! :B�; i; jig.

3. For every input terminal ai, add hai; i� 1; ii to the chart.

4. For every pair of edges hA! :XY �; i; ki and hX; k; ji in the chart, if aj+1 is a left corner of Y , add

hA! :Y �; i; ji to the chart.

5. For every pair of edges hA! :X; i; ki and hX; k; ji in the chart, add hA; i; ji to the chart.

6. For every edge hX; k; ji in the chart and every grammar rule with X as its left-most daughter, of

the form A! XY �, if there is a B 2 Pk such that A is a left corner of B, and aj+1 is a left corner

of Y , add hA! :Y �; k; ji to the chart.

7. For every edge hX; k; ji in the chart and every grammar rule with X as its only daughter, of the

form A! X , if there is a B 2 Pk such that A is a left corner of B, add hA; k; ji to the chart.

Note that in Rule 6, the top-down left-corner check on the mother of the proposed incomplete

edge and the bottom-up left-corner check on the symbol immediately to the right of the dot in the

proposed incomplete edge are independent of each other, and therefore could be performed in either

order. Wir�en, the only author we have found who includes both, is vague on the ordering of these

checks. For each proposed edge, however, the bottom-up check requires examining an entry in the

left-corner table for each of the elements of the prediction list, until a check succeeds or the list is

exhausted; while the bottom up check requires examining only a single entry in the left-corner table

for the next terminal of the input. It therefore seems likely to be more eÆcient to do the bottom-up

check before the top-down check, since the top-down check need not be performed if the bottom-up

check fails. To test this hypothesis, we have done two implementations of the algorithm: LC1, which

performs the top-down check �rst, and LC2, which performs the bottom-up check �rst.

Shann (1991) uses a di�erent method of top-down �ltering in an LC parser. Shann expands the

list of predictions created by rules 1 and 2 to include all the left-corners of the predictions. He does

this by precomputing the proper left corners of all nonterminal categories and adding to the list of

predictions all the left-corners of the original members of the list. Then top-down �ltering consists of

simply checking whether the mother of a proposed incomplete edge is on the corresponding prediction

list. Graham, Harrison, and Ruzzo (1980) attribute this type of top-down �ltering to Cocke and

Schwartz, so we will refer to it as \Cocke-Schwartz �ltering". Since our original form of �ltering uses

the left-corner relation directly, we will call it \left-corner �ltering".

7Many chart parsers unify the treatment of input terminals and complete edges in this way, by ignoring daughters to
the left of the dot, but only for complete edges. The Leermakers optimization permits a uni�ed treatment of incomplete
edges, complete edges, and input terminals.



We have implemented Cocke-Schwartz �ltering as described by Shann, except that for eÆciency in

both forming and checking the sets of predictions, we use hash tables rather than lists. The resulting

algorithm, which we will call LC3, can be stated as follows:

1. Let P0 = fall left corners of Sg.8

2. For every input position j > 0, let Pj = fall left corners of B j there is an incomplete edge in the

chart ending at j, of the form hA! :B�; i; jig.

3. For every input terminal ai, add hai; i� 1; ii to the chart.

4. For every pair of edges hA! :XY �; i; ki and hX; k; ji in the chart, if aj+1 is a left corner of Y , add

hA! :Y �; i; ji to the chart.

5. For every pair of edges hA! :X; i; ki and hX; k; ji in the chart, add hA; i; ji to the chart.

6. For every edge hX; k; ji in the chart and every grammar rule with X as its left-most daughter, of

the form A! XY �, if A 2 Pk, and aj+1 is a left corner of Y , add hA! :Y �; k; ji to the chart.

7. For every edge hX; k; ji in the chart and every grammar rule with X as its only daughter, of the

form A! X , if A 2 Pk, add hA; k; ji to the chart.

There is one simple re�nement, not mentioned by Shann, that we can add to this algorithm. Since

we already have the information needed to perform bottom-up �ltering, we can apply bottom-up

�ltering to building the prediction sets, omitting any left-corner of an existing prediction that is

incompatible with the next terminal of the input. This will certainly save space, and may save time

as well, depending on the relative costs of adding a nonterminal to the prediction set compared to

performing the bottom-up left-corner check. Our modi�cation of LC parsing with Cocke-Schwartz

�ltering to include this re�nement is implemented as LC4.

CT Grammar ATIS Grammar PT Grammar
LC1 4.3 15.6 45.0
LC2 3.4 11.9 43.0
LC3 3.1 11.6 41.8
LC4 2.7 11.8 42.3

Table 2: LC parsing algorithm performance comparisons

The results of running algorithms LC1{LC4 appear in Table 2. The numbers are CPU time in

seconds required by the parser to completely process the standard test set associated with each

grammar.9 LC2, which performs the bottom-up left-corner check on proposed incomplete edges before

top-down left-corner check, is faster on all three grammars than LC1, which performs the checks in

the reverse order|substantially so on the CT and ATIS grammars. Comparing LC3 with LC4|

which both use Cocke-Schwartz �ltering, but di�er as to whether the prediction sets are bottom-up

�ltered|the results are less clear. LC4, which does �lter the predictions, is noticably faster on the

CT grammar, while LC3 which does not �lter predictions is slightly faster, but not signi�canly so,

on the ATIS grammar and PT grammar. Finally, both parsers that use Cocke-Schwartz �ltering are

faster on all grammars than either of the parsers that use left-corner �ltering.
8Recall that by our de�nition, the left-corner relation is re
exive so S will be included.
9All timings in this report are for execution on a Dell 610 workstation with Pentium III Xeon 550 MHz processors

running Windows 2000.



6 Grammar Transformations

One other issue remains to be addressed in our examination of LC parsing. It is a common observation

about left-to-right parsing, that if two grammar rules share a common left pre�x, e.g., A ! BC and

A! BD, many parsing algorithms will duplicate work for the two rules until reaching the point where

they di�er. A simple solution often proposed to address the problem is to \left factor" the grammar.

Left factoring applies the following grammar transformation repeatedly, until it is no longer applicable:

For each nonterminal A, let � be the longest nonempty sequence such that there is more than

one grammar rule of the form A ! ��. Replace the set of rules A ! ��1; : : : ; A ! ��n with

A! �A0; A0 ! �1; : : : ; A
0 ! �n, where A

0 is a new nonterminal symbol.

Left factoring has been explored in the context of generalized LC parsing by Nederhof (1994), who

refers to LC parsing with left factoring as PLR parsing. Shann (1991) also applies left factoring

directly in the representation of the rules he uses in his LC parser, e.g. A! B(C;D).

One complication associated with left factoring is that if the daughters of one rule are a proper pre�x

of the daughters of another rule, then empty rules will be introduced into the grammar, even if there

were none originally. For example A ! BC and A ! BCD will be replaced by A ! BCA0; A0 !

D;A0 ! �. To explore the cost of this additional complication we compare full left factoring with the

following restricted form of left factoring;

For each nonterminal A, let � be the longest nonempty sequence such that there is more than

one grammar rule of the form A ! ��, for some nonempty string �. Replace the set of rules

A ! ��1; : : : ; A ! ��n with A ! �A0; A0 ! �1; : : : ; A
0 ! �n, where A

0 is a new nonterminal

symbol.

The requirement that � always be nonempty blocks the introduction of empty productions, so with

this transformation A! BC and A! BCD will be replaced by A! BA0; A0 ! CD;A0 ! C.

Left factoring is not the only transformation that can be used to address the problem of common

rule pre�xes. Left factoring applies only to sets of rules with a common mother category, but as an

essentially bottom-up method, generalized LC parsing does most of its work before the mother of a

rule is determined. There is another grammar transformation that seems better suited to LC parsing,

introduced by GriÆths and Petrick (1965), but apparently neglected since:

Let � be a maximal sequence of two or more symbols such that there is more than one grammar

rule of the form A! ��. Replace the set of rules A1 ! ��1; : : : ; An ! ��n with A0 ! �;A1 !

A0�1; : : : ; An ! A0�n, where A
0 is a new nonterminal symbol.

Like left factoring, this transformation is repeated until it is no longer applicable. GriÆths and Petrick

do not give this transformation a name, so we will call it \bottom-up pre�x merging".

It should be noted that all of these grammar transformations simply add additional levels of non-

terminals to the grammar, without otherwise disturbing the structure of the analyses produced by the

grammar. Thus, when parsing with a grammar produced by one of these transformations, the original

analyses can be recovered simply by ignoring the newly introduced nonterminals, and treating their

subconstituents as subconstituents of the next higher original nonterminal of the grammar.

Before we apply our LC parsers to our test grammars transformed in these three ways, we make a

few small adjustments to the implementations. First, as noted above, full left factoring requires the



ability to handle empty categories, at least as the right-most daughter of a rule. We have created

modi�ed versions of LC1{LC4 speci�cally to use with the fully left-factored grammar. Second we note

that with a left-factored grammar,10 the non-unary rules have the property that, given the mother and

the left-most daughter, there is only one possibility for the rest of the rule. With a bottom-up pre�x-

merged grammar, the non-unary rules have the property that, given the two left-most daughters, there

is only one possibility for the rest of the rule. We take advantage of these facts to store the indexed

forms of the rules more compactly and simplify the logic of the implementations of variants of our

parsers specialized to these grammar forms.

CT Grammar ATIS Grammar PT Grammar
LC1 UTF 4.3 15.6 45.0
LC1 FLF 7.4 63.5 timed out
LC1 PLF 6.2 66.2 timed out
LC1 BUPM 3.6 11.7 34.1
LC2 UTF 3.4 11.9 43.0
LC2 FLF 5.1 38.2 timed out
LC2 PLF 4.2 37.7 timed out
LC2 BUPM 3.1 7.0 27.0
LC3 UTF 3.1 11.6 41.8
LC3 FLF 4.2 12.3 45.4
LC3 PLF 3.8 12.1 43.6
LC3 BUPM 5.0 17.1 64.6
LC4 UTF 2.7 11.8 42.3
LC4 FLF 3.6 11.9 46.6
LC4 PLF 3.2 11.7 44.4
LC4 BUPM 3.2 14.7 63.6

Table 3: LC parsing grammar transformation performance comparisons

The results of applying our four LC parsing algorithms with these three grammar transformations

are displayed in Table 3, along with results for the untransformed grammars presented previously.

The grammar transformations are desginated by the symbols UTF (untransformed), FLF (fully left-

factored), PLF (partially left-factored), and BUPM (bottom-up pre�x-merged). We set a time-out

of 10 minutes on some experiments, since that was already an order of magnitude longer than any

of the other parse times. Several observations stand out from these results. First, in every case but

one, partial left factoring out-performed full left factoring. Much more surprising is that, in every

case but one, either form of left factoring degraded parsing performance relative to the untransformed

grammar. For LC1 and LC2, the algorithms that use left-corner �ltering, the degradation is dramatic,

while for LC3 and LC4, which use Cocke-Schwartz �ltering, the degradation is very slight in the case

of the ATIS and PT grammars, but more pronounced in the case of the CT grammar. On the other

hand, bottom-up pre�x-merging signi�cantly|in some cases dramatically|speeds up parsing for LC1

and LC2, while signi�cantly degrading the performance of LC3 and LC4.

Looking at the overall results of these experiments, we see that bottom-up pre�x merging reverses

the previous advantage of Cocke-Schwartz �ltering over left-corner �ltering. With bottom-up pre�x

merging, LC2 is at least 66% faster on the ATIS grammar and 55% faster on the PT grammar than

either LC3 or LC4; and it is only 15% slower than LC4 on the CT grammar, and the same speed as

LC3. Averaging over the three test grammars, LC2 is 40% faster than LC3 and 38% faster than LC4.
10either fully left-factored, or partially left-factored using our restricted transformation.



7 Extracting Parses from the Chart

The Leermakers optimization of omitting recognized daughters from items raises the question of how

parses are to be extracted from the chart. The daughters to the left of the dot in an item are often

used for this purpose in item-based methods, including Earley's original algorithm. Graham, Harrison,

and Ruzzo (1980), however, suggest storing with each noninitial edge in the chart a list that includes,

for each derivation of the edge, a pair of pointers to the preceding edges that caused it to be derived.

This provides suÆcient information to extract the parses without additional searching, even without

the daughters to the left of the dot.

In fact, we can do even better than this. For each derivation of a noninitial edge, even in the

Leermakers representation, it is suÆcient to attach to the edge only the mother category and starting

position of the complete edge that was used in the last step of the derivation. Every noninitial edge is

derived by combining a complete edge with an incomplete edge or production. Suppose hA! :�; k; ji

is a derived edge, and we know that the complete edge used in the derivation had category X and

start position i. We then know that the complete edge must have been hX; i; ji, since the complete

edge and the derived edge must have the same end position. We further know that the incomplete

edge (or production) used in the derivation must have been hA ! :X�; k; ii, since that is the only

item that could have combined with the complete edge to produce the derived edge. In this way, for

any complete edge, we can trace back through the chart until we have found all the complete edges

for the daughters that derived it. The back-trace terminates when we reach a derived edge that has

the same start point as the complete edge it was derived from.

8 Comparison to Other Algorithms

We have compared our LC parsers to eÆcient implementations of three other important approaches

to context-free parsing: Cocke-Kasami-Younger (CKY), Earley/Graham-Harrison-Ruzzo (E/GHR),

and generalized LR (GLR) parsing. We include CKY, not because we think it may be the fastest

parsing algorithm, but because it provides a baseline of how well one can do with no top-down �ltering.

Our implementation of E/GHR includes many optimizations not found in the original descriptions of

this approach, including the techniques used to optimize our LC parsers, where applicable. In our

GLR parser we used the same reduction method as Tomita's (1985) original parser, which results in

greater-than-cubic worst-case time complexity, after verifying that a cubic-time version was, in fact,

slower in practice, as Tomita has asserted.

CT Grammar ATIS Grammar PT Grammar
LC2+BUPM 3.1 7.0 27.0
CKY 25.0 7.7 50.9
E/GHR 7.3 8.6 27.7
GLR(0) 3.2 14.0 timed out
LC+follow 2.4 6.6 29.6
GLR(0)+follow 2.3 14.1 timed out
GLALR(1) 3.8 14.7 |

Table 4: Alternative parsing algorithm performance comparisons

Table 4 shows the comparison between these three algorithms, and our best overall LC algorithm.



As the table shows, LC2+BUPM outperforms all of the other algorithms with all three grammars.

While each of the other algorithms approaches our LC parser in at least one of the tests, the LC parser

outperforms each of the others by at least a factor of 2 with at least one of the grammars.

The comparison between LC2+BUPM and GLR is instructive in view of the claims that have

been made for GLR. While GLR(0) was essentially equal in performance to LC2+BUPM on the

least ambiguous grammar, it appears to scale very badly with increasing ambiguity. Moreover, the

parsing tables required by the GLR parser are far larger than for LC2+BUPM. For the CT grammar,

LC2+BUPM requires 27,783 rules in the transformed grammar, plus 210,701 entries in the left-corner

table. For the (original) CT grammar, GLR requires 1,455,918 entries in the LR(0) parsing tables.

The second part of Table 4 shows comparisons of LC2+BUPM and two versions of GLR with look

ahead. The \LC+follow" line is for LC2+BUPM plus an additional �lter on complete edges using a

\follow check" equivalent to the look ahead used by SLR(1) parsing. The \GLR(0)+follow" line adds

the same follow check to the GLR(0) parser. This builds exactly the same edges as a GSLR(1) parser

would, but allows smaller parsing tables at the expense of more table look ups.11 With the follow

check, the parse times for the CT grammar are substantially reduced, but LC2+BUPM and GLR

remain essentially equivalent, while only small changes are produced for the ATIS and PT grammars.

The �nal line gives results for GLALR(1) parsing with the CT and ATIS grammars.12 These results

are not directly comparable to the others because the LALR(1) reduce tables for the CT and ATIS

grammars contained more than 6.1 million and 1.8 million entries, respectively, and they would not �t

in the memory of the test machine along with the other LR tables. Various methods were investigated

to obtain timing results by loading only a subset of the reduce tables suÆcient to handle the test

set. These gave inconsistent results, but in all cases times were longer than for either GLR(0) or

GLR(0)+follow, presumably due to additional overhead caused by the large tables, with relatively

little additional �ltering (5{6% fewer edges). The numbers in the table represent the best results

obtained for each grammar.

CT Grammar ATIS Grammar
LC2+BUPM 1.8 11.7
CKY 15.4 13.7
E/GHR 3.2 12.1
GLR(0) 1.8 17.8
LC+follow 1.4 10.9
GLR(0)+follow 1.3 18.1

Table 5: Results with longer sentences

A �nal set of experiments was performed to address possible concerns that the test sentences in

our other experiments were too short, and that our results would not generalize to longer sentences.

We selected two modi�ed test sets of CT and ATIS sentences. The CT sentences were the 50 longest

sentences covered by our CT grammar in the original CT test set, with an average length of 13.5

words, and an average number of parses of 4.2. The ATIS sentences were the 50 longest sentences

covered by our ATIS grammar in the DARPA ATIS3 development test set, with an average length of

20.5 words, and an average number of parses of 4516. The results for the principal methods compared

11A GSLR(1) reduce table is just the composition of a GLR(0) reduce table and a follow-check table.
12No experiments were done for the PT grammar due to the excessively long time required to compute LALR(1)

parsing tables for that grammar, given the expectation that the parser would still time out.



in our original cross-algorithm experiments are given in Table 5. When compared to the results in

Table 4, the relative performance of the algorithms remains virtually unchanged.

9 Conclusions

Probably the two most signi�cant results of this investigation are the discoveries that:

� LC chart parsing incorporating both a top-down left-corner check on the mother of a proposed

incomplete edge and a bottom-up left-corner check on the symbol immediately to the right of the

dot in the proposed incomplete edge is substantially faster if the bottom-up check is performed

before the top-down check.

� Bottom-up pre�x merging is a particularly good match to LC chart parsing based on left-corner

�ltering, and in fact substantially outperforms left factoring combined with LC chart parsing in

most circumstances.

Moreover we have shown that with these enhancements, LC parsing outperforms several other major

approaches to context-free parsing, including some previously claimed to be the best general context-

free parsing method. We conclude that our improved form of LC parsing may now be the leading

contender for that title.
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