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Heterogeneity in host susceptibility and transmissibility to parasite attack allows a
lower transmission rate to sustain an epidemic than is required in homogeneous host
populations. However, this heterogeneity can leave some hosts with little susceptibility
to disease, and at high transmission rates, epidemic size can be smaller than for diseases
where the host population is homogeneous. In a heterogeneous host population, we
model natural selection in a parasite population where host heterogeneity is exploited
by different strains to varying degrees. This partitioning of the host population allows
coexistence of competing parasite strains, with the heterogeneity-exploiting strains
infecting the more susceptible hosts, in the absence of physiological tradeoffs and
spatial heterogeneity, and even for markedly different transmission rates. In our model,
intermediate-strategy parasites were selected against: should coexistence occur, an
equilibrium is reached where strains occupied only the extreme ends of trait space,
under appropriate conditions selecting for lower R0.
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The ecology and evolution of parasites has important

consequences for wildlife diseases, for diseases of

domesticated animals and crops, and for human health

(Schrag and Wiener 1995). Epidemiological theory

suggests that parasites will evolve to maximise their

basic reproduction number R0 (Anderson and May

1982). In a homogeneously mixed population, this is

defined as ‘‘the average number of secondary infections

produced when one infected individual is introduced into

a wholly susceptible host population at equilibrium’’

(Anderson and May 1991). The assumption of homo-

geneous mixing is an important one, which impacts not

only on R0, but also upon final epidemic size or

equilibrium prevalence (Kiss et al. 2006a). Variation in

host susceptibility and transmissibility constitutes a

departure from this paradigm. Such heterogeneity can

result from physiological differences such as variation

in strength of immune response, or from behavioural

differences producing variation in contact rates amongst

individuals as is typically found in the contact networks

of sexually transmitted infections (STIs; Lloyd-Smith

et al. 2005).

Heterogeneity in susceptibility is frequently encoun-

tered in contact-network models of disease spread

(Yorke et al. 1978, Newman 2002). Populations with

higher heterogeneity in host-host contact rate, provided

there is a positive correlation between susceptibility and

infectiousness, have a lower threshold in the transmis-

sion rate for which an epidemic can occur (May and

Lloyd 2001). Without a correlation between suscept-

ibility and infectiousness, heterogeneity has no effect on

the threshold. However, high heterogeneity implies that

some individuals may be poorly connected and less

easily infected. For high transmission rates, final epi-

demic size found on heterogeneous networks is lower

than that found on homogeneous networks (Kiss et al.

2006a), as is the prevalence for models of endemic

diseases.

Diseases with different transmission strategies will

perceive different patterns of host contact. For example,
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an STI will often perceive a more heterogeneous contact

structure than an aerosol-borne disease (Liljeros et al.

2003). Likewise, it has been suggested that endemic

diseases tend towards lower infectiousness over longer

infectious periods as compared with epidemic diseases

(Frank 1996), thus experiencing a more homogeneous

host environment favouring higher prevalence at the

expense of a higher initial rate of spread. Such a shift to

lower viral replicative fitness may be occurring currently

in HIV-1 (Arien et al. 2005), which, should this be

combined with a longer infectious period, would imply a

relatively increased risk to those in long-term sexual

partnerships (Kao 2006). Similarly, recent changes in the

frequencies of different strains of hepatitis C have been

associated with increased intravenous drug use and

decreased transmission via blood transfusions (Bourlière

et al. 2002, Schröter et al. 2002), demonstrating a

response by the pathogen to changing behavioural

patterns in the host.

The same principles apply for spread of disease

between populations in a metapopulation context.

Foot-and-mouth disease (FMD) is transmitted between

individual farms through varied routes for transmission,

including movement of infected animals, fomites (objects

that can harbour an infectious agent), and long-distance

aerosol spread. Its transmission is highly variable and

different livestock species are differentially susceptible to

different FMD strains (Haydon et al. 2004). Transmis-

sion via aerosol-borne virus, as was important in the

1967 UK epidemic, is unlikely to show high levels of

heterogeneity in the contact structure (Haydon et al.

2004). Infection in the UK in 2001 spread initially

through the highly connected and heterogenous network

of sheep trading movements (Gibbens et al. 2001).

The host population therefore represents, to compet-

ing parasites, a complex structured resource where

individuals are differentially susceptible to different

parasites types or species. Such resource partitioning

has also been shown to promote species coexistence

(Wilson et al. 1999, Bonsall et al. 2002), and host

heterogeneity allows parasite coexistence by providing

‘refuges’ that favour different parasite strains (Li et al.

2003). Thrall and Antonovics (1997) found that patho-

gens with different patterns of host contact can coexist

without spatial or host heterogeneity.

With heritable genetic variation in transmission strat-

egy, parasites might evolve to maximise their evolution-

ary success. Kao (2006) considered the exploitation of

heterogeneity as a heritable trait, and showed that, in a

deterministic setting, selection on the parasite popula-

tion can result in the parasite evolving away from

exploitation of host heterogeneity, even where this

involves a reduction in R0. He showed also that a single

competing strain that exploits heterogeneity and thus

has higher R0 is able to invade, but may itself evolve

towards lower R0.

Here, we consider further the evolution of transmis-

sion strategies through different host contact structures,

with a strain-based model of host-parasite interactions

that allows competition between, and coexistence of

competing multiple strains with different transmission

rates and strategies. This is modelled stochastically

using individual-based simulation and deterministically

through an equivalent set of differential equations. We

consider a heterogeneous host population, subject to

infection by ‘specialist’ parasites that exploit the hetero-

geneity, and ‘generalist’ parasites that do not. We show

that coexistence of parasite strains with different strate-

gies is possible with neither explicit tradeoffs, nor local

spatial structure, but that intermediate-strategy parasites

never persist.

Model

The mean-field model

The model is derived from the well known SIS host-

pathogen model, (discussed by Anderson and May

1991) where individuals are either susceptible or in-

fected, and once recovered are immediately susceptible

again. Alternatively, recovery may represent death

of infected individuals matched by a birth rate sufficient

to keep the population size constant. We assume

complete cross-immunity between parasite types

throughout.

dI

dt
�bSI�gI (1)

Here, S and I are the proportions of susceptible and

infected hosts respectively, such that S�/I�/1, and g
and b are the rates of recovery and infectious contact

per infected individual. The mean infectious period

length is g�1.

In the ecological literature, R0 pertains to the repro-

duction number at any equilibrium (Mylius and

Diekmann 1995); however in the epidemiological litera-

ture, it specifically represents the reproduction number

in an entirely susceptible population (Anderson and

May 1991). Below, we qualify R0 by specifying the

population concerned: R0(x,s) represents the reproduc-

tion number of a parasite x at an equilibrium with s

susceptible individuals available for infection. As a

shorthand, we denote R0 in an entirely susceptible

population simply by R0(x). For the mean field model,

it can easily be shown that in an entirely susceptible

population, R0(MF)�/b/g, and that at equilibrium,

S��
g
b

(2)
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Heterogeneity in host susceptibility

We now consider a heterogeneous host population where

individuals possess an ‘h-state variable’ j (Diekmann

et al. 1990). In the context of an STI, this could represent

the number of sexual contacts an individual has; for a

metapopulation (farm-based) model of FMD, the num-

ber of trading movements made. More generally,

j represents at once the relative infectivity and suscept-

ibility of hosts, assumed completely correlated with

proportionate mixing. The situation where infectivity

and susceptibility are less strongly correlated is consid-

ered in Appendix 1. Under proportionate mixing,

contacts between pairs of individuals are randomly

allocated proportionately to the product of their values

of j. We denote the number distributions of the total

population, susceptible population, and infected popu-

lation as n, s, and i respectively, and the density of

the total population in class a (a �/{s,i,n}) with infectivity

j as aj, where j �/ V and V�/[0,�]. Thus ij�/sj�/nj; and

fVsjdj�S; fVijdj�I and fVnjdj�1: (Therefore,

though we describe s and i as ‘distributions’, they do

not generally sum to one.)

To allow a controlled comparison between models

below, we normalise j such that its expectation is unity:

g V
jnjdj�1

The differential equation model for the SIS model with

heterogeneous transmission is therefore given by the set

of differential equations

dij

dt
�bjsjg V

xixdx�gij; j �V (3)

The population is at equilibrium when for all j,
dij
dt
�0:

Such distributed-parameter SIS models have no general

analytical solution, though they do exist for specific cases

such as the mean-field model (Eq. 1). However, for a

specified distribution n, the unique equilibrium in the

presence of disease can be found through numerical

approximation of this infinite set of equations. The

equilibrium distributions of infected and susceptible hosts

are denoted below by i* and s*, with totals I* and S*.

Heterogeneity in parasite attack

The models presented above (Eq. 1 and 3) are special

cases of the following more general model. Following

Kiss et al. (2006a), we consider the parasite population

to possess a parameter l that determines the degree to

which it exploits host heterogeneity (l �/ [0,1]). This

parameter represents the transmission strategy which

a particular parasite strain adopts. In the context of

FMD, l could represent a sliding scale of strain types,

between strains where aerosol spread is important,

through to strains where pigs are less affected and

aerosol spread lower, but with increased susceptibility

in sheep. Where l�/0, the model is equivalent to

Eq. 3 above, with the parasite able to exploit the full

range of host heterogeneity. For l�/1, parasite trans-

mission is an entirely homogeneous process independent

of the host heterogeneity j, and the model is an

equivalent of the mean-field model Eq. 1. Therefore,

dij

dt
�lb1sjgVixdx�(1�l)b0jsjgVxixdx�gij j�V (4)

where b0 and b1 denote the transmission rate for the fully

heterogeneous (l�/0) and homogeneous (l�/1) trans-

mission mechanisms respectively, assuming a linear

relationship between l and b for intermediate l:

bl�lb1�(1�l)b0 (5)

The equilibrium state for a single strain l, i*(l) can

again be found by numerical solution of this set of

equations. Appendix 1 shows the derivation of R0 for

this general model, the form of which is shown below,

where hani�fVj
najdj:

R0(l; s)�
�
lb1S�(1�l)b0hs2i

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[lb1S�(1�l)b0hs2i]2�4l(1�l)b1b0hs1i2

q �
=2g

(6)

We denote R0 for a particular parasite strain l with a

given distribution of available susceptibles s as R0(l,s),

with shorthand R0(l) for an entirely susceptible popula-

tion (s�/n). For l�/1 and l�/0, Eq. 6 simplifies as

expected: R0(1)�b1

g and R0(0)�b0

g hn2i:

Simulation and equilibria

Introducing a parasite strain l into a population

maintaining an epidemic of a resident parasite strain l̂
(at equilibrium) is analogous to that of introducing

parasite l into the disease-free state. However, though

for the disease-free state the available population of

susceptibles in which l can invade was n, it is now that of

the equilibrium s�( l̂): In general, the equilibrium

population of l̂ can be invaded by l if and only if

R0(l; s�( l̂))�1; and strain l̂ is an evolutionary stable

strategy (ESS) if no other strain l can invade it

(Maynard Smith and Price 1973). However, certain

properties such as positive density dependence (Allee

1931), not included in this model, would invalidate the

assumption that R0�/1 is the global threshold. As a

condition of the equilibrium, R0( l̂; s�( l̂))�1 (Mylius

and Diekmann 1995). If a strain can invade a resi-

dent strain, coexistence may be possible, but where

R0(l; s�( l̂)) for an invading strain is above, but close
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to unity, the invading strain l may reach a small

population size only.

Below, we consider two distributions of hosts n shown

in Table 1. Both distributions have equal �n1��/1 and

equal �n2�. The range of j was made finite with a

possible range V�/(0,10) and divided into 1000 bins to

allow numerical solution of the equations.

The numerical solutions of the Eq. 4 and 6 were

complemented by individual-based simulation allowing

for natural selection of competing parasite strains, using

one of the host population structures from Table 1.

A population size of N�/2000 was used, with g�/1.0.

Each individual was assigned a value of j chosen from

the exponential distribution with mean 1.0 according to

jj�/�/ln(oj) where o represents numbers chosen from a

uniform distribution in the range (0,1). Simulation was

by synchronous updating with a step size of 0.01. Two

parasite population structures are considered: in the

multiple-strain model, parasites of all values of l may

exist across the full range of [0,1], as might be the case

where l is a quantitative trait; in the two-strain model,

only parasites at the two extremes, l�/0 and l�/1 were

allowed, simulating two distinct strains or a one-locus,

two-allele system.

Epidemics were seeded with 100 randomly selected

index cases, each with a value of l to denote the parasite

type infecting them. For the two-strain simulation, half

had l�/0 and half l�/1. Daughter infections inherited l
from their parent infection, with a probability m of

mutation to the other strain each infection event. A

multiple-strain simulation was initialised with each seed’s

value of l chosen randomly from the uniform distribu-

tion over the range [0,1], giving an initial population

containing individuals from a range of strains. Here, for

a daughter case n infected by a case u, ln�/lu�/slo
where sl scales the mutation rate and o is chosen from

the standard normal distribution, subject to the con-

straint 05/lj5/1.

For the individual-based model, transmission between

each possible pair of infected (u) and suspectible (n)

individuals is considered at each time-step, and infection

across each pair occurs at a rate t:

tuv�lu

b1

N
�(1�lu)

b0jujv

N
(7)

Results

Equilibria

Numerical solutions for the equilibrium prevalence

for purely heterogeneous (l�/0), purely homogeneous

(l�/1), and intermediate types of contact are shown in

Fig. 1 for the exponential distribution of j, matching

the result of Kiss et al. (2006a). At b/g:/1.75, equili-

brium prevalence is equal for all the models. Unlike

R0, equilibrium prevalence cannot be determined from

the first and second moments �n1� and �n2�: the

bimodal distribution of j suffers smaller epidemics at

equilibrium than the exponential distribution of j,

despite having both the same transmission rate b and

the same R0(l).

Equilibrium behaviour is shown in Fig. 2 for different

values of b and both distributions of j (Table 1, Eq 6).

Numerical solutions of Eq. 4 for the two-strain model

(Fig. 2a) are shown alongside simulation results for the

two-strain (Fig. 2b) and multiple-strain (Fig. 2c) models

(Eq. 7). In Fig. 2a, regions A and B indicate where only

one strain can cause an epidemic in a completely

susceptible population (R0(l)�/1). However, for mark-

edly different b values, one strain cannot invade the

other when the other is already at equilibrium and

coexistence is not expected: (Regions A [B] and B [A]:

R0(l,s*(1�/l))B/1). Between these regions, both strains

can invade each other when the other strain is at

equilibrium, and thus coexistence is expected (Region

A B). From Eq. 2 and 6, the upper boundary of this

region is b0�n2��/b1. The lower boundary differs

between distributions of j and requires numerical

solution. For the bimodal distribution, equilibrium

prevalence by the heterogeneous-transmission strain at

higher transmission rates is lower than that for the

exponential distribution. Thus, this equilibrium can be

more readily invaded by the homogeneous-transmission

strain, and the region of coexistence is larger.

Figure 2b and 2c show individual-based simulation

results. Coexistence of multiple strains occurs where

Table 1. Distributions of j.

Distribution nj �n2�

Homogeneous model (i.e. l�/1) 1 j�/1
0 j"/1

1

Exponential exp (�/j) 2

Bimodal /
1
2

jj�/1j�/1
2

0 jj�/1j"/1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 1.0 2.0
β / γ

λ=1

λ=1

λ=0

λ=0

I∗

3.0 4.0 5.0

Fig. 1. Plot of I* versus b/g for b0�/b1�/b and an exponential
distribution of j showing the solutions for different l.
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mean l at equilibrium, /l̄, lies between zero and one. The

region where coexistence was found closely matches that

predicted by Eq. 6. No sharp switching in model

behaviour was seen: /l̄ varies smoothly between the

upper and lower boundaries of this region, though the

region itself is smaller for smaller b values.

Results for the multiple-strain simulation (Fig. 2c)

closely resemble those for the two-strain case (Fig. 2b).

This is as a result of the evolution of the strain structure

through time: as the population approaches its equili-

brium configuration, it consists mainly of individuals

with the extreme values of l (zero and one), with a few

intermediate forms produced by random drift inwards

from the extremes. An example of such a time-course for

a simulation is shown in Fig. 3. Intermediate values of l
are never stable strategies, as explained below. The

heterogeneous transmission parasites tended to infect

hosts with higher values of l, similar to the ‘hierarchical

spread’ of disease through well-connected nodes in a

network-based SIR model (Barthélemy et al. 2004, Kiss

et al. 2006b).

Stability

Figure 4 demonstrates that strains with intermediate

values of l will always be invaded by strains with

extreme values of l�/0 and l�/1. This contour plot

shows the values of R0 for each possible strain l
when introduced into a population of hosts at equili-

brium infected by parasites of a second strain l̂; i.e.

R0(l; s�( l̂)): Here, we consider b0/g�/b1/g�/3, repre-

senting a single point on Fig. 1 and 2 within the A B

region of coexistence. By definition, on the diagonal,

R0( l̂; s�( l̂))�1: In the case of the two-strain simula-

tion, only the four corners of the contour plot are

relevant: Both R0(0,s*(1)) and R0(1,s*(0)) exceed 1,

confirming that the two strains may coexist.

For the multiple-strain simulation, the daughter

cases of an individual with strategy l̂ can have a

different strategy l, but the difference ½l� l̂½ is small

and dependent upon the mutation rate sl and its

distribution. Thus, the behaviour of R0(l; s�( l̂)) where

l: l̂ on Fig. 4 is of interest. The upper boundary of

Fig. 4 represents the fitness (R0) of parasites introduced

into a population at equilibrium where all parasites

transmit by the homogeneous route. For all other

strains along this line, R0�/1, and so invasion by

strains with lower l can occur. In individual-based

simulations, invasion of l�/1 by lB/1 was seen when

seeding was entirely at l�/1, evolving towards l�/0,

unless the mutation rate was sufficiently low as to

prevent selection.

The lower boundary of the contour plot represents

the fitness of parasites introduced into a population

at equilibrium where all parasites transmit by the

Fig. 2. Contour plot showing regions of persistence and
coexistence of purely specialist (l�/0) and purely generalist
(l�/1) types. x-axis: b0; y-axis: b1. g�/1. (a) In regions marked
A and B, the generalist and specialist types can spread in
the susceptible population (A: R0(1)�/1; B: R0(0)�/1). Where a
type is indicated in brackets, it cannot spread in a popula-
tion where the other type is at equilibrium (R0(l, s*(1�/l))
B/1) and thus no coexistence is possible. Dotted line: lower
bound of coexistence region for exponential distribution of
j; dashed line: lower bound for bimodal distribution. (b) As in
(a), with overlaid individual-based simulation results for
two-strain model with m�/0.01 and exponential distribu-
tion of j. Points indicate mean population l at equilibrium,

/l̄. Large white symbols: /l̄�/0.9; small black symbols: 0.5B/

/l̄B/0.9; small white symbols: 0.1B//l̄B/0.5; large black
symbols: /l̄B/0.1. (c) Overlaid individual-based simulation
results for multiple-strain model with sl�/0.01. Symbols as
in (b).
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heterogeneous route. Here, for high l, R0(l; s�(l̂))�1;

though this R0 is lower than that encountered at the

opposite corner of the plot. However, a wide fitness

minimum exists for intermediate values of l (dotted line

on Fig. 4) and l�/0 is a local maximum for R0. This

minimum prevents invasion of the heterogeneous

strategy parasites by other strategies except where the

mutation rate is sufficiently high as to allow jumps over

this minimum. In the individual-based simulations, l�/1

individuals were never seen to emerge when seeding was

entirely at l�/0. When seeding was at random across all

l, in most cases the eventual outcome was coexistence at

l�/0 and l�/1.

Monomorphic approximation

Monomorphic approximations of the dynamics of com-

plex evolutionary systems are commonly postulated

(Dieckmann and Law 1996). Assuming divergent time-

scales of evolutionary and population dynamics, a

monomorphic approximation of the evolutionary

dynamics of the model presented above (Eq. 4 and 6)

was made, applying the canonical equation of adaptive

dynamics (Dieckmann and Law 1996):

dl
dt

�ml:
1
1l?

R0(l?; s�(l))j
l?�l

where ml scales the effects of the variability and

heritability of the l trait. An equilibrium exists where
1R0

1l = 0 however, it is only stable for a negative second

derivative: 12R0

1l2 . Values for 1R0

1l are shown in Fig. 5 for

different values of b. For b1�/b0, an unstable equilibrium

at l�/1 is seen. A stable equilibrium here is not expected:

in the individual-based model, the homogeneous strain

was always seen to be invaded by heterogeneous strains.

For lower b0, equilibria do exist for intermediate l, but

these are always unstable. Though the boundaries l�/0

and l�/1 are fixed points in the monomorphic approx-

imation, they are not ESSs in the individual-based

model.

Discussion

Our results show that for a broad range of transmission

rates, parasites that infect hosts through routes with and

without heterogeneity can coexist in the absence of either

life-history tradeoffs as they are usually implied, or local

spatial structure. A form of tradeoff does exist in that

individual transmission rates through the heterogeneous

and homogeneous routes are correlated and depend

upon l. Local spatial structure can affect transmission

rate (Rand et al. 1995, Read and Keeling 2003, van

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1

λ

∂R0
∂λ

1.0

4.0

3.0

2.0

Fig. 5. Monomorphic approximations. Plot 1
1lR0(l,s*(/ l̂)) ver-

sus l for b1/g�/3 throughout at four different values of
b0/g. Arrows indicate the trajectory of dl

dt
for the monomorphic

approximation. Unstable equilibria exist for 1R0

1l �0 (circled).

Fig. 3. Results for a single individual-based model simulation.
Cross section of the distribution of l through time (dark
shading indicated more common strains) for one multiple-strain
simulation starting with l�/0.5 for all infectious individuals. b1/
g�/b0/g�/4, sl�/0.02.
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Fig. 4. Contour plot showing R0(l, s*(/ l̂)) as a function of

l (x-axis) and l̂ (y-axis) for the exponentially distributed
population. A dotted line indicates where the derivative

/
d

dlR0(l, s*(/ l̂))�/0, representing minlR0(l, s*(/ l̂)).
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Ballegooijen and Boerlijst 2004) and may promote

diversity in competing parasites (Buckee et al. 2004).

In its absence, tradeoffs between transmissibility and

other life-history traits similarly limit the evolution of

high transmissibility (Messenger et al. 1999, Kraaijeveld

et al. 2001).

Kao (2006), showed that where the transmission rate

per contact b is fixed, coexistence can occur between

strains that differ in R0(l), but only at the extrema

of exploitation strategies. Here, we show that even

where bl varies between strains, strains with greater

R0(l) do not always win outright in the evolutionary

‘arms race’. This coexistence is possible as the host

population represents a structured resource for the

parasite: though all parasites can possibly infect every

host, certain hosts are more likely to be infected by

certain parasites.

Where b0�n2�B/b1, the heterogeneous transmission

route of infection loses its advantage over the homo-

geneous one and cannot coexist: not only does it

have a lower equilibrium prevalence in the single-strain

model, but also a lower R0(l). Those hosts with high

j are still more readily infected by the heterogeneous

transmission hosts, but they are too few to support an

epidemic. The appendix considers where susceptibility

and infectiousness, though heterogeneous, are uncorre-

lated. Here, there is no advantage to exploiting host

heterogeneity in terms of increased R0 (as demonstrated

in Appendix 1), but the disadvantage due to lower

equilibrium prevalence would remain.

In this model, the relationship across strains between

mean transmission rate bl and l is linear (Eq. 5).

A different functional form here could alter the outcome

of the simulations by either strongly favouring or

disfavouring intermediate types. The intermediate

fitness minimum restricts evolution from low to high l.

Crossing this minimum is slow since the Gaussian

distribution of mutation distances used has compara-

tively short tails, preventing evolution across a fitness

minimum where the population size is small (such

that few random long-distance events will occur) and

sl low. A distribution with wider tails would increase

the likelihood of evolution across the fitness mini-

mum, as would environmental variation in the l
trait, which would lessen selection against unfavourable

genotypes.

Gandon et al. (2001, 2003) show that disease control

strategies (vaccination) can result in evolutionary

changes in the parasite vaccinated against. In our

model, reduction or removal of transmission through

one of the transmission routes will favour selection of

parasites transmitting through the other route. This

flexibility in the parasite would make it more difficult

to eradicate. The model does not allow for evolution in

the host species: it would be expected that there

is selection pressure against higher values of j, in

the absence of any other tradeoffs, which might repre-

sent some either physiological or behavioural change

in the host population. However, Boots and Knell

(2002) suggest that high-risk and low-risk strategies

may coexist in the presence of STDs. Future work could

involve a coevolutionary model with evolution of

this trait.

The branching of an initially similar population

into two populations with different genotypes through

resource partitioning is likely only for asexually re-

producing parasites, as modelled above. Sympatric

speciation here is a possible result. With sex or recombi-

nation, the continual production of intermediate types

would counteract the branching caused by disrup-

tive selection where the population does not mate

assortatively (Doebeli and Dieckmann, 2000). The

evolution of assortative mating would therefore be a

prerequisite for the evolution of divergent transmission

strategies.

Maximising infection rate (i.e. R0) in a susceptible

population has been regarded as a ‘target’ for selection

(Anderson and May 1982). However, parasite strains

with lower transmission rate can evolve where they can

occupy niches left vacant by a resident strain, though

they would appear to have lower R0 when observed

spreading through fully susceptible populations. Æsop

tells of the quick hare who in the long run, lost the race

to the slower tortoise. In parasite populations, the

tortoise may not win, but he can at least achieve a

dignified tie.
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Appendix I

In the following derivation of R0 for the general SIS

model, we adopt the convention hani�fVj
najdj: We

define I as earlier, and J as follows:

I(t)�g V
iada

J(t)�g V
aiada�hi1i:

The derivatives dI/dt and dJ/dt can be obtained from

Eq. 4:

dI

dt
�g V

dia

dt
da

�g V
lb1saIda�g V

(1�l)b0asaJda�g V
giada

dJ

dt
�g V

a
dia

dt
da

�g V
alb1saIda�g V

a(1�l)b0asaJda�g V
agiada

which simplify to give

dI

dt
�I(lb1

S�g)�J((1�l)b0hs1i)

dJ

dt
�I(lb1�s1�)�J((1�l)b0�s2��g):

502 OIKOS 115:3 (2006)



The dominant eigenvalue of the Jacobian matrix of I

and J represents the intrinsic rate of natural increase r of

the infectious population when I0/0. Here, r�/0 repre-

sents the transition from a stable to an unstable disease-

free state. Assuming that R0�/1�/ r/g, then the following

equation for R0 is obtained:

R0(l; s)�
�
lb1S�(1�l)b0hs2i

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lb1S�(1�l)b0hs2i
� �2

�4l(1�l)b1b0hs1i2

q �
=2g

This equation reduces to give the following definitions of

R0 used to generate Fig. 2:

R0(0; s�(1))�
b0

g
hs2i

(8)

R0(1; s�(0))�
b1

g
S: (9)

Consider also the equivalent to Eq. 3 where individuals

have separate infectiousness j and susceptibility w, rather

than a single property determining both. The numbers of

such individuals in class a are then denoted by ajw.

dijw

dt
�bwsjwgg V

xixydxdy�gijw j; w �V

Following the approach above, with

I(t)�gg V

dijw

dt
djdw

J(t)�gg V
jdijw

dt
djdw;

and adopting the convention �f� for the expectation of f

for the susceptible population, we obtain

dI

dt
�Jbgg V

wsjwdjdw�Ig��gI�bhwiJ

dJ

dt
�J

�
bgg V

jwsjwdjdw�g
�
�(bhjwi�g)J

From this, the following expression from R0 can be

obtained from the Jacobian matrix:

R0�
b
g
hjwi:

Where j�/w for all individuals, then Eq. 8 above is

recovered. Where j and w are uncorrelated across

individuals, then �jw��/�j��w��/1 and Eq. 9 is recov-

ered (compare Schwartz et al. 2002). Between these two

extremes, the increase in R0 depends upon the strength

of the correlation.
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