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A computer that issues a rate demand for nil dollars and nil cents (and a notice to

appear in court if you do not pay immediately) is not a maverick machine. It is a re-

spectable and badly programmed computer. . . . Mavericks are machines that embody

theoretical principles or technical inventions which deviate from the mainstream of

computer development, but are nevertheless of value.

—Gordon Pask (1982a, p. 133)

Gordon Pask (1928–1996) is perhaps most widely remembered for his tech-

nical inventions in the field of automated teaching. Less widely appreciated

are the theoretical principles embodied in Pask’s maverick machines. He

described himself as a ‘‘mechanic philosopher’’ (Scott 1980), and building

machines played a central role in the development of a conceptual frame-

work that resulted in two theories later in his career: Conversation Theory

(CT) (Pask 1975) and Interaction of Actors Theory (de Zeeuw 2001). Even

adherents of these theories concede that they are difficult to understand.

Pask wrote over two hundred fifty papers and six books and his prose can

be hard to follow and his diagrams difficult to untangle. B. Scott (1980, p.

328), who collaborated with Pask on CT, characterizes some of Pask’s writ-

ing as ‘‘esoteric, pedantic, obscurantist.’’ R. Glanville (1996), who wrote his

doctorate under Pask’s supervision, admits that CT is ‘‘in many parts very

hard to understand, because of a tendency to present it all, all the time, in

its full complexity.’’ Pask’s presentations were dramatic and furiously paced

and often left the audience baffled. Consequently, ‘‘some dismissed him,

almost with resentment because of their inability to come to terms with

him, but others recognised something both intriguing and important in

what he said and the way that he said it. I myself often found I had lost

the thread of what Gordon was saying, yet strangely he was triggering

thoughts and insights’’ (Elstob 2001, p. 592). The psychologist Richard

Gregory, who was a contemporary of Pask’s at Cambridge, remembers



(2001), ‘‘A conversation with Gordon is (perhaps too frankly) memorable

now as being extraordinarily hard to understand at the time. Or is this just

my inadequacy? He would come out with an oracular statement, such as

‘Life is fire,’ and would defend it against all objection. No doubt it had a

certain truth, but I for one was never quite clear whether he was dealing

in poetry, science, or humour. This ambiguous mixture was a large part of

his charm’’ (p. 686). However, Gregory acknowledges that ‘‘without doubt,

Gordon was driven by genuine insight’’ (p. 685). Heinz von Foerster and

Stafford Beer, who both collaborated closely with Pask, also rated his intel-

lect very highly, describing him as a genius (von Foerster 2001, p. 630; Beer

2001, p. 551).

In this chapter we focus on the early period of Pask’s life, tracing the de-

velopment of his research from his days as a Cambridge undergraduate to

the period in the late 1950s when his work started to have an impact inter-

nationally. We describe three of his maverick machines: Musicolour, a

Figure 8.1

Gordon Pask (c. 1963). Printed with permission of Amanda Heitler.
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sound-actuated interactive light show; SAKI, a keyboard-skill training ma-

chine; and an electrochemical device that grew an ‘‘ear.’’ We assess the

value of these machines, fifty years after they were built, in particular, the

maverick ideas that they embody. We hope this will not only provide a way

in to the challenging Paskian literature for the interested reader, but also

demonstrate that many of Pask’s ideas remain highly relevant for many

current research areas.

School and University

What do we mean by conflict? Basically, that two or more time sequences of compu-

tation, which may have been proceeding in parallel, interact. Instead of remaining

parallel and (by the definition of parallel) separate, they converge in a head-on colli-

sion from which there is no logical-deductive retreat.

—Gordon Pask (1982a, p. 62)

School Years

Pask stood out at Rydal, a Methodist public school in North Wales, where

he was a boarder during the Second World War.1 It was fairly liberal, but

the headmaster, a prominent churchman, had a reputation for severity

and would beat pupils (a common practice in public schools at the time).

Pask’s dress sense distinguished him from his fellow pupils and made him

seem older than he was; he wore: double-breasted business suits and bow

ties, compared to the blazers and gray flannel trousers of his contempo-

raries. It was a style that he kept for the rest of his life (adding an Edwar-

dian cape once he had left school). He was a small and sickly child and

did not excel on the sports field—a very important part of Rydal culture

(the school’s two most famous alumni distinguished themselves as interna-

tional rugby players). He spent his spare time building machines, for exam-

ple, a device to detect rare metals that he tested out in nearby mines. A story

about another one of his inventions, possibly fantasy, circulated through

the school and contributed to Pask’s reputation as a ‘‘mad professor.’’

It was said that at the beginning of the Second World War he sent the

War Office a design for a weapon. After a few months he received a reply

stating that his proposal had been considered and it was thought it

would work, but its effect was too dreadful to be employed against a human

enemy.

Although his were not the usual preoccupations of teenage boys, he was

not disliked, as he had a sense of fun and mischief. As a prank he would
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deflate large numbers of rugby balls that the sports master had inflated and

left outside his room ready for the next day’s sports activities. Pask also

demonstrated his independence by slipping away from school some eve-

nings, catching the train to Liverpool, and returning in the early hours.

He said he was involved in producing stage shows in the city.2 One day

the whole school was summoned to a general assembly, as was always the

case when the headmaster wanted to single out somebody in front of the

school for disciplinary offenses. Nobody knew who the offender was until

his name was announced. Pask’s absence had been discovered the previous

evening and the headmaster publicly berated him. Pask was not cowed and

in fact took offense at his treatment: he stood up and stormed out of the

hall, telling the headmaster, ‘‘I shall speak to my solicitor about this.’’ Ap-

parently he escaped a beating.

Pask did not do national service after Rydal, perhaps because of ill health.

Instead he went to Liverpool Technical College, where he studied geology

and mining. In 1949 he went to Downing College, Cambridge University,

to study medicine. He had a vivid impact on his contemporaries, just as he

had done at school.

Cambridge

At Cambridge Pask read Norbert Wiener’s Cybernetics, which had an ‘‘emo-

tional impact’’ on him (Pask 1966). He had found a field of study that was

broad enough to accommodate his wide range of interests and also com-

bined theory and practice: ‘‘As pure scientists we are concerned with

brain-like artifacts, with evolution, growth and development; with the pro-

cess of thinking and getting to know about the world. Wearing the hat

of applied science, we aim to create . . . the instruments of a new industrial

revolution—control mechanisms that lay their own plans’’ (Pask 1961,

p. 11). Pask met Robin McKinnon-Wood, a physicist, at Cambridge, and

they began to build machines together. It was a relationship that continued

for the rest of their lives. When they graduated they set up System Research

Ltd., a company that sold versions of the machines that they had first

started developing as undergraduates.

Pask also began to investigate statistical phenomena. Cedric Price, the ar-

chitect, knew him as an undergraduate and was roped into some statistical

experiments: ‘‘ ‘It’s simple, just throw these wooden curtain rings as quickly

as possible into the numbered box—which I shall call out. Then do it back-

wards with a mirror, then blindfolded.’ He took my arm and led me into

Jordan’s Yard. I could see that he was not to be trifled with’’ (Price 2001,
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p. 819). This strange-sounding experiment was Pask’s way of generating

different probability distributions in order to predict the enlistment num-

bers for the RAF in the year 2000.

Stationary and Nonstationary Systems

A broad distinction that can be drawn about the statistics of a series of

events is whether they are stationary or nonstationary. A scientist observing

the behavior of a system over time might identify some regularities, for ex-

ample, if the system is in state A, it goes to state B 80 percent of the time

and to state C 20 percent of the time. If this behavior sequence is invariant

over a large number of observations of the same system, or an ensemble of

similar systems, then an observer can infer that statistically the system is

stationary. The observed properties are time-independent, that is, various

statistical measures, such as the mean and standard deviation, remain

invariant over time. Therefore, given the occurrence of A we can be confi-

dent about the probability of B or C following, irrespective of what time we

observe A.

Nonstationary systems do not display this statistical invariance; there are

time-dependent changes in their statistical properties, and the relationship

between A, B, and C can change. Human behavior, for example, is often

nonstationary, as was dramatically demonstrated by Pask when he was

studying medicine. He would get through anatomy tests by memorizing

footnotes from Gray’s Anatomy; by dazzling on some arcane anatomical

details he usually managed to cast shadows over the holes in his knowl-

edge. But on occasion he got found out. Gregory (2001) recalls an anatomy

exam where Pask was asked to dissect an arm. One might predict, having

observed the behavior of other anatomy students, that he would use a scal-

pel. Instead, he used a fire axe, smashing a glass dissecting table in the pro-

cess. Unsurprisingly, Pask graduated from Cambridge in physiology, rather

than medicine.

Learning provides less dramatic examples of nonstationary behavior. We

can measure the skill of a novice at performing some skill, for example,

typing, by recording the person’s average response time and error rate. As

the novice practices, his skills will improve, and although his performance

might be stationary for periods of time, it will also show discontinuities

as it improves. Dealing with nonstationary systems is a challenge, as their

behavior is difficult to characterise. Pask started developing two learning

machines while he was an undergraduate and developed a mechanical and

Gordon Pask and His Maverick Machines 189



theoretical approach to dealing with nonstationary systems. In the next

two sections we describe these machines in detail.

Musicolour

Man is prone to seek novelty in his environment and, having found a novel situa-

tion, to learn how to control it.

—Gordon Pask (1971, p. 76)

Pask built the first Musicolour system, a sound-actuated interactive light

show, in 1953. Over the next four years, Pask, McKinnon-Wood, their

wives, and a number of other individuals were involved in its development

(Pask 1971). Pask’s initial motivation for building the system was an inter-

est in synesthesia and the question of whether a machine could learn

relations between sounds and visual patterns and in doing so enhance a

musical performance. From the outset, Musicolour was designed to cooper-

ate with human performers, rather than autonomously generate ‘‘aestheti-

cally valuable output’’ (Pask 1962, p. 135). The way musicians interacted

with the system quickly became the main focus of research and develop-

ment: the performer ‘‘trained the machine and it played a game with him.

In this sense, the system acted as an extension of the performer with which

he could co-operate to achieve effects that he could not achieve on his

own. Consequently, the learning mechanism was extended and the ma-

chine itself became reformulated as a game player capable of habituating

at several levels to the performer’s gambits’’ (Pask 1971, p. 78).

How Does Musicolour Work? The sounds made by the musicians are

relayed to the system via a microphone and amplifier. A bank of filters

then analyze various aspects of the sound (see figure 8.2; the system had

up to eight filters, but five are shown). An early system just used band-pass

filters, but in later systems there were also filters that analyzed attack and

rhythm. Each of the filters has a parameter that can take one of eight pre-

specified values. These values determine the frequency range of the band-

pass filters and delays in the attack and rhythm filters.

The output from each filter is averaged over a short period, rectified, and

passed through an associated adaptive threshold device (figure 8.2). If the

input exceeds a threshold value, the output is 1, otherwise it is 0. These

devices adapt their threshold to the mean value of the input, habituating

to repetitive input, for example a continuous sound in a particular pitch

band, and outputting 0. The outputs from the adaptive threshold devices
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determine when a selection is made from the available visual patterns by

controlling dimmers connected to the lights.

The values of the filter parameters determine what visual pattern is

selected by controlling a servo-positioned pattern or color wheel (see figure

8.3). The particular parameter values are selected on the basis of how differ-

ent the output of the filter’s associated adaptive threshold device is, com-

pared to the other filter’s thresholded outputs, and how long it is since a

particular value has been selected. The selection strategy aims to increase

the novelty of the filter outputs and to ensure that all of the parameter

values are sampled.3

If the input to Musicolour is repetitive, it habituates and adjusts its filter

parameter values in an attempt to generate more variety in the light pat-

terns. If there is no input, the system becomes increasingly sensitive to

Figure 8.3

A servo-positioned pattern wheel used in Musicolour. From Pask (1971). Reprinted

with permission of Jasia Reichardt.
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any sound in the environment and a gain control prevents this from dis-

rupting the system too much.

Was It a Success? Musicolour was found to be ‘‘eminently trainable’’ (Pask

1971, p. 80). Performers were able to accentuate properties of the music

and reinforce audio-visual correlations that they liked (for example, high

notes with a particular visual pattern). Once performers became familiar

with the filter-value selection strategy of the machine, they were able to es-

tablish time-dependent patterns in the system and reinforce correlations

between groups of musical properties. It is important to note that there

was no fixed mappings between sounds and lights: these were developed

through the interaction of the musicians with Musicolour. There is recip-

rocal feedback between Musicolour and the performers: ‘‘The machine is

designed to entrain the performer and to couple him into the system’’

(Pask 1971, p. 80). From the performer’s perspective, ‘‘training becomes a

matter of persuading the machine to adopt a visual style that fits the

mood of his performance,’’ and when the interaction has developed to

this level ‘‘the performer conceives the machine as an extension of him-

self’’ (p. 86). Pask did some ‘‘rough and ready’’ studies of how visual pat-

terns affect performance, finding that short sequences of visual events

acted as releaser stimuli (p. 86).4 It was also found that once a stable coor-

dinated interaction had been established, it was robust to a certain level of

arbitrary disturbances.

Musicolour developed from a small prototype machine that was tested at

parties and in small venues to a large system that toured larger venues in

the north of England and required two vans to transport the equipment

and five people to set it up. After this tour, Musicolour was used in a theat-

rical performance at the Boltons Theatre in 1955, where it was combined

with marionettes in a show called Moon Music. Musicolour and puppets

were ‘‘unhappy bedfellows,’’ and after a week of technical problems, the

stage manager left and the show closed (Pask 1971, p. 81). With Jone Parry,

the music director for Musicolour, Pask and McKinnon-Wood then used

the month’s paid-up rental on the theater to develop the musical potential

of the system, and the show became a concert performance. Subsequently,

Pask developed a work, Nocturne, in which he attempted to get dancers

interacting with Musicolour. This was technically challenging, but Pask

thought it showed some artistic potential.

The Musicolour project began to fall into debt and Pask explored differ-

ent ways of generating income, ranging from adapting it for juke boxes
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(then at the height of their popularity) to marketing it as an art form. Bank-

ruptcy was avoided by a regular gig at Churchill’s Club in London (and by

Cecil Landau becoming a partner in the business). People participated in

the system by dancing, responding to the music and light show. After a

year Musicolour moved to another club, the Locarno in Streatham, Lon-

don, a large ballroom with a capacity of several thousand as well as a huge

lighting rig (120 kW), which Musicolour modulated. This cavernous envi-

ronment was not conducive to audience participation as there were too

many other visual elements, such as exit signs, that distracted dancers

from the visual display. Churchill’s Club had been more intimate, and

Musicolour had integrated with the space. Pask (1971) says that Landau

‘‘was prone to regard an archway across the middle of the night-club as a

surrogate proscenium and everything beyond it a stage’’ (pp. 87–88). In

larger, commercially viable spaces, Musicolour became just ‘‘another fancy

lighting effect’’ and it ‘‘was difficult or impossible to make genuine use of

the system’’ (p. 88). In 1957, after a final performance at a ball in London,

Musicolour was shelved and Pask and McKinnon-Wood concentrated on

the commercial development of their teaching machines.

SAKI

Teaching is control over the acquisition of a skill.

—Gordon Pask (1961, p. 88)

In 1956, Pask, his wife, Elizabeth, and Robin McKinnon-Wood applied for a

patent for an ‘‘Apparatus for Assisting an Operator in Performing a Skill.’’5

This patent covers a wide range of teaching machines built along cyber-

netic principles, including SAKI (self-adaptive keyboard instructor), which

Stafford Beer (1959, p. 123) described as ‘‘possibly the first truly cybernetic

device (in the full sense) to rise above the status of a ‘toy’ and reach the

market as a useful machine.’’ SAKI trains people to operate a Hollerith

key punch (see figure 8.4), a device that punches holes in cards used for

data processing.6 By pressing keys the operator makes holes in selected col-

umns on the cards to encode data in a form that can be read by a card

reader and stored in computer memory. The Hollerith keyboard was

designed to be operated with one hand and had twelve keys: 0 to 9, an X,

and a top key. One digit can be entered per column by pressing the corre-

sponding key. Alphabetic characters are entered by punching two holes in

the same column: the top key and 1 to 9 for A to I, the X key and 1 to 9 for

J to R, and 0 and 1 to 9 for S to Z. Up until the 1970s the key punch was
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a common form of data entry and there was a large demand for skilled

operators.

One challenge in automating teaching is to ensure that a student’s

interest is sustained: ‘‘Ideally the task he is set at each stage should be suffi-

ciently difficult to maintain his interest and to create a competitive situa-

tion yet never so complex that it becomes incomprehensible. A private

tutor in conversation with his pupil seeks, in fact, to maintain this state

which is not unlike a game situation’’ (Pask, McKinnon-Wood, and Pask

1961, p. 32). It requires that the tutor respond to the particular character-

istics of a pupil. A multitude of factors determine a person’s skill level (pre-

vious experience, motor coordination, level of tiredness) and some of these

factors will change as a result of the learning process. Pask’s novel approach

was to build teaching machines that construct a continuously changing

probabilistic model of how a particular operator performs a skill. Further-

more, the machines do not force an operator to perform in a particular

way; operators are ‘‘minimally constrained by corrective information’’ in

order to provide the ‘‘growth maximising conditions which allow the

human operator as much freedom to adopt his own preferred conceptual

structure’’ (p. 33). By adapting the task on the basis of a dynamic, probabil-

istic model of the operator, SAKI teaches in a way that responds to stu-

dents’ (non-stationary) individual characteristics and holds their interest.

Figure 8.4

SAKI (self-adaptive keyboard instructor). Image taken from Plate II, Gordan Pask

(1960) An Approach to Cybernetics, Harper and Brothers, with kind permission of

Springer Science and Business Media.
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How Does SAKI Work? The operator sits in front of a display unit (see fig-

ure 8.4) that presents the exercise material (four lines of twenty-four alpha-

numeric characters to be punched) and cueing lights, arranged in the same

spatial layout as the keyboard, that indicate which key, or key sequence, to

press on the key punch. Initially the operator works through all four exer-

cise lines. Starting with the first line, items are randomly presented at a

slow, uniform rate and the cueing lights are bright and stay on for a rela-

tively long period of time. The operator’s response time for each item is

stored in the ‘‘computing unit.’’ This consists of a series of capacitors that

are charged from the moment an operator makes a correct response until

the next item is presented: the faster a correct response is, the higher the

charge stored. When all four exercise lines have been completed correctly,

SAKI has a preliminary analogue ‘‘model’’ of the operator’s key-punch skills

for every item in the four exercise lines, stored as charges on the series of

capacitors.

The exercise line for which the operator has the slowest average response

time is then repeated. The capacitors drive valves, which determine how

the individual items in this exercise are presented to the operator—

specifically, the available response time and the clarity of the cueing lights

(their brightness and duration). In a prototype design, Pask uniformly

varied the difficulty of the items according to average performance on an

exercise line. However, it was found that uniformly increasing the diffi-

culty of all the items in the exercise results in oscillations in an operator’s

performance—the task alternating between being too difficult and being

too easy (Pask, McKinnon-Wood, and Pask 1961). The computing unit

therefore individually varies the difficulty of each item in an exercise line

so as to better match the performance of the operator. For example, it

increases the difficulty of items where the operator has performed relatively

successfully by reducing the cue information as well as the available re-

sponse time. The reduction in available response time also reduces the

maximum charge that can be stored on the associated capacitor. As the

operator’s skill on an item increases, the cueing information reduces, until

finally there is only an indication of the alphanumeric character that has to

be punched. This reduction in cueing information initially increases the

likelihood that the operator will make a mistake. SAKI responds by reintro-

ducing the visual cues and extending the available response time. Opera-

tors using SAKI show plateaus in their learning curves, but can ultimately

reach a final stable state where there is no visual cueing information and

an equal distribution of available response times for all items in an exercise
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line (Pask 1961). That is, they punch each key with equal proficiency. To

maintain this level, the operator has to consistently perform a sequence of

key punches at or below predetermined error and response rates.

Beer (1959) describes his experience of using a version of SAKI in Cyber-

netics and Management (pp. 124–25):

You are confronted with a punch: it has blank keys, for this is a ‘‘touch typing’’ skill.

Before you, connected to the punch, is Pask’s machine. Visible on it is a little win-

dow, and an array of red lights arranged like the punch’s keyboard. The figure ‘‘7’’

appears in the window. This is an instruction to you to press the ‘‘7’’ key. But you

do not know which it is. Look at the array of lights. One is shining brightly: it gives

you the position of the ‘‘7’’ key, which you now find and press. Another number

appears in the window, another red light shines and so on. Gradually you become

aware of the position of the figures on the keyboard, and therefore you become faster

in your reactions. Meanwhile, the machine is measuring your responses, and build-

ing its own probabilistic model of your learning process. That ‘‘7,’’ for instance, you

now go to straight away. But the ‘‘3,’’ for some obscure reason, always seems to elude

you. The machine has detected this, and has built the facts into its model. And now,

the outcome is being fed back to you. Numbers with which you have difficulty come

up with increasing frequency in the otherwise random presentation of digits. They

come up more slowly, too, as if to say: ‘‘Now take your time.’’ The numbers you

find easy, on the contrary, come up much faster: the speed with which each number

is thrown at you is a function of the state of your learning. So also is the red-light

system. For as you learn where the ‘‘7’’ is, so does the red-light clue gradually fade.

The teacher gives you less and less prompting. Before long, if you continue to im-

prove on ‘‘7,’’ the clue light for ‘‘7’’ will not come on at all. It was getting fainter

on ‘‘5,’’ for you were getting to know that position. But now you have had a relapse:

‘‘5’’ is eluding you altogether. Your teacher notes your fresh mistakes. ‘‘5’’ is put be-

fore you with renewed deliberation, slowly; and the red light comes back again,

brightly. . . . So the teaching continues. You pay little intellectual attention: you relax.

The information circuit of this system of you-plus-machine flows through the diodes

and condensers of the machine, through the punch, through your sensory nerves and

back through your motor nerves, the punch, the machine. Feedback is constantly

adjusting all the variables to reach a desired goal. In short, you are being conditioned.

Soon the machine will abandon single digits as the target, and substitute short runs of

digits, then longer runs. You know where all the keys are now; what you have to

learn next are the patterns of successive keys, the rhythms of your own fingers.

Was It a Success? Beer began as a complete novice and within forty-five

minutes he was punching at the rate of eight keys per second.7 It seems

likely that he was just doing single-key exercises, rather than key combina-

tions. Generally, SAKI could train a novice key-punch operator to expert
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level (between seven thousand and ten thousand key depressions per hour)

in four to six weeks if they completed two thirty-five-minute training ses-

sions every working day. A conservative estimate of the reduction in train-

ing time, compared to other methods, was between 30 and 50 percent

(Pask 1982b).

SAKI deals with incomplete knowledge about the characteristics of indi-

vidual operators and how they learn by taking the cybernetic approach of

treating them as a ‘‘black box’’—a nonstationary system about which we

have limited knowledge. In order to match the characteristics of the opera-

tor, the computing unit is also treated as a black box that builds a probabil-

istic, nonstationary analogue of the relation between itself and the operator

through a process of interaction. The overall goal is to find a stable relation

between the user and SAKI, with the additional constraint that the operator

meets a prespecified performance level defined in terms of speed and accu-

racy of key punching. Pask summarizes this design methodology: ‘‘a pair of

inherently unmeasurable, non-stationary systems, are coupled to produce

an inherently measurable stationary system’’ (Pask 1961, p. 98). SAKI

found the appropriate balance between challenging exercises and boredom:

‘‘Interest is maintained, and an almost hypnotic relationship has been

observed, even with quite simple jobs’’ (Pask, McKinnon-Wood, and Pask

1961, p. 36). In 1961 the rights to sell SAKI were bought by Cybernetic

Developments and fifty machines were leased or sold, although one unfore-

seen difficulty was getting purchasers to use SAKI as a training machine,

rather than as a status symbol (Pask 1982b). SAKI was a very effective key-

punch trainer but a limited financial success.

Summary of Musicolour and SAKI

Pask described Musicolour as ‘‘the first coherence-based hybrid control

computer’’ where a nonstationary environment was tightly coupled with a

nonstationary controller and the goal was to reach stability, or coherence,

through reciprocal feedback (Pask 1982a, p. 144). He describes it as ‘‘hy-

brid’’ because rather than executing a program, it adapted on a trial-and-

error basis. SAKI differs from Musicolour in that for commercial reasons

there was also a performance constraint driving the activity. There were

no such constraints on how Musicolour and musicians reached stable

cycles of activity, the search for stability being an end in itself. Interest-

ingly, having observed people interacting with both systems, Pask con-

cluded (1961) that people are motivated by the desire to reach a stable

interaction with the machines, rather than to reach any particular perfor-

mance goal: ‘‘After looking at the way people behave, I believe they aim
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for the non-numerical payoff of achieving some desired stable relationship

with the machine’’ (p. 94).

Both Musicolour and SAKI are constructed from conventional hardware

components (capacitors, valves, and so forth), but it is difficult to function-

ally separate the machines from their environments, as they are so tightly

coupled. However, Pask wanted to develop organic machines that were built

from materials that develop their functions over time, rather than being

specified by a design. An organic controller differs from Musicolour and

SAKI by not being limited to interacting with the environment through

designer-specified channels (such as keyboards and microphones): it

‘‘determines its relation to the surroundings. It determines an appropriate

mode of interaction, for example, it learns the best and not necessarily

invariant sensory inputs to accept as being events’’ (Pask 1959, p. 162).

The next sections describe the collaboration between Pask and Stafford Beer

as they explored how to build such radically unconventional machines.

Pask as an Independent Cybernetic Researcher

Stafford Beer (1926–2002) and Pask met in the early 1950s and they collab-

orated for the rest of the decade. They were ‘‘both extremely conscious of

the pioneering work being done in the USA in the emerging topic that Nor-

bert Wiener had named cybernetics, and knew of everyone in the UK who

was interested as well’’ (Beer 2001, p. 551). Both men were ambitious and

wanted to make an impact in the field of cybernetics. They were particu-

larly interested in W. Ross Ashby’s work on ultrastability (Ashby 1952)

and the question of how machines could adapt to disturbances that had

not been envisaged by their designer. Beer was working for United Steel,

doing operations research, and had persuaded the company to set up a

cybernetics research group in Sheffield. Pask was developing learning

machines and trying to market them commercially. They grew close as

they both faced similar challenges in trying to persuade the business world

of the value of their cybernetic approach. They also shared a deep interest

in investigating the suitability of different ‘‘fabrics,’’ or media, as substrates

for building self-organizing machines:

If systems of this kind are to be used for amplifying intelligence, or for ‘breeding’

other systems more highly developed than they are themselves, a fixed circuitry is a

liability. Instead, we seek a fabric that is inherently self-organizing, on which to super-

impose (as a signal on a carrier wave) the particular cybernetic functions that we seek

to model. Or, to take another image, we seek to constrain a high-variety fabric rather

than to fabricate one by blueprint (Beer 1994, p. 25).
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The ‘‘high-variety’’ criterion came from Ashby’s argument that a controller

can only control an environment if it has variety in its states greater or

equal to the variety in the disturbances on its inputs.8 Another requirement

for a suitable fabric was that its behavior could be effectively coupled to

another system.

The Search for a Fabric

Both Beer and Pask investigated a wide range of media for their suitability

as high-variety fabrics. From the outset, Beer rejected electrical and elec-

tronic systems as they had to be designed in detail and their functions,

well specified, and this inevitably constrained their variety. Instead, he

turned to animals.

In 1956 Beer had set up games that enabled children to solve simultane-

ous equations, even though they were not aware they were doing so. Their

moves in the game generated feedback in the form of colored lights that

guided their future moves. He then tried using groups of mice, with cheese

as the reward, and even tried to develop a simple mouse language. Beer

considered the theoretical potential of other vertebrates (rats and pigeons)

and, with Pask, social insects, but no experiments were carried out using

these animals.

Beer then investigated groups of Daphnia, a freshwater crustacean. He

added iron filings to the tank, which were eaten by the animals. Electro-

magnets were used to couple the tank with the environment (the experi-

menter). Beer could change the properties of magnetic fields, which in

turn effected changes in the electrical characteristics of the colony. Initially

this approach seemed to have potential, as the colony ‘‘retains stochastic

freedom within the pattern generally imposed—a necessary condition in

this kind of evolving machine; it is also self-perpetuating, and self-

repairing, as a good fabric should be’’ (Beer 1994, p. 29). However, not all

of the iron filings were ingested by the crustaceans and eventually the

behavior of the colony was disrupted by an excess of magnets in the water.

Beer then tried using a protozoan, Euglena, keeping millions of them in a

tank of water, which he likened to a ‘‘biological gas’’ (Beer 1994, p. 30).

These amoebae photosynthesize in water and are sensitive to light, their

phototropism reversing when light levels reach a critical value. If there is

sufficient light they reproduce by binary fission; if there is a prolonged ab-

sence of light they lose chlorophyll and live off organic matter. The amoe-

bae interact with each other by competing for nutrients, blocking light and

generating waste products. Although the green water was a ‘‘staggering

source of high variety’’ and it was possible to couple to the system (using a
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point source of light as an input and a photoreceptor to measure the be-

havioral output), the amoebae had ‘‘a distressing tendency to lie doggo,

and attempts to isolate a more motile strain failed’’ (Beer 1994, p. 31). Beer

started to experiment with pond ecosystems kept in large tanks, thinking

that his single-species experiments were not ecologically stable. He coupled

the tank and the wider world in the same way as he had done in the

Euglena experiments, using a light and photoreceptors. However, it proved

difficult to get this system to work as a control system—the feedback to the

environment was too ambiguous. ‘‘The state of the research at the moment

is that I tinker with this tank from time to time in the middle of the night.

My main obsession at the moment is at the level of the philosophy of

science. All this thinking is, perhaps, some kind of breakthrough; but what

about an equivalent breakthrough in experimental method? Do we really

know how to experiment with black boxes of abnormally high varieties?’’

(Beer 1994, p. 31). The first experimental breakthrough came during one

of his visits to Pask.

Growing an Ear

Although based in Sheffield, Beer would regularly go down to London and

work most of the night with Pask.9 In 1956 or ’57, he had ‘‘the most impor-

tant and indeed exciting of my personal recollections of working with Gor-

don’’ (Beer 2001, p. 553): the night they grew an electrochemical ear. Pask

had been experimenting with electrochemical systems consisting of a num-

ber of small platinum electrodes inserted in a dish of ferrous sulphate solu-

tion and connected to a current-limited electrical source. Metallic iron

threads tend to form between electrodes where maximum lines of current

are flowing. These metallic threads have a low resistance relative to the

solution and so current will tend to flow down them if the electrical activa-

tion is repeated. Consequently, the potentials at the electrodes are modified

by the formation of threads. If no current passes through a thread, then it

tends to dissolve back into the acidic solution. Metallic threads develop as

the result of two opposing processes: one that builds threads out of ions on

relatively negative electrodes; and one that dissolves threads back into ions.

The trial-and-error process of thread development is also constrained by the

concurrent development of neighboring threads and also by previously

developed structures. Slender branches extend from a thread in many direc-

tions and most of these dissolve, except for the one following the path of

maximum current. If there is an ambiguous path then a thread can bifur-

cate. As the total current entering the system is restricted, threads compete

for resources. However, when there are a number of neighboring unstable
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structures, the threads can amalgamate and form one cooperative struc-

ture. Over time a network of threads literally grows dynamically stable

structures.

These electrochemical systems display an elementary form of learning. If

a stable network of threads is grown and then the current to the electrodes

is redistributed, a new network will slowly start to form. If the current is

then set to the original distribution, the network tends to regrow its initial

structure. The longer a network has been stably growing, the slower it

breaks down when the current distribution changes, and the quicker it

returns to its original structure when the current distribution is reset.

Beer vividly remembers the night that he and Pask carried out the elec-

trochemical experiments that resulted in an ear (Beer 2001, pp. 554–55).

They were discussing Ashby’s concept of ultrastability and the ability of

machines to adapt to unexpected changes—changes that had not been

specified by their designer. Pask had recently been placing barriers in the

electrochemical dishes and the threads had grown over them—they had

adapted to unexpected changes in their environment. That night they did

some experiments to see how the threads would respond to damage by

chopping out sections of some of the threads. When current was applied

to the system the threads regrew, the gap moving from the anode to the

cathode until it was gone.

Although excited by this result, they thought that these were relatively

trivial disturbances. They wanted to perform an experiment to investigate

whether a thread network could adapt to more radical, unexpected dis-

ruption. ‘‘We fell to discussing the limiting framework of ultrastability.

Suddenly Gordon said something like, ‘Suppose that it were a survival re-

quirement that this thing should learn to respond to sound? If there were

no way in which this ‘meant’ anything, it would be equivalent to your

being shot. But this cell is liquid, and in principle sound waves could affect

it. It’s like your being able to accommodate to a slap, rather than a bullet.

We need to see whether the cell can learn to reinforce successful behaviour

by responding to the volume of sound.’ . . . It sounded like an ideal critical

experiment’’ (Beer 2001, p. 555).

Beer cannot remember the exact details of how they rewarded the sys-

tem.10 However, it did not require any major changes to the experimental

setup. They basically connected one, or more, of the electrodes with output

devices that enabled them to measure the electrical response of the electro-

chemical system to sound. The reward consisted of an increase in the cur-

rent supply, a form of positive reinforcement. Regardless of how the
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electrodes are configured, the electrochemical system will tend to develop a

thread structure that leads to current flowing in such a way that it is

rewarded further. Importantly, the reward is simply an increased capacity

for growth—there is no specification of what form the growth should take.

The electrochemical system is not just electrically connected to the exter-

nal world: threads are also sensitive to environmental perturbations such as

vibrations, temperature, chemical environment, and magnetic fields. Any

of these arbitrary disturbances can be characterized as a stimulus for the

system, especially if they cause a change in current supply. ‘‘And so it was

that two very tired young men trailed a microphone down into Baker Street

from the upstairs window, and picked up the random noise of dawn traffic

in the street. I was leaning out of the window, while Gordon studied the

cell. ‘It’s growing an ear,’ he said solemnly (ipsissima verba [the very

words])’’ (Beer 2001, p. 555).

Pask (1959) describes further experiments that were carried out where a

thread network was grown that initially responded to 50 Hz and then,

with further training, could discriminate between this tone and 100 Hz.

He was also able to grow a system that could detect magnetism and one

that was sensitive to pH differences. In each case the electrochemical sys-

tem responded to positive reinforcement by growing a sensor that he had

not specified in advance. Beer is clear why he and Pask thought this exper-

iment was significant: ‘‘This was the first demonstration either of us had

seen of an artificial system’s potential to recognize a filter which would be

conducive to its own survival and to incorporate that filter into its own

organization. It could well have been the first device ever to do this, and

no-one has ever mentioned another in my hearing’’ (Beer 2001, p. 555).

Pask (1959, p. 262) argues that the electrochemical ear is a maverick

device, as it shows the distinction between

the sort of machine that is made out of known bits and pieces, such as a

computer . . . and a machine which consists of a possibly unlimited number of com-

ponents such that the function of these components is not defined beforehand.

In other words, these ‘components’ are simply ‘building material’ which can be

assembled in a variety of ways to make different entities. In particular the designer

need not specify the set of possible entities.

Importantly, electrochemical systems, although finite, ‘‘are rendered non-

bounded by the interesting condition that they can alter their own rele-

vance criteria, and in particular, by the expedient of building sense organs,

can alter their relationship to the environment according to whether or not

a trial relationship is rewarded’’ (p. 262).
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The Value of Gordon Pask

Ideas that were dear to Gordon all that time ago, on interactive circuits with dynamic

growth, are coming back in the form of neural nets, with parallel processing in digi-

tal computers and also analogue systems. My bet is that analogue self-adapting nets

will take over as models of brain function—because this is very likely how the brain

works—though AI may continue on its course of number crunching and digital com-

puting. Surely this is alien to the brain. So we would fail the Turing Test, being too

good at pattern recognition, and much too poor at arithmetic compared with digital

computers. In short, the kind of philosophy that Gordon nurtured does seem to be

returning. Perhaps his learning machines have lessons for us now.

—Richard Gregory (2001, pp. 686–87)

The naive picture of scientific knowledge acquisition is one of posing in-

creasingly sophisticated questions to nature. But, of course, such questions,

and therefore the knowledge obtained from them, are never pure, unaf-

fected by the questioners’ ulterior motives, or unconstrained by technolog-

ical and conceptual barriers. Science manifests itself as a social and cultural

activity through subtle factors such as concept management, theory cre-

ation, and choice of what problems to focus on. It is far from being passive

observation followed by rational reflection. It is active. But even in this pic-

ture, experimental data, the source of scientific information to a commu-

nity of researchers, is still seen as the detached, passive observation of

nature at work. Observer intervention (today most apparent in quantum

measurement or the behavioral and cognitive sciences) is often treated as a

problem we would wish to minimize if we cannot eliminate.

Pask’s approach goes against this view. For him, not only can we gain

new understanding by actively constructing artefacts instead of just

observing nature, we can also increase our knowledge by engaging in an

interaction with them. Pask’s design methodology can be characterized as

‘‘meeting nature half way’’: accepting that we have limited, incomplete

knowledge about many systems we want to understand and treating them

as black boxes. By interacting with these systems we can constrain them,

and ourselves, and develop a stable interaction that is amenable to analysis.

For him, both the construction and the interaction become a necessity if

we wish to understand complex phenomena such as life, autonomy, and

intelligence.

Let us consider construction. The first thing that must be clarified is that

Pask, and nowadays some of current research in AI and robotics, is not sim-

ply proposing that technology and science interact, often in a positive, mu-
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tually enhancing manner. The construction he refers to is not that of more

sophisticated artefacts for measuring natural phenomena or the construc-

tion of a device that models natural phenomena by proxy, but the con-

struction of a proper object of study, in other words, the synthesis of a

scientific problem in itself. This idea is radical—fraught with pitfalls and

subject to immediate objections. Why create problems deliberately? Are

we not just using our existing knowledge to guide the creation of an arte-

fact? Then, how do we expect to gain any new knowledge out of it?

Indeed, the idea seems not just a minefield of methodological issues;

it seems absurd and a nonstarter, at most a recipe for useful pedagogical

devices, toy problems for scientific training, but not the stuff of proper

science. To answer these criticisms it is necessary to demonstrate not only

that interesting artefacts can be constructed that will grasp the attention of

scientists but also that we can do science with them, that they can advance

our understanding of a problem.

It is clear, in relation to one of the objections above, that if by construc-

tion we mean the full specification of every aspect of our artefact and every

aspect of its relation to its environment, then little new knowledge can be

expected from it, except perhaps the knowledge that confirms that our

ideas about how to build such an artefact were or weren’t correct. This is

traditional engineering, which of course is a source for that kind of knowl-

edge. But what if the construction proceeds not by a full specification of

the artefact but by the design of some broad constraints on processes that

lead to increased organization, the result of which—with some good

probability—is the artefact we are after? Now, if we succeed in this task,

the workings of such a system are not fully known to us. It may surprise

us. It may challenge our preconceptions by instantiating a new way of solv-

ing a problem. Or, more subtly, it may make us revise the meaning of our

scientific terms and the coherence of our theories.

Is such an underspecified synthesis possible? Yes, it is. It was for Pask, as

he demonstrated with his maverick machines (most dramatically with the

electrochemical ‘‘ear’’) and it is common currency in biologically inspired

AI (self-organizing optimization algorithms, evolutionary robotics, stochas-

tic search, and so forth). Hardware evolution, which uses genetic algo-

rithms to constrain reconfigurable devices such as field-programmable gate

arrays (FPGAs), also provides striking examples of how relaxing conven-

tional engineering constraints (such as a central clock) can lead to the

invention of novel circuits—or should that be ‘‘discovered’’?11 Pask’s re-

search also provides a valuable reminder of the constraints that con-

ventional computer architectures impose on machines. Although digital
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computers have an invaluable ‘‘number-crunching’’ role, they are not nec-

essarily the best medium for building controllers that have to interact with

dynamic environments. Similarly, conventional computer architectures

might not be the best models of adaptive systems.

Pask provides a methodology for developing controllers that can deal

with nonstationary environments about which we have limited knowl-

edge. His cybernetic approach of coupling two nonstationary, unmeasur-

able systems in order to generate a stable, measurable relation will probably

not appeal to conventional engineers. For example, Beer (2001, p. 552), dis-

cussing SAKI, lamented, ‘‘The engineers somehow took the cybernetic in-

vention away. I suspect that they saw themselves as designing a machine

to achieve the content-objective (learn to type), instead of building a Pas-

kian machine to achieve the cybernetic objective itself—to integrate the

observer and the machine into a homeostatic whole. Machines such as

these are not available to this day, because they are contra-paradigmatic to

engineers and psychologists alike.’’

Even if we can successfully synthesize an artefact that would indeed be a

source for furthering our understanding about a given problem, what

makes us think that such a device would be easier to understand than

nature? Valentino Braitenberg (1984), a proponent of a related synthetic

approach, convincingly pointed out a curious fact that he dubbed the

‘‘law of downhill synthesis and uphill analysis’’: it is rather easy to build

things that look very complex and are hard to understand. This is true

particularly if we specify lower-level mechanistic building blocks and leave

as unspecified higher-level and interactive aspects of the system. If we now

present the latter as the easily observable variables, the system can seem

devilishly complex. W. Grey Walter had already demonstrated this with

his robotic tortoises (1950, 1951, 1953). Simple combinations of a very

few basic mechanisms could interact in sophisticated and surprising man-

ners with a complex environment, giving the illusion of sophisticated cog-

nitive performances (such as decision making, adaptive goal constancy,

self-sustenance, and others).

This ‘‘law’’ of downhill synthesis, uphill analysis, is on the one hand

quite interesting in itself, and often the source of entertaining explorations.

It is also a stark reminder that we need not theorize complex mechanisms

when we are faced with complex systemic behavior—a much unheeded

warning. It is, in this sense, a powerful positive idea. On the other hand,

though, it points to a major problem with the proposal of furthering scien-

tific understanding by construction. Yes, we may be successful in construct-

ing our artefact, but how shall we understand it? We seem to be at an
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advantage over understanding similarly complex phenomena in nature.

We may have more access to data, we know many things, if not everything,

about how the system is built, we can restart it and do experiments that

would be impossible in nature. But will these advantages always suffice?

Have we given our process of synthesis too much freedom and the result is

now an intractably complex system?

Two answers can be given to this problem. One suggests that our greater

gain is by proceeding in a more or less controlled manner in exploring

increasingly complex systems. This answer advocates minimalism as a

methodological heuristic (Harvey et al. 2005). By building systems that are

underdetermined but in a controlled fashion (which sounds like a paradox,

but simply means that we should carefully control the constraints to the

process of automatic synthesis), we stand our highest chance of creating

new knowledge because we advance minimally over our previous under-

standing, which can largely be deployed on the analysis of our current

system. There is a sense in which such a minimalism will provide us with

the simplest cases that instantiate a phenomenon of interest, for instance

learning or decision making, and allow us to develop the right kind of

‘‘mental gymnastics’’ to deal with more complex cases (Beer 2003).

But Pask proposes a different, more radical solution that has, paradoxi-

cally, been in use in dealing successfully with nature since the advent of

culture, much before anything like science ever existed. Pask proposes that

we should base our understanding of a complex system on our interactions

with it and the regularities that emerge from such interaction. We should

approach complex systems, even those we synthesize ourselves, as a natu-

ral historian would (perhaps even as an animal trainer, a psychotherapist,

or an artist would). This interactive method for understanding complex

systems is still a hard pill to swallow in many areas of science.

Pask’s machines and philosophy often seem so maverick that they are

hard to evaluate. Interacting with his work, one can struggle to achieve a

stable understanding because of the demands he places on the reader.

However, we have found it a worthwhile struggle and we hope that others

will be encouraged to interact with his ideas: although fifty years old, they

are highly relevant for every discipline that is attempting to understand

adaptive (nonstationary) behavior.
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Notes

1. Michael Renshall, CBE, who was at Rydal from 1941 to 1948 and also was a con-

temporary of Pask’s at Cambridge, provided all of the information about Gordon’s

school days.

2. The radical theater director Joan Littlewood was certainly aware of Pask by 1946

(Littlewood 2001). Pask wrote shows for his Musicolour system in the early 1950s.

3. A clear description of the strategy for selecting filter parameter values is given in

Pask (1971, p. 80).

4. Ethologists coined the term ‘‘releaser stimulus’’ to refer to a simple perceptual fea-

ture of a complex stimulus that elicits a pattern of behavior. Niko Tinbergen (1951)

had shown that crude models of a stickleback could elicit behavior patterns in the

real fish—they attack red-bellied models and court swollen-bellied models.

5. The complete patent specification was published in 1961 (GB866279).

6. A later version of SAKI was developed to train operators in the use of key punches

with larger numbers of keys (see Pask 1982, p. 71, figure 2). Herman Hollerith devel-

oped the first automatic data-processing system to count the 1890 U.S. census. A key

punch was used to record the data by making holes in dollar-bill-sized cards. A tabu-

lating machine contained a pin for each potential hole in a card. A card was passed

into the reader and if a pin passed through a hole a current was passed, incrementing

a counter. On the basis of these counters the card was automatically dropped into

the appropriate section of a sorting box. It took just three years to tabulate the 62

million citizens the census counted. Building on this success Hollerith set up the

Tabulating Machine Company, which eventually, after a series of mergers, became

IBM in 1924. Some key-punch devices continued to be marketed as Hollerith

machines, for example, the IBM 032 Printing punch produced in 1933 and the key-

board used in the first versions of SAKI.

7. This does seem a remarkably fast rate—the average response time for pressing a

key after training on SAKI was about 0.2 seconds (Pask 1961a, p. 96).

8. For details of Ashby’s ‘‘Law of Requisite Variety,’’ see Ashby (1956, pp. 202–18).

9. Both Pask and Beer worked eccentric hours. Pask would regularly stay awake for

thirty-six hours and then sleep for twelve hours, regulating the cycle with pills
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(Elstob 2001). His wife thought that he was often at his best at the end of these mar-

athon work sessions (Paul Pangaro, personal communication; Pangaro, who earned

his doctorate with Pask and maintains an on-line archive of Pask’s work at http://

www.pangaro.com/Pask-Archive/Pask-Archive.html).

10. We lack clear information about the experimental details, even though Pask

continued in-depth investigations into electrochemical systems at the University of

Illinois under Heinz von Foerster. There has not, to our knowledge, ever been an in-

dependent replication of these experiments.

11. Adrian Thompson (1997) evolved a circuit on a small corner of a Xilinx XC6216

field-programmable gate array (FPGA) that was able to discriminate between two

square wave inputs of 1 kHz and 10 kHz without using any of the counters–timers

or RC networks that conventional design would require for this task. Layzell (2001)

developed his own reconfigurable device, the Evolvable Motherboard, for carrying

out hardware evolution experiments. One experiment resulted in the ‘‘evolved

radio,’’ probably the first device since Pask’s electrochemical ‘‘ear’’ that configured a

novel sensor (Bird and Layzell 2001).
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