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ABSTRACT 

Error Related Negativity is triggered when a user either 

makes a mistake or the application behaves differently 

from their expectation. It can also appear while observing 

another user making a mistake. This paper investigates 

ERN in collaborative settings where observing another 

user (the executer) perform a task is typical and then 

explores its applicability to HCI. We first show that ERN 

can be detected on signals captured by commodity EEG 

headsets like an Emotiv headset when observing another 

person perform a typical multiple-choice reaction time 

task. We then investigate the anticipation effects by 

detecting ERN in the time interval when an executer is 

reaching towards an answer. We show that we can detect 

this signal with both a clinical EEG device and with an 

Emotiv headset. Our results show that online single trial 

detection is possible using both headsets during tasks that 

are typical of collaborative interactive applications. 

However there is a trade-off between the detection speed 

and the quality/prices of the headsets. Based on the 

results, we discuss and present several HCI scenarios for 

use of ERN in observing tasks and collaborative settings.  
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INTRODUCTION 

Off-the-shelf Electroencephalogram (EEG) headsets are 

becoming widely available at affordable prices and 

improving signal quality enabling a growing number of 

interactive applications for competitive gaming [13] or 

task classification [16]. Typically, EEG studies focus on 

Event Related Potential (ERP) which is the time- and 

phase-locked brain response following an event. A 

popular example is P300, a positive signal that is elicited 

about 300ms after the process of decision making. It has 

been widely used to recognize an intended selection of a 

speller [15] or an object on a multi-touch surface [27].  

Error Related Negativity (ERN) is another form of  ERP 

that can be triggered in the brain when a user is aware of 

the obvious error(s) or confused about the last decision 

made in a time-critical task or the application behaves 

differently from their expectation [4, 8]. For example, 

ERN would be produced when pressing the LEFT key 

while intending to press the RIGHT key in a time critical 

multiple choice task. Previous studies have shown that 

ERN signals usually appear and peak within 150ms of the 

committed action [9]. Often ERN is detected offline using 

an averaging of EEG signals around the event onset from 

multiple trials (e.g. [4, 18]). However, recent studies 

demonstrate that ERN can be detected online and on a 

single-trial with expensive, clinical headsets (e.g. [5, 8]) 

and commodity headset (e.g. [23]). This opens ERN’s use 

in interactive applications where the system can provide 

assistance once it can detect that the user is aware of their 

accidental action (i.e. in gaming or spatial navigation).  

To date most examples of ERN have focused on detecting 

the signal by recording signals from the executer of the 

task. Recent endeavors [6, 19, 22] suggest that ERN 

signals even appear while observing another user making 

errors. These studies confirm the existence of negative 

potential within 250ms after the event onset and analysis 

of the signals' origin confirm that they are ERNs. This is 

useful in scenarios where the executer is not aware of 

their error but that error is spotted by an observer or 

supervisor. In current studies, the observer did not have 

much opportunity to anticipate the executer’s actions and 

often relied on the answer displayed. In HCI scenarios, 

the executer’s actions may become visible to the observer 

even before the action is committed. For example, in 

collaborative tabletops, an observer has awareness of an 

executer’s actions through their reaching gesture [21].  

We investigate the effect of anticipation in an observing 

task where the outcome of an action is revealed before 

that action is committed which has not been investigated 

with ERN in an observing task before. This can have 

many applications in pair-programming, collaborative 

tabletops and emergency response applications. We first 

investigate these anticipation effects with an expensive 

clinical EEG system to demonstrate that the signal is 

present and can be detected. Following this we investigate 

if an Emotiv headset has the similar detection capability. 

We start by repeating an experiment from van Schie et al. 

[22] with an Emotiv headset to demonstrate that Observer 

ERN can be detected in a single trial and online basis, 

with the accuracy up to 64%, using a commodity headset. 
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After that, we investigated the anticipation effect in 

observing tasks when one person observes another person 

committing errors. Our results show that there are ERN-

like patterns detected in the observer’s EEG about 368ms 

after the initial movements happened and 55ms before the 

errors are committed. Following this result, we then show 

that the Emotiv headset can capture these patterns in the 

same experiment settings. Finally, we discuss the 

implications of our results on interactive applications. 

The contributions of this paper are: (a) we demonstrate 

that off-the-shelf EEG devices like an Emotiv EEG 

headset can capture ERN in an observing task from 

channels in the frontal-central part of the brain; (b) we 

investigate the anticipation effects in collaborative 

settings demonstrated by the ERN detected in an 

observer’s EEG signals before the action is committed; 

(c) through a final experiment we show that these 

anticipation effects can still be demonstrated using off-

the-shelf EEG devices such as the Emotiv EEG headset. 

RELATED WORK 

EEG and Passive Brain Computer Interface 

In the field of physiological computing, EEG is widely 

chosen because of its high temporal resolution, ease of 

use and the reasonably low cost. EEG-based BCI system 

for healthy users has been gaining interest because of its 

reliability and usability; opening them for creating new 

types of applications [29]. Because of this, passive BCI 

(beside active BCI and reactive BCI) was proposed as one 

type of new BCI systems [28, 29]. It can be defined as a 

BCI system that processes neural activity arising from 

users’ involuntary control. An example of this is ERN, an 

error-potential used to correct a user’s erroneous action.  

Error Related Negativity (ERN) 

ERN is a form of an ERP triggered in the brain when a 

person makes a mistake or the application behaves 

differently from their expectation [4]. This pattern is 

produced in a person’s brain when they are aware of the 

obvious error(s) that they have made; either through 

system feedback or individual realization [8]. ERN peaks 

within 150ms after the action onset and has amplitude 

varied in accordance with the awareness of the mistake. 

Interestingly, ERN also appears when the user is confused 

about their last decision [4]. This pattern has been 

discovered by researchers using both expensive devices 

[4, 8] and commodity devices (such as Emotiv) [23]. ERN 

is useful in interactive applications when it is detected 

immediately following the triggered moment. To this end, 

researchers have looked at detecting this pattern in real-

time, and on a single trial basis with accuracy up to 80% 

[3, 8, 20]. Vi and Subramanian [23] showed that this 

detection can be done using a low-cost and off-the-shelf 

headset like Emotiv with around 65% accuracy. This 

makes ERN more accessible to game developers and 

other consumer application designers.  

Error Related Negativity (ERN) in Observing Task 

Recent endeavors [1, 6, 19, 22] suggest that ERN signals 

even appear while observing another user making errors. 

For example, Miltner et al. [19] reported the generation of 

an ERN potential when participants observed errors 

committed in a choice reaction time (RT) task. Moreover, 

van Schie et al. [22] reported an ERN pattern elicited in 

an observer when observing another person performing a 

modified Eriksen flanker task [7]. Other researches have 

confirmed these results by showing observed ERN 

following observations of other’s errors [1, 19]. These 

results suggested that similar neural processes trigger the 

detection of a person’s own error as well as the detection 

of others. Interestingly, de Bruijn et al. [6] aimed to 

disentangle the dependency of ERN on error or reward. 

Their results show that the performance monitoring as 

reflected by the ERN is error-specific and not directly 

dependent on reward. As a result, our study focuses on the 

error awareness of the observers. 

To date, all studies of ERN in observation tasks only look 

at situations where the outcome of the action becomes 

visible around the moment where the action is committed 

(e.g. in [22]). Furthermore, these studies focus on 

detecting the ERN pattern using averaging methods for 

the purpose of confirming the pattern’s existence. We are 

not aware of studies that investigate the context where the 

observer can anticipate the executer’s actions through 

their gestures towards the target.  

In these contexts, anticipation effects can cause the 

observer to trigger an ERN before the moment when the 

executer finishes the action. Successfully detecting this 

pattern can be useful in many HCI applications such as 

collaborative tabletops, pair-programming and emergency 

response scenarios.  

EXPERIMENT 1: ERIKSEN FLANKER TASK ON PC 

The purpose of this experiment is twofold: first to 

validate, based on the study in [22] and [6] that we can 

detect the ERN signal on an observer using off the shelf 

brain sensing technology; second to verify that the ERN 

pattern can be detected using the classifier presented in 

[23] using an off the shelf headset. 

Task and Procedure 

Each participant performed the experiment paired with an 

actor. We used an actor in all of our experiments to 

trigger the ERN signal on the participant. Only the 

participants wore an Emotiv EEG headset which has the 

ability to capture EEG signals of 14 channels in the 10-20 

international system. Participants were told about the 

experimental goals to explain why they had to wear the 

EEG headset and not the actor. Participants were not 

aware of the actor's role and were led to believe that the 

actor is another participant. As the window of recognizing 

the ERN signal is very small, the role of the actor is to 

perform certain actions that will maximize the ERN 

detection from the observer during the task period.  
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The experimental procedure is similar to the task carried 

out in [4] and [7]. To mimic the experimental conditions 

for a typical Flanker task experiment and reduce noise in 

data collection (such as in [4]), both the actor and 

observer were seated side by side in front of a screen in a 

dimly lit room. Participants were told to sit comfortably 

and minimize body, facial, and eye movement as well as 

to blink as infrequently as possible during the task. 

 
Figure 1. Observation of Flanker Task with the 

executer (left) and the observer (right) 

Trial: Each trial began with a black screen for 3s, 

followed by a fixation dot in the center of the screen for 

200ms. After that, the screen remains clear for 200ms 

before one of four stimuli was displayed for 300ms. There 

were two types of arrows, each type had two stimuli: 

congruent stimuli (<<<<< and >>>>>) and incongruent 

stimuli (<<><< and >><>>). All four stimuli were used in 

our trials in random order. At a viewing distance of about 

100cm, the visual angle of the arrow stimuli was 0.4° 

vertically and 0.6° horizontally, and between them was 

0.3° space. The executer was asked to press the direction 

key as soon as they saw the stimulus to indicate the 

direction of the middle arrow. The input device used for 

this key press was a remote control (Genius Media 

Pointer). The pressed key (< or >) was displayed for 1s 

afterward. Note that the executer can be either the 

participant or the actor depending on the trial condition, 

as explained below. 

The observer was then asked to rate the correctness of 

their last action by choosing one of three options: 1. Sure 

correct, 2. Do Not Know, and 3. Sure Incorrect. This was 

input through a mini keypad.  

Practice trials: Participants were asked to perform a 

version of the Flanker task where they had to press one of 

two keys to specify the direction of a central arrow that 

was bounded by flanker arrows. This was done to make 

the participant familiar with the task that will be 

performed by the actor giving them an idea of what to 

expect as quick as possible when the stimuli appears.  

Each participant performed a practice block of 40 trials 

where they had to press the direction key and rate the 

correctness of their action in each trial. During this time, 

the actor sat beside the participant and played a dormant 

role. In these trials, the directional arrows, which 

appeared on the screen after participants pressed a button, 

were exactly like the pressed button. We did not collect 

EEG signals or any data during practice block.  

Experimental Trial: After finishing the practice block, 

the participant and the actor switched places. The actor 

now had to press the directional keys and the participant 

(the observer) rated the actor's last performance. 

However, the actor hid her hands under a box to prevent 

the observer from seeing which button was physically 

pressed (see Figure 1). The observer was instructed to 

focus on the screen to judge the correctness of the actor's 

answers. As in [1, 19] participants were instructed to 

silently count the number of incorrect selection. However, 

the result displayed on the screen was independent of the 

button press: 40% of the time the computer displayed a 

wrong answer (the 'pressed button' is opposite of the 

middle arrow of the stimulus). This allowed us precise 

control of the experiment settings. 

The actor performed 4 blocks of 50 trials each with 3 

minutes break after each block. We collected 200 trials 

from each participants of the experiment. We recruited 6 

university students, aged between 21 and 29 years old to 

give us a total of 1200 trials for this experiment.  

Data Collection and Analysis 

The EEG signals were captured from the Emotiv headset. 

Although Emotiv is an off-the-shelf headset, its ability of 

capturing EEG signals were validated by previous studies 

such as in [23, 24]. EEG signals were divided into 2s 

length epochs; 1s before and 1s after the key press 

moment. With the sampling frequency at 128Hz the 

length of each epoch is 256 samples. The first 200ms 

(about 25 samples) of each epoch were used to remove 

DC offset following which all epochs were filtered in 3-

8Hz to remove components that are not in the ERN 

frequency bands of that particular epoch. Our chosen 

band ([3 – 8Hz]) was narrower compared to [22] ([1-

10Hz]) but still keeps valuable information about ERN 

that is at least in part in the θ-freq band (4-7Hz) [17]. 

We then employed the classifying method described in [3] 

and validated in [20, 23] to analyze the data. It can be 

summarized as follow. For each channel, we used the 

holdout method where half of the trials (100 trials) were 

used for training via a logistic regression technique and 

other half were used for testing. We performed a t-test on 

the classifier output for each channel per user to check if 

there was a significant difference between two types of 

output (correct and incorrect epochs). Here, there were 

two categories to classify: correct or incorrect. Epochs 

were divided as correct and incorrect trials based on the 

participants ratings. “Do not know” rated epochs were 

removed from the analysis (~5% of 1200 trials in total).  

The classifier performed the classification on a single trial 

basis. The result then was compared with the ground truth 

of each trial. This holdout method has advantages of large 

training and testing datasets, and fast processing time. It 
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also mimicked an online working version where a 

coefficient matrix is extracted for each user through 

performing a training block (the first consecutive half 

number of trials), this is used for detecting ERN pattern 

online (the second consecutive half). To minimize the 

bias of this method, no samples of the first half was used 

in the second half. Also in the training set, the number of 

correct trial was randomly picked so that it equals the 

number of the incorrect trials. This classification model 

was trained blindly (with no estimation of the expected 

accuracy) and test it on an unseen, fixed test set. As this 

approach was not repeated for a set of parameters, it 

should not cause any over-fitting effect. 

Result 

Using the above method, our results reveal significant 

differences in classification rates (for correct and 

incorrect epochs) for FC5, F7, and F3 channels. The 

classification rate for the rest of the channels was not 

significantly better than chance. 

  
Figure 2. Mean classifier accuracy (left) and AUC 

(right) for different channels with error bars. 

Figure 2 shows the average accuracy of three sensing 

channels. These three channels correspond to the frontal 

lobe which is in line with the literature about the origin of 

ERN (the Anterior Cingulate Cortex - ACC) [26]. Figure 

3 illustrates the average EEG signals at F3 and F7 over all 

epochs belonging to two cases: correct and incorrect. 

Here, the averaged EEG signals for correct and incorrect 

over all trials and all participants are displayed in blue and 

red, respectively. For the incorrect trials (the red curve), 

we can see an ERN-like pattern (a negative peak followed 

by a positive peak) at around 250ms after the actor’s 

committed action (the black vertical line). Note that as a 

convention, ERPs are usually plotted upside down. 

We did a Receiver Operating Characteristic (ROC) 

Analysis to investigate the efficiency of the classifier by 

evaluating its discriminating power. ROC analysis uses 

two distinct inputs: hit rate (or true positive rate) and false 

alarm rate (or false positive rate) as two separate 

performance measures. Figure 4 shows ROC curves for 

F3 and F7 channels. The further the curve is from the 

diagonal line, the more effective the classifier. The area 

under the curve (AUC) gives an indication of the 

performance of the classifier. An AUC of 1 indicates a 

perfect classifier and 0.5 indicates a random chance of 

classification. Our classifier achieves an averaged value 

of 0.66 over these three channels (F3, F7, and FC5). Their 

AUC are shown in Figure 2 (right). 

Discussion 

This study demonstrates that Emotiv EEG headset is 

capable of capturing EEG signals with sufficient quality 

for a classifier to be able to detect ERN pattern with an 

accuracy of about 65%. The characteristic of detected 

ERN patterns is similar to previous studies using more 

expensive devices [22]. Our results further demonstrate 

that the classifier described in [3] and validated in [20, 

23] can be used to detect ERN in observer tasks. This 

means an interactive application can have a similar 

classifier detecting both observer and executer ERNs with 

minimal modification to the software.  

 

 
Figure 3. Average EEG signals at channel F3 (top) and 

F7 (bottom).  

 
Figure 4. ROC curves for channels F3 and F7 

One example of interactive tasks that can benefit from our 

results is in pair programming where two programmers 

work together as partner, on the same machine, to 

complete a programming work with their roles switched 

frequently [25]. One programmer is the driver, who 

performs all “on computer” tasks. The other is the 

observer or navigator who reviews each line of code and 

points out the errors as it is being written. Usually this 

error correction process requires the observer to interrupt 

the programming process, point out the location of the 

errors in his opinion either using his hand or using the 

mouse/keyboard that the driver is controlling. 

However, our experiment results suggest that monitoring 

the appearance of ERN in the observer’s EEG can speed 

up this error correction process. Each action of the driver 

is considered a trial of a multiple choice RT task. If the 
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ERN is detected in the observer’s brain, it can be used to 

pinpoint the whereabouts of the error (e.g. highlighting 

the code section) which is 250ms after the action’s 

committed moment. The system can also provide suitable 

suggestions based on the context of the location where the 

error was triggered. This can happen either with or 

without the error awareness of the executer. 

In addition, we believe the detection accuracy can be 

enhanced by improving the visibility and awareness of the 

performer’s actions through better visualization. This will 

elicit higher amplitude of ERN which can improve the 

classification rate. More detailed implications of this 

study to HCI are discussed at the end of this paper.  

OBERSEVER ERN IN A TABLETOP TASK 

In the first study the participant did not have any 

opportunity to see the actions of the actor and often relied 

on the answer displayed. In collaborative HCI scenarios 

like around a tabletop, a participant can usually anticipate 

the executer’s actions through their gestures which reveal 

the outcome of an action before that action is committed.  

The awareness caused by anticipation gives the observer 

more time to form an opinion on the action. This could 

potentially reduce the time-critical aspect of the ERN 

leading to a low signal quality. Alternatively, the observer 

may reach an opinion of the executer’s action as soon as 

they see the initial cues. In this case, we may detect a 

good quality ERN in the observer well before the executer 

has even completed the action.  

We are not aware of any experimental investigation of the 

effect of anticipation in an observing task where the 

outcome of an action is revealed before that action is 

committed. Therefore we extended the duration between 

start and committed moments of the actor’s action to 

investigate this effect. We also aimed to determine the 

moment when the observer elicits an ERN. Successfully 

detecting this opens a rich design space of interest to HCI 

such as collaborative tabletops and pair-programming. 

Experiment Setup 

Each experimental session involved two users – an 

executer and an observer seated around a rear-projected 

FTIR interactive table of height 76cm. The executer was 

an actor trained to do this study while the observer was 

our experiment participant. The executer and observer sat 

opposite to each other so that they were aware of each 

other’s movements and actions (similar to the setup in 

[22]). The projection area of the table was 72cm x 48cm 

(resolution 1024x768 pixels) and touch detection was 

done through a Point-Grey Dragonfly 2 camera.  

All participants performed the task with the same actor 

(the person at the top in Figure 5). However, participants 

were led to believe that the actor is just another 

participant like themselves. In order to study the effect of 

anticipation, we had two experimental conditions – a 

close layout and far layout.  

In the close layout the actor’s buttons (size 100x100 

pixels each) were placed right under their hands and next 

to each other. The participant would struggle to see the 

actors hand movement limiting their ability to anticipate 

the outcome before the actor commits to the action. Any 

ERN elicited in the participant (observer) in this condition 

would be because of the committed action of the actor.  

In the far layout the two confirmation buttons were placed 

close to the left and right edges of the table (200 pixel 

gaps to left and right edges with 524 pixels distance 

between them; 80 pixels gap from two buttons’ centers to 

the edge of the actor’s table side). The actor was asked to 

keep his hands touching two touch sensors placed on his 

side of the table (see the table’s top edge in Figure 5, 

right). In order to select a response the actor had to lift 

one hand from the rest position and move towards the 

button. This action took approximately 400ms giving the 

participant sufficient time to anticipate the actor’s actions. 

The actor’s other hand was left in the rest position 

touching the sensor during this action. 

Task and Procedure 

Each participant wore the EEG cap of the BE-MRI 

System from EbNeuro. In this experiment, 19 electrodes 

were used (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, 

T4, T5, P3, Pz, P4, T6, O1, O2). This system has higher 

sampling frequency, larger coverage, and has access to Cz 

channel compare to Emotiv EEG headset. Participants 

observed and gave feedback about the correctness of the 

actor’s performance in an Eriksen flanker task.  

Each trial began with a black screen for 3s, followed by a 

fixation dot in the center of the screen for 200ms. After 

that, the screen remains clear for 200ms before one of 

four stimuli was displayed at the center of the table for 

300ms. All four stimuli were used in a random order.  

In both close and far layouts (Figure 5 left and right), the 

actor then touched one of two buttons to indicate the 

direction of the middle arrow. In close layout there is no 

noticeable hand movement whereas in the far layout the 

actor has to reach the button to make a selection.  

After the answer button was selected, it was highlighted 

in red for 1s before turning back to the initial color. This 

is to re-enforce to the observer the actor’s selection. The 

participant was then asked to rate the correctness of their 

last action by choosing one of three options: 1. Sure 

correct, 2. Do Not Know, and 3. Sure Incorrect. During 

the experiment, the observers were asked to minimize 

their body and facial movements as well as blink as 

infrequent as possible. They were also instructed to guess 

the outcome of each answer as quick as possible although 

they could input that answer at their own pace. As in [1, 

19] participants were instructed to silently count the 

number of incorrect selection. Since it was not possible to 

control the ratio of correct and incorrect trials to the 

extent done in Experiment 1, the actor was asked to keep 
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the incorrect selection rate to between 25 and 30%. The 

actor received practice to minimize difference in action 

between correct and incorrect gestures.  

Each participant performed 2 blocks of 80 trials each per 

layout. The order of presentation of the blocks was 

controlled using a Latin square to reduce order effects. 

Participants received 3mins break between blocks and the 

whole experiment took about 90mins per participants 

including about 40mins of setup time. 

 
Figure 5. Tabletop Flanker task a) close, b) far layout. 

Ten participants (7 males) between the age of 19 and 31 

volunteered for the study. All were from the local 

university and did not participate in the earlier 

experiment. All participants had normal or correct-to-

normal vision, and none of them were color blind. Also 

no participant had undergone brain surgery or had any 

known neurological disorders. Participants wore EEG cap 

during the experiment. Participants received a financial 

compensation for their participation in the study. 

 

Figure 6. Averaged signals of the ‘close’ layout at Cz 

 
Figure 7. Topographic distribution of correct trials 

(top) and incorrect trials (bottom) in the ‘close’ layout 

at the intervals: key press (left), 100ms after (middle), 

and 200ms after (right). 

Data Collection and Analysis 

EEG signals were collected using the BE-MRI System 

from EbNeuro. The sampling frequency was set at 4 KHz 

and electrode impedance was below 5 KΩ.  EEG signals 

were then down sampled to 1 KHz before being divided 

into 2s epochs around the touching moment, which is also 

the moment that the results were displayed or the touched 

button was highlighted in red. It is also assumed to be the 

moment when participants became aware that the actor 

had or had not made a mistake. Epochs were averaged, 

filtered, and divided into groups as in prior experiment.  

Result 

We collected 3200 trials, 1600 each for close and far 

layout. The number of incorrect trials was 27% in the 

close layout and 30% in the far layout. 7 trials in the close 

layout and 30 in the far layout were rated as “Do Not 

Know” by the participant.  

Close Layout Analysis: Figure 6 shows the averaged 

signals in Cz channel in the close layout. It can be seen 

that there is a difference, however small, between 

incorrect trials (red curve) and correct trials (blue curve). 

Latency of the highest peak after the touch button was 

pressed was 140ms. However, the topographic 

distribution (Figure 7) shows a clear difference between 

correct and incorrect trials around the time of the peak. It 

can be seen that there is a high density of negative EEG at 

the central and frontal area around the latency of the 

highest peak after the key press onset (Figure 7, middle).  

 

Figure 8. Averaged signals of the ‘far’ layout at Cz 

 
Figure 9. Topographic distribution of correct trials 

(top) and incorrect trials (bottom) in the ‘far’ layout at 

the intervals: 50ms before key press (left), key press 

(middle), and 50ms after key press (right). 

Far Layout Analysis: In the far layout, the differences can 

be seen clearer with the averaged EEG signals in Figure 

8. The left vertical line depicts the averaged moment that 

the actor lifted up his hand and started to reach to the 

answer button. The right vertical line depicts the moment 

that the actor pressed the answer button. It took the actor 

averagely 428ms (correct trials) and 423ms (incorrect 

trials) to touch the answer. There was no significant 

difference found between these two durations (p > 0.05). 
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The signals peak at 55ms before the answer buttons were 

touched. The topographic distribution (Figure 9) shows a 

clear difference (in the density of negative EEG at the 

frontal and central area) between correct and incorrect 

trials at the time of the peak (~ 50ms before button touch, 

left figures) and at the time of the touch (middle figures). 

Using the same classifying method described in the 

previous experiment, we found that several channels in 

the frontal-central area of the brain yield successful 

classification. More details are in depicted in Figure 10. 

The highest classification rates are from channel Cz for 

both close layout (correct/incorrect = 70.43%/68.71%) 

and far layout (correct/incorrect = 73.02%/72.40%). 

We also calculated the AUC for the above channels. Their 

values are plotted in Figure 11. Overall, the classifier 

achieved averaged AUC values of 0.6733 for the close 

layout and 0.6602 for the far layout. 

  
Figure 10. Classification rates of close layout (left) and 

far layout (right) with error bars 

Discussion 

The result of this experiment demonstrates that ERN can 

be detected in an observer in both hand layouts. It also 

shows that there is an anticipation effect where the ERN 

pattern in the observer’s mind appears about 55ms before 

the touching action is committed. 

The experiment mimicked a classic Flanker task to keep 

our experimental settings in line with other research in 

this area. Interactive applications can trigger ERN using a 

similar paradigm. It may be possible to detect the ERN 

pattern earlier by making the actor’s movement clearer to 

the observers that can trigger the awareness sooner. 

It is worth noting that the classifier used is a light-weight 

module which can provide an output in less than 1ms for 

a 1kHz sample once the β coefficient matrix is known for 

that participant (tested in Matlab ®R2013a 64 bit, Intel® 

Core™ i3 CPU 3.10GHz, 8GB RAM). This means any 

interactive application could act on an executer’s action 

based on the ERN of an observer. For example, in 

collaborative tabletops a user could be asked for a 

stronger confirmation if the system detects an ERN in the 

observer. This could also benefit peer-learning activities 

where the observer and executer can constantly switch 

roles to learn from each other. 

A drawback of this study is that the EEG cap is an 

expensive clinical system that is cumbersome to wear, 

tethered and does not lend itself to applications that 

require the observer to move freely within the 

experimental environment. This further limits the 

possibility of both the observer and the executer wearing 

the cap in a realistic environment. The following 

experiment aims to address this drawback. 

  
Figure 11. AUC for close (left) and far layouts (right) 

with error bars 

TABLETOP OBSERVER ERN WITH EMOTIV 

The purpose of this experiment is to see if the Emotiv 

EEG headset can be used to detect the same pattern as in 

experiment 2. This would then open up the use of 

observer ERN to a wide range of interactive applications 

by detecting and predicting errors in observers’ mind.  

Task and Procedure 

The experimental setup, task and procedure were identical 

to the previous experiment. We recruited 11 participants 

(8 males), aged between 20 and 31 years old. None of 

them took part in previous studies. The experiment took 

about 60mins per participant. This shorter experiment 

time, compared to the previous experiment, was due to 

the shorter setup time needed for Emotiv headset.  

As with experiment 2, we collected 320 trials per 

participants yielding a total of 3520 trials from all 

participants of the experiment for both close and far 

layouts with 1760 trials each. The number of incorrect 

trials was 26% in the close layout and 28% in the far 

layout. 19 trials in the close layout and 34 in the far 

layout were rated as “Do Not Know” by the participant. 

Data Collection and Analysis 

Signals were collected at a sampling frequency of 128 Hz 

using the Emotiv EEG Neuroheadset. They were then 

divided into 2s epochs around the touching moments, 

which is also the moment that the results were displayed. 

The analysis was the same as in previous experiment.  

Result 

Close layout: Figure 12 shows average signals at channel 

AF3 in the close layout over all participants and all trials. 

It can be seen that there is a difference between incorrect 

trials (red curve) and correct trials (blue curve) at the 

latency of 188ms after the moments where the button 

answers were pressed. This pattern has a negative peak 

appeared within the time period of 250ms after the event 

onset, similar to previous studies such as in [6, 22]. 

Far layout: Figure 13 shows the averaged EEG signals 

for the far layout over all participants and all trials. There 

is also an ERN-like pattern which peaks at about 3ms 
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after the answer button was touched. This indicates that if 

this is the ERN pattern, the observer must have the 

judgment about the actor’s action’s correctness about 

250ms before which also is an indication that the 

observers have made the decisions before the answer 

buttons were touched.  

  
Figure 12. Averaged signals of the close layout at AF3. 

The vertical line is the button touched moments 

 
  

Figure 13. Average signals of the far layout at F3. The 

left vertical line is the averaged hand lift-off moments, 

the right vertical line is the button touched moments.  

Between Figure 6 & Figure 12 and Figure 8 & Figure 13, 

we observer similar ERN-like patterns (negative peaks 

140ms after touch moments in Figure 6; 188ms after 

touch moments in Figure 12; 50ms before touch moment 

in Figure 8; 3ms after touch moment in Figure 13).  

 
Figure 14. Classification rates with error bars 

Using the same classifying method described in the first 

experiment on the collected signals from Emotiv device, 

we found that in close layout, channel AF3 yields the 

classifying results with 67.32% of correct trials were 

classified as correct and 64.57% of incorrect trials were 

classified as incorrect. Additionally, in far layout, channel 

F3 yields the successful classification with classification 

rates for correct and incorrect trials are 65.03% and 

62.30% respectively (see Figure 14). 

Additionally, we calculated the area under the curve 

(AUC) values for channels AF3 and F3 to justify how 

well the classifier performs on these two channels. Our 

obtained results show that AUC for channels AF3 and F3 

were 0.6483 and 0.6486 respectively. 

Discussion 

The results from this experiment show that it is possible 

that ERN can be observed in collaborative tasks from the 

observers’ EEG. Although the channels that show the 

detection are limited to AF3 (close layout) and F3 (far 

layout), it is an indication that an off-the-shelf EEG 

headset such as Emotiv is capable of detecting this 

pattern. As a result, other commodity headsets which have 

access to these channels can also harness the advantage of 

detecting ERN pattern in observing tasks. 

There is a shift in latency of the ERN peaks between 

experiments 2 and 3. The latency differences of about 

40ms (close layout) and 60ms (far layout) are due to the 

devices used in each experiment; EbNeuro BE-MRI 

system (~USD 10k) and Emotiv headset (~USD 300). We 

can postulate many reasons for the difference:  

 The buffer used in each device is different. While 

Emotiv headset waits for the buffer to be filled before 

pushing signals toward the receiving Bluetooth dongle, 

EbNeuro pushes the signals continuously for each 

collected data sample. As the process of continuously 

pushing signals requires much more expensive Digital 

Signal Processing (DSP) module, this reflects the price 

difference between the two devices. Furthermore using 

Bluetooth to transfer might add to the latency. 

 While EbNeuro pushes signals continuously at the 

original sampling frequency (4KHz), Emotiv samples 

EEG signals internally at 2KHz then down samples it to 

128Hz. This can introduce latency.  

From the experiment’s results, it can be seen that there is 

a trade-off between how early the ERN pattern in 

observing tasks can be observed vs. the prices and quality 

of EEG headsets. Although the differences are small 

(from about 40ms to 60ms), they should be considered 

carefully to fit with the goals of each interactive task.  

DISCUSSION 

In addition to the benefit of correcting one’s own errors, 

ERN has the potential to enrich interactive applications in 

the collaborative working setting. The results from our 

studies can provide guidance on how best to begin 

harnessing ERN for such interactive experiences. From 

our results, HCI designers can employ ERN in interactive 

tasks to pinpoint the executer’s error’s whereabouts, 

which can be from 50ms before to 250ms following the 

triggered action, depend on the interaction technique. 

The usefulness of executer’ and observer’ ERNs in 

interactive tasks depends on the usage context and the 

designer’s creativity in making use of it. Here we suggest 

some applications to highlight design possibilities. 

Collaborative tabletop settings 

Groupware applications use embodiments to help people 

stay aware of the presence, location and movement of 

users in collaborative tasks [11]. They can either be real 

embodiments which make use of the actual physical body 
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of the user or virtual embodiments which are digital 

representations of users (e.g. Telepointers [10]).  

In these settings, real and virtual embodiments both 

provide obvious information of awareness to other group 

users. Therefore, an observer can judge quickly about the 

correctness of the action being performed. However, this 

information is not accessible unless the observers provide 

feedback to the performer or the system. This is a time 

consuming process and can interrupt the performance.  

Our results show that an integrated ERN detection module 

can be used to monitor an ERN’s appearance in the 

observers. As the classification time is about 1ms with the 

coefficient matrix known, the detected ERN can be used 

to trace back the time period where the observer thinks 

the performing user made a mistake or is confused about 

their action. Although these time periods range from 

50ms before to 250ms following the committed action, 

careful task design can help to shorten this range to 

specific time points. This is due to different interaction 

techniques providing different awareness to the observers 

leading to different ERN triggered moments. Therefore, 

HCI designers should design their applications to 

maximize the in order to trigger clearer ERNs. 

As a simple example, an action of a performer leading to 

an observer ERN can result in an ignorable pop-up menu 

that can help revert or discuss based on the source of ERN 

in the observer. Rather than merely automate the action’s 

reversion, ERN can serve as an information point for 

discussion and clarification between the collaborators. 

The pop-up menu can then provide contextually relevant 

information including an “undo” item.  

The goal is to maximize group awareness of individual’s 

actions without disrupting the work-flow of the task. 

Further contextual studies can explore this trade-off. 

War-rooms / Emergency response 

In emergency scenarios, it is crucial to give instructions 

and make decisions. ERN can be integrated into the 

Emergency Management Information System [14] so that 

each decision that has been made can be crossed checked 

by the observers/ supervisors in the same team. If the 

executer is made aware that other teammates thinks a 

mistake is about to be made by the performing action, it 

can be avoided before it is made. Moreover, if the mistake 

is already committed, the system can sense if an ERN 

appears in an observer’s brain to speed up the correction.  

Gaming scenarios 

Usually in shooting games and MMORPGs gamers team 

up to act against other teams. Here, every decision needs 

to be precise and made in a timely manner. ERN could be 

integrated to provide a new tool to team members to 

observe and react to each other’s actions. Detected ERNs 

from teammates can be combined and displayed as 

feedback to every continuous action say in the form of an 

overlay window. This can give gamers an idea of where 

and when they committed a mistake, which could add to 

the game tactics a new dimension. This ERN 

communicating channel, beside verbal and chatting ones, 

can be used to improve the teamwork and strategic 

analysis skills during the game hence make it more 

challenging between teams. However, the mechanism to 

trigger error-events has to follow an oddball paradigm in 

the context of a reaction time task. 

Limitations of the classification method 

Our classifier is based on a linear regression method 

described in [3] and validated in [20, 23] for single trial 

ERN detection. Applying this method provides 

classifying rates of up to 73% accuracy. [23] evaluated 

the usefulness of different ERN detection accuracies and 

showed that when integrating an ERN detection module 

in an interactive application a classifier with 65% 

accuracy is as good as a classifier with 80% accuracy. 

Moreover, if a system has very high accuracy (less error 

rate), it may promote hasty commitment to selections [12] 

and thereby increase the cost of recovery from an error.  

In addition, our classifier requires input EEG signals ±1s 

around the time-locked event which means that it can 

detect the ERN pattern 1s after the action. However it can 

be used to pinpoint the ERN’s triggered moment which 

can be up to 50ms before the action. Despite the delay, 

this form of ERN detection can still be useful in many 

applications like in the earlier outlined case of Pair 

programming. A 1s delay will not affect the benefit of 

ERN in such activities especially when we can highlight 

the code-section that is in question. Additionally, other 

classifier methods can improve accuracy and reduce the 

window size of input signals leading to earlier detection 

of the ERN after it is triggered. For instance, a BCI 

competition on customized classifier increased 

classification rates of P300 up to 96.5% and motor 

imaginary up to 94.2% [2]. 

Moreover, the selection of channels is based on a set of t-

tests on the output of the training set. Then, the test set 

was used to remove under-the-chance classification rate 

channels as a beta-correction method. A more robust 

method (e.g. bootstrapping) can be used here to reduce 

the chance of selecting randomly significant channels. 

CONCLUSION 

The experiments described in this paper offer some 

valuable guidelines for HCI designers. We show that 

ERN patterns can be detected in an observing task using 

an off-the-shelf EEG headset on a single trial basis. 

Moreover, we show the anticipation effects in 

collaborating work where ERN can be detected before a 

committed action in the observer’s mind. We then 

extended our finding to a commodity headset to show that 

it can also detect the anticipation effect through the 

existence of ERN. In our discussions, we suggested novel 

ways in which HCI applications can benefit from ERN in 

collaborative and observing environments.  
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