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ABSTRACT 

This paper examines the ability to detect a characteristic 

brain potential called the Error-Related Negativity (ERN) 

using off-the-shelf headsets and explores its applicability to 

HCI. ERN is triggered when a user either makes a mistake 

or the application behaves differently from their 

expectation. We first show that ERN can be seen on signals 

captured by EEG headsets like Emotiv™ when doing a 

typical multiple choice reaction time (RT) task – Flanker 

task. We then present a single-trial online ERN algorithm 

that works by pre-computing the coefficient matrix of a 

logistic regression classifier using some data from a 

multiple choice reaction time task and uses it to classify 

incoming signals of that task on a single trial of data. We 

apply it to an interactive selection task that involved users 

selecting an object under time pressure. Furthermore the 

study was conducted in a typical office environment with 

ambient noise. Our results show that online single trial ERN 

detection is possible using off-the-shelf headsets during 

tasks that are typical of interactive applications. We then 

design a Superflick experiment with an integrated module 

mimicking an ERN detector to evaluate the accuracy of 

detecting ERN in the context of assisting users in 

interactive tasks. Based on these results we discuss and 

present several HCI scenarios for use of ERN. 
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INTRODUCTION 

The availability of off-the-shelf EEG headsets like 

Neurosky
TM

 and Emotiv
TM

 has opened possibility of 

exploring a whole range of BCI applications for everyday 

use. These low-cost (typically ranging from $100 to $300) 

and portable devices are being used in a wide range of 

application including task classification [16], gaming [13], 

and recognizing user's intended selection [1]. To date, most 

of these applications have been based on using P300 (a 

peak elicited at about 300ms after an event onset) which 

can be considered as a composite index of both attention 

and memory [16]. Another form of signal that could be 

used but is often ignored in interactive applications is the 

Error-related negativity (ERN).  

An ERN is a form of an Event Related Potential (ERP) that 

can be triggered in the brain when a user either makes a 

mistake or the application behaves differently from her 

expectation. This pattern is produced in a person’s brain 

when she is aware of the obvious error(s) that s/he has 

made; either through system feedback or individual 

realization [8]. For example, ERN would be produced when 

pressing the LEFT key while intending to press the RIGHT 

key in a multiple choice RT task. It also appears, but with 

lower amplitude when a person is confused about the 

decision that s/he has made [3]. Usually these ERN signals 

appear and peak within 150ms of the committed action [9].  

If ERN signals can be detected during an interactive task 

they can be used in detecting and correcting errors or in 

augmenting users' experiences in those activities. An ERN 

detection module provides another medium for HCI 

designers to access users' intentions, which is intuitive and 

directly from the users' brain. This has great potential in 

many types of interactive application such as in gaming, 

spatial navigation tasks and aiding object selection. For 

example, when ERN is detected the system can prompt the 

user to check if the selection is the intended target. 

 

Figure 1.  A user performing a Superflick [19] while wearing 

an off-the shelf EEG headset to see if ERN detection can aide 

in an object selection task.  

However it is difficult to detect a clear ERN pattern due to 

noisy EEG signals and lack of effective real-time 

algorithms. Most research in detecting ERN is focused on 

being able to detect it over an average of multiple trials 

relying on offline methods (see [3, 17] for examples). As 

ERN is known to appear when using multiple-choice RT 

tasks, most research is done on Flanker task [6]. Flanker 
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task is a visual experiment where the participant has to 

respond to a central and directed symbol that is surrounded 

by distracting symbols. There are very few ERN detection 

algorithms that work in real-time as well as on multiple-

choice RT tasks that are not Flanker tasks.  

Additionally, most ERN experiments are performed using 

expensive, non-portable sensing devices such as NeuroScan 

systems from NeuroScan
TM

, g.BCIsys from g.tec
TM

 or 

ActiveTwo from Biosemi
TM

. These devices have the 

benefits of not only more sensing channels (up to 256 

electrodes therefore can cover all channels in the 10-20 

international system), but also higher and user selectable 

sampling frequencies of up to 16 kHz. These systems also 

introduce less noise in the signals because of better sensing 

electrodes and integrated amplifier/ converter module.  

In comparison off-the-shelf EEG headsets have at best 14 

channels, a sampling frequency of about 1 kHz and 

introduce more noise due to wireless transfer of EEG 

signals. Due to these limitations it is not clear if these 

devices can capture ERN patterns. However, due to their 

price and portability their use is being increasingly explored 

within HCI. In this paper we investigate the appropriateness 

of these off-the-shelf EEG headsets in detecting ERNs and 

also the effectiveness of real-time algorithms in doing so on 

a single trial and in real-time.  

We first describe an online single trial ERN detection 

technique that is verified using data acquired from the 

frontal-central cortex of the human brain. We then show 

that we can detect ERN online on a single trial in an object 

selection task. This demonstrates the abilities of harnessing 

ERN in interactive applications in office conditions. Both 

our experiments show that we can detect ERNs using the 

Emotiv Headset with an accuracy of up to 70%.  

These rates are indicative of the type of accuracy one can 

expect from off-the-shelf EEG sets. Improvements in 

learning techniques can improve this accuracy but it is 

unlikely that detection accuracy will reach 100%. It is 

therefore expected that with high detection accuracy users 

might become over-resilient on a system detecting ERNs 

which can increase the cost of recovery from the error. In 

order to examine this issue we conducted a final study 

where we compare users' error-rates when performing 

Superflick [19], a modified pointing task, with different 

potential ERN success rates. The results of the experiment 

show that ERN detection rates of 65 to 80% are acceptable 

to interactive applications. We finally discuss the 

implications of our results to interactive applications.  

The contributions of this paper are: (a) we demonstrate that 

off-the-shelf EEG devices such as the Emotiv headset can 

measure ERN from channels in the front-central part of the 

brain; (b) we demonstrate that it is possible to detect these 

ERN signals online (as opposed to offline) from a single 

trial in a task that is closer to the types of tasks encountered 

in HCI; (c) through a final experiment we show that 

detection accuracies in the region of 65 to 80% are 

sufficient to use these techniques in real-time interactive 

applications.  

RELATED WORK 

Brain Computer Interface and sensing techniques 

There are many methods to detect neural data that can be 

used in a BCI system. Some notable ones are functional 

Magnetic Resonance Imaging (fMRI), functional Near-

Infrared Spectroscopy (fNIRS) and Electroencephalography 

(EEG).  

fMRI measures the change in blood flow which is related to 

brain activity by sensing the magnetic field around the 

scalp. fMRI is an effective technique for brain function 

imaging in medical science. It can quantify neural activities 

with high spatial resolution but fMRI machines are big, 

expensive and produce loud noises [12]. Moreover, this 

technique is vulnerable to the existence of metal objects and 

head movements [21], both of which are common when 

using a computer. For these reasons, it is not favoured by 

HCI researchers.  

fNIRS measures the concentration of blood oxygen using 

infrared light [24]. This method has been used mostly to 

measure the user's mental workload [12, 21]. It is 

comparable to EEG due to its low cost and portability. 

However, it has lower temporal resolution compared to 

EEG making it difficult to detect fast responses after an 

event occurs [12]. 

EEG records electrical fields produced by neuronal activity 

[5]. It is a popular non-invasive brain imaging method 

because of its lower cost (compared to fMRI), portability 

and high temporal resolution [12]. There are two 

approaches to measuring EEG signals: invasive (implanting 

an array of electrodes in the cortex layer of brain) and non-

invasive (attaching a number of electrodes to the scalp). 

Non-invasive approaches have more opportunities for use 

in everyday use.  

Measuring and Processing EEG Signals 

Raw EEG signals can be mapped to application control 

using one of two learning methods: Operant Conditioning 

and Pattern Recognition. In Operant Conditioning, the 

users need to be trained to control their own brain activity 

while they are provided with real time feedback. For 

example, users train the system such that when they think 

about right hand movement or a foot movement the 

application navigates through a virtual street [5]. 

Alternatively, Pattern Recognition uses signal processing 

and machine learning techniques to reveal the mental states 

or activities of untrained users [5]. The second method has 

the benefit of making it easier for users and can make a BCI 

application universal for general people, rather than a 

specific individual. 

Pattern Recognition method has been widely used in 

neuroscience to discover the neural activity inside a 



human's brain. For example, a P300 speller uses pattern 

recognition to detect the P300 pattern to help spelling/ 

typing letters [7] as well as selecting the intended object 

[1]. This speller works by flashing rows and columns in a 

random order of a grid of alphabets. The user concentrates 

and counts the number of flashes over his/her intended 

letter. A P300 pattern then appears after the flash over the 

intended letter and will be clear enough from noise to be 

detected after a few flashes.  

Error Related Negativity (ERN) 

ERN is a pattern observed when a user makes an error in a 

reaction time task. Its shape is a negative deflection which 

appears in the ongoing EEG right after the time the decision 

was made. The ERN also appears when users have 

feedback about their response accuracy [14]. Its amplitude 

is large when the user is clearly aware of his/her error and is 

small when user is confused (where errors are caused by 

data limitation) [3]. However, despite the change in 

amplitude, ERN latency seems to be consistent (about 

100ms after the event). Interestingly, the amplitude of ERN 

does not depend on the behaviour accuracy itself but the 

user's perception about it [3, 25]. 

To date most of experiments involving ERN detection are 

done offline by averaging over multiple trials. Participants 

are asked to perform a multiple-choice task in which trials 

with incorrect responses were used to archive a clear ERN 

pattern. For example, Gehring et.al [10] used this methods 

to determine the effect of a speed/ accuracy trade off on 

different representations of ERN. Scheffers and Coles [3] 

use this method to conclude that ERN is a manifestation of 

the ongoing monitoring system in the brain which compares 

the expected response and the actual response.  

However, in an interactive application, ERN will be most 

useful when it can be detected immediately after it happens. 

This requires the online detection of the ERN pattern (as 

opposed to offline) from EEG signals. One way to achieve 

this is by caching and averaging a small number of patterns 

in a limited time in order to refine a reasonably clear ERN 

[20]. This method requires a waiting time to collect 

sufficient signals and therefore delays the progress of error 

correction as it goes through multiple trials. 

Various attempts have also been made to detect ERN from 

a single trial. One example is from Ferrez and Millan [8] 

where they train a Gaussian classifier to recognize error and 

correct trials on a single trial basis but after the experiment 

was completed (so considered an offline single-trial 

approach). Another example is from Dal Seno et.al. [4] who 

used a Linear Discriminant Analysis (LDA) classifier to 

cross check with every spelled letter using a P300 speller. 

The reported performance of the online version varies from 

58% to 69%. This result is just better than chance but still 

encouraging, as this is one of the few attempts at detecting 

ERN online and from a single trial. 

All the above experiments have been carried out on EEG 

headsets with up to 256 electrodes and with sampling 

frequency up to 16 kHz. Most importantly these approaches 

rely on having access to Fz, Cz, Pz and Oz channels. We 

are not aware of any attempt to detect ERN from a low-cost 

portable headset where the number of channels and 

sampling frequency are limited. Hence, we investigate if a 

low cost, features limited EEG headset can detect ERN and 

benefit to HCI. 

ONLINE ERN DETECTION  

The online, single trial ERN detection algorithm we present 

below is an adapted version of the logistic regression 

algorithm from Christoforos et.al [2].  

If the user makes a decision (i.e by pressing a button) in a 

Flanker Task at time t we can create an epoch x(t) for a 

channel around that decision moment. The total length of 

x(t) is l samples (which is the number of samples in that 

epoch). We need to design a supervised classifier so that its 

output: 

)(*)( txty T  

is expected to be maximally discriminated between two 

cases: either there is ERN or no ERN in that time window. 

This output y(t) is a real number. 

β: coefficient matrix [l x 1] that is unique for each channel. 

We tested this algorithm with different signal pre-

processing methods. For example, we tested with x(t) as 

EEG signals from all channels at a time moment t following 

the method from [18].  This type of input does not give us a 

good classification. We also tried to design a coefficient 

matrix for all channels but did not receive a good result. 

In our approach x(t) is signal samples of a time windows 

(combination of two windows: before and after pressing 

button). Figure 2 presents the procedure of classifying an 

EEG epoch which is one of two types: ERN and no ERN. 
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Figure 2.  Online Single Trial ERN Detection Procedure 

The next step is to find the coefficient matrix to satisfy the 

expectation of y(t). 
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Figure 3.  Coefficient matrix extractor 

Figure 3 explains the procedure of finding the coefficient 

matrix β using a supervised logistic regression machine 

learning technique which is briefly explained in [2]. Once 



the coefficient matrix is found, it can be used to classify an 

EEG epoch into one of two: there is ERN or there is no 

ERN.  

EXPERIMENT 1: FLANKER TASK  

To validate the above algorithm on a low cost, portable 

EEG device, we designed a Flanker Task that is similar to 

[18]. Twelve local students (7 males) were recruited to 

participate in this study. Each completed this experiment 

individually.  

To mimic the experimental conditions in [3, 25] for a 

typical Flanker task experiment and reduce noise in data 

collection, the participant was seated in front of a screen in 

a dimly lit room. Participants were told to sit comfortably 

and minimize eye movement and blink as infrequently as 

possible while performing the task.  

Participants were asked to perform a version of Flanker 

Task where they had to press one of two keys to specify the 

direction of a central arrow that was bounded by flanker 

arrows. There were two types of arrows, each type had two 

stimuli: congruent stimuli (<<<<< and >>>>>) and the 

incongruent stimuli (<<><< and >><>>). All 4 stimuli were 

used in our trials in a random order.  

For each trial there was a fixation cross in the centre of the 

screen for 500ms. It was replaced with one of four stimuli. 

The stimulus was presented for 100ms before the screen 

was cleared. Participants were asked to response by 

pressing one of two buttons corresponding to the direction 

of the central arrow. At this time a string “-” appeared to 

mark each interval of 1000ms waiting. After the 

participant’s response, the screen remains clear for 500ms. 

All stimuli were presented in white font on a black 

background. At a viewing distance of around 100 cm, the 

visual angle of the arrow stimuli was 0.4° vertically and 

0.6° horizontally, and between them was 0.3° space. This 

procedure is similar to the task carried out in [3] and [6] 

Participants wore an Emotiv Epoc Neuroheadset that has 

the ability to capture raw EEG in 14 channels (of the 10-20 

international system) from different locations around the 

human head. At first, participants were given one practice 

block of 40 trials. After that, they performed 4 blocks of 40 

trials in which EEG signals were collected. Participants had 

2 minutes to rest after each block. We collected a total of 

1920 trials from all participants of the experiment.  

SIGNAL PROCESSING 

The EEG signals, captured from the Emotiv headset, were 

divided into 2-second length epochs 1 second before and 1 

second after the key press moment). With the sampling 

frequency at 128Hz (after downgrading from 1024Hz), the 

length of each epoch is 256 samples. The first 200ms of 

each epoch were used to remove DC offset following which 

all epochs were filtered in 1-10Hz to remove components 

that are not in the ERN frequency bands of that particular 

epoch. Figure 4 shows examples of single trial ERN in the 

two cases when the trial was incorrect (Fig 4a) and correct 

(Fig 4b). These examples were picked to demonstrate the 

difference in the ERN pattern from a single trial. 
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Figure 4.  Examples of single trial ERN for two cases: 

incorrect (a) and correct (b). The x axis is number of samples 

(1 sec = 128 samples). The y axis is amplitude (uV). The red 

line is the key press moment (sample number 127). 

RESULTS 

For each channel, half of the trials (= 80 trials) were used 

for training via a logistic regression technique and other 

half were used for testing. We performed a t-test on y(t) 

(calculated by multiplying x(t) with the coefficient matrix) 

for each channel per user to check if there was a significant 

difference between two types of output (ERN and no ERN 

epochs). Based on the results of the t-test we found that on 

average F3, F4, F8, FC5, FC6, AF4 were the channels that 

yielded significant differences in y(t) implying they are best 

suited to detect an ERN pattern from a signal x(t).  

From the test trials we found that using data from F4 

channel can discriminate the two types of responses best: 

69.7% of correct trials were classified as correct and about 

70.3% of erroneous trials were classified as incorrect.  
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Figure 5.  Classifier accuracy on a single trial basis 

Figure 5 shows the average accuracy of different sensing 

channels on which the algorithm works most effectively. It 

was observed that those channels, which correspond to the 

frontal lobe, produce better classifications than other 

channels. This matched the literature about the origin of 

ERN, which is from the Anterior Cingulate Cortex (ACC) 

[26]. This also satisfies the fact that ERN has the frontal-

central distribution of the human brain. 

Figure 6 illustrates the average EEG signals over all epochs 

belonging to two cases: correct and incorrect. 

To investigate the efficiency of the classifier further, we 

used the Receiver Operating Characteristic (ROC) Analysis 

[23]. It has two distinct inputs: hit rate (or true positive rate) 

and false alarm rate (or false positive rate) as two separate 



performance measures. ROC analysis has been used in 

machine learning recently to justify how good a classifier is 

by evaluating its discriminating power [15].  Figure 7 shows 

four ROC curves of 4 frontal-central channels. The further 

the curve is from the diagonal line, the more effective that 

classifier is. The area under the curve (AUC) gives an 

indication of how well the classifier is performing. The 

AUC of 1 indicates a perfect classifier and 0.5 indicates a 

random chance of classification. Our classifier achieves an 

average of 0.77 across all channels. The AUC for the best 

six channels (F3, F4, F8, FC5, FC6, and AF4) are shown in 

Figure 8. 
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Figure 6. EEG signals at channel AF4 with number of samples 

in the x-axis (1 sec = 128 samples) and uV in the y-axis. (a) 

Correct Epochs and (b) Incorrect Epochs. The vertical red line 

is the moment when key was pressed. 

 

Figure 7.  ROC curve for 4 channels: AF4, F3, F8, and FC6 

Discussion 

The result of the above Flanker Task demonstrate that 

Emotiv™ device is capable of capturing EEG signals with 

sufficient quality for a classifier to be able to detect ERN 

with an accuracy of about 70%. This initial result suggests 

that we can achieve ERN detection rates that can benefit 

interactive applications where these can be further 

improved through manipulating the feedback mechanism 

such that any likely error (or mistake) is noticed earlier by 

the user. This can provoke higher amplitude of ERN, 

further increasing the probability of accurately detecting it. 

As a result it will enhance the advantage of using ERN as 

the system can “sense” that the user made a mistake and 

interrupt or undo the last action. 

 
Figure 8.  AUC for different channels 

EXPERIMENT 2: BUTTONS SELECTION 

Compared to Flanker tasks, a visually rich environment, 

like the one a user might encounter in an interactive 

application requires more users' mental workload. This will 

trigger neuronal activities from different parts of the brain; 

all of which can interfere with ERN signals. Mouse inputs 

in interactive tasks require free hand movements over 

longer distance which can cause bioelectrical signals from 

hand muscle activity. These activities will bring artifacts to 

EEG signals [22]. For these reasons it is not clear whether 

ERNs can be detected in a visually rich environment.  

The main goal of this experiment is two-fold: first to 

confirm that an interactive task other than Flanker Task will 

produce an ERN pattern that can be measured using our 

portable EEG set and secondly to check whether the pattern 

can be classified using our online detection algorithm. 

We designed a task that retains the main elements of a 

multiple-choice RT task while at the same time offering a 

visually rich environment that goes beyond the Flanker task 

and be closer to what might be expected of an interactive 

application.  

Task: Button selection  

In this task the user had to select an object with the size of a 

160 x 55 pixel button. In each trial, the user was asked to 

select a button in a limited time. There are 7 buttons with 

text from 'Link 01' to 'Link 07' which were arranged in an 

ascending order from top to bottom. The trial began when 

user clicked on the START button. A message at the top of 

the screen showed which button needed to be clicked 

(Figure 9a). The user then moved the mouse cursor toward 

the required button. A timer was placed at the top right of 

the screen to show elapsed time since the trial started. The 

timer was to put pressure on user to complete the trial as 

quickly as possible. The user must finish the trial in a 

limited time (1.4s) otherwise a TIME OUT message would 

appear and the trial restarted. We chose 1.4s because 1.3s 

was the average time for an experienced user to complete 

the task.When the mouse cursor was moving toward the 

desired button and there was 30 pixels distance remaining 

to reach, the order of the buttons may change (Figure 9b). 

The probability for the buttons' order to change was 50%. 



Because the position of the desired button was changed 

when the cursor was very near, user may not have enough 

time to change their decision to click on the intended button 

but still aware of the result of their action. The intention 

was to provoke an ERN in this case. When user clicked on 

a button, a message notified user if they had clicked on the 

correct one. There was a 3 second waiting time before a 

new trial started. 

          

 (a) (b) 
Figure 9.  User interface of the task at the moment of (a) start 

trial and (b) cursor is near the desired button. 

Design and procedure 

Nine students (6 males) recruited from the local university 

took part in this experiment. All of them knew about the 

Emotiv device but had never tried it before. Each of them 

was given the consent form and information sheet 

informing them about the task details. They were asked to 

sit comfortably but alerted to the task. They were also 

instructed to blink less during the experiment, especially 

around the deciding moment (mouse click). The experiment 

took place in an office environment with ambient noise. 

Participants were given some practice trials to become 

familiar with the task until they confirmed they were ready 

to start the experiment in which data was collected. Each 

participant performed 4 blocks of 40 trials each and there 

was 2 minute break between each block. 

Data Collection and Analysis 

Signals were collected using the Emotiv neuroheadset. 

They were then divided into 1.5 second epochs around 

mouse click moments, 0.5 seconds before and 1 second 

after. The moments that a participant saw the result of their 

action were also captured as it is assumed that was when 

s/he realized that s/he has made a correct or incorrect 

choice. The epochs were then divided into two groups 

where the first group was used to compute the coefficient 

matrix (β). The second group was formed with the 

remaining data. 

This coefficient matrix was then used to classify epochs of 

the second half. There were two cases to classify: 

participants clicked on the desired button successfully or 

they performed it unsuccessfully. The classifier performed 

the classifying task on a single trial basis. Epochs were 

divided based on the probabilities of having ERN and not 

having ERN. The result then was compared with the ground 

truth of participants' confirmation.  

We do the classification and analysis offline but using the 

online detection algorithm. The primary goal here is to 

verify the effectiveness of the algorithm not to provide 

users with real-time feedback in an interactive task.  

Result 

We visually inspected the EEG signals around the moments 

when a participant clicked a mouse button to see if ERN 

patterns can be observed or not. ERN pattern was clearly 

visible in epochs where participants made an incorrect 

decision (clicked on a wrong button). As the trial result was 

displayed immediately after user clicked, the epochs of 

displaying moments were the same as the epochs around 

mouse click moments. 

Figure 10 shows the mean of EEG signals around the 

moments when a participant click (select an object). 
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Figure 10.  EEG signals around moments where a participant 

made an incorrect decision (a, c) and correct decision (b, d) 

at channel F3 (top) and FC5 (bottom). The red lines mark 

the moment that the mouse button was clicked. 

In addition, the Logistic Regression algorithm can classify 

epochs belonging to those two cases: correct and incorrect 

responses. The coefficient matrices (β) of the same 

participant from the first half of data were multiplied with 

the extracted epochs x(t) to produce output y(t). We perform 

a t-test on y(t) for each channel per user to check if there is 

a significant difference between two types of output: correct 

(user clicked on a correct button) and incorrect (user 

clicked on an incorrect button). We investigated further 

based on the t-test result and found that the accuracy of the 

classifier on incorrect decision moments and correct 

decision moments were 64% and 67% at channel F3 and 

63% and 69% at channel FC5. The results from this 

experiment are similar in accuracy to the result of the 

Flanker Task. It is notable that those two channels that have 

the best classifying accuracy are in frontal-central part of 

human brain which is consistent with the result obtained 

from Flanker Task. 
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Figure 11.  Single trial classification accuracies 

Discussion 

The result obtained from this experiment confirms the 

existence of an ERN pattern in a non-Flanker task. Those 

patterns can be seen clearly in epochs when participants 

commit an incorrect decision. Moreover, this result 

confirms that ERN patterns appeared in a normal 

application in a working condition as long as the ERN 

triggering condition is designed properly. 

The method investigated in this experiment demonstrates 

the ability to detect an ERN pattern using a off the shelf 

EEG headset. It also demonstrates the ERN detection on a 

single trial basis. This is promising for HCI designers as the 

ultimate purpose is not to develop an effective and robust 

classifier but to harness this type of ERP into HCI.  

While one might argue that we processed EEG data offline, 

it is worth noting that we used a detection algorithm that is 

essentially an online detection algorithm that works on a 

single trial basis. This algorithm can be used as a light 

weight module and can be run in the background of the 

system. Thus, it can be easily brought to an online version 

with the same design and signal processing methods.  

The questions that remains is how useful this classification 

level is when ERN is applied to interactive applications and 

is 65% to 70% accuracy enough in effectively assisting 

users. The answer varies depending on the types and 

purposes of each task. Therefore, we designed the next 

experiment in order to demonstrate at least one set of 

applications that benefit from this level of ERN 

classification accuracy. 

EXPERIMENT 3 

The goal of the experiment was to determine whether the 

accuracies of the ERN classifier can benefit interactive 

applications and improve users' performance. It is unlikely 

that ERN classifying rate can reach 100% at all time. 

Therefore we design this experiment to justify the trade-off 

between ERN accuracies and benefits toward users. 

The chosen application for this experiment was similar to 

Superflick [19]. Superflick is a pointing technique which is 

based on Flick (sliding/ throwing the object across the 

table) but adds a correction step. Flick is an open-loop 

technique, providing fast movement but requires practice to 

achieve accuracy. Superflick offers a "remote drag-and-

drop" correction phase if the object is off the target. In our 

experiment we integrate a “simulated ERN detection” 

module into Superflick to test if there are any performance 

differences between different types of detection accuracies. 

There are several reasons why we pick this specific 

pointing technique to explore performance. The main 

motivation is that it is easy to establish ground truth to 

compare the different techniques. Secondly, Flick is a 

popular interaction technique that has been studied 

extensively in the HCI literature for both handheld and 

tabletop environments. Thirdly, the authors have experience 

with the Flick technique and understand how the Superflick 

design can be improved through the introduction of an ERN 

detection module. This allows us to examine the effect of 

various ERN detection rates on users' performance. 

The simulated ERN detection module consists of a random 

function used to mimic the ERN classifier. There are 4 

types of accuracy: 50%, 65%, 80% and 100% to simulate 

the probabilities that the classifier will detect ERN patterns. 

The random function was controlled so that accuracies were 

as precise as required. During the experiment, participants 

were not aware that the ERN module was simulated.  

Task and Technique 

Participants had to move an object onto a target. The task 

started with the animated ball to move (the main ball – the 

lower yellow circle in Figure 1) located at the middle 

bottom of the screen. The target was a green circle and was 

assigned randomly among 15 targets.  

The participant used a stylus to flick the object onto the 

target. As soon as the flick action was completed (by lifting 

the stylus of the touch surface) a circle appeared at the 

estimated final position of the main ball (the estimated ball 

– the higher yellow circle in Figure 1) which was calculated 

based on the distance and duration of the flick gesture. This 

instant visual feedback allowed the user to know whether or 

not the ball would actually hit the target. This was done to 

help with potentially triggering an ERN (although we do 

not capture these signals but rely on our controlled random 

function). At this point the mimicked ERN detection 

module will be triggered causing either the red (mimicking 

ERN detected) or the green (mimicking ERN not detected) 

light to be visible. The main ball then moved from the start 

point toward the estimated ball with the speed of 1200 

pixels per second. When the main ball was moving, the user 

had a chance to remotely drag-and-drop the estimated ball 

to the target (as in SuperFlick). During the drag process, the 

main ball automatically moves toward the estimated ball. 

The trial finished when the main and the estimated balls 

met each other for over 200ms. This threshold was set to 

prevent accidental overlaps of the two balls. If they met 

inside the target, the trial was marked as successful and 

unsuccessful otherwise. A new trial started after 3s waiting 

and the user interface was reset to the original condition 

(with a new target). 

The simulated ERN detection worked as follow: 250ms 

after the main ball left the start position, the ERN detection 

light, which was placed at the bottom right corner of the 

screen, started showing red if ERN pattern was detected 

(estimated ball was not inside the target) and green if not. In 



case of the light indicating red, the main ball's speed 

decreased dramatically to 15% of the original speed (180 

pixels per second). The user then had more time to remotely 

correct the position. 

The task was built in C# for the experiment, and was 

installed in a bottom-projected tabletop system. The table 

was 105x88x106cm (w x d x h) with display size of 

72.5x60cm and projector resolution of 1280x1024 pixels. 

Participants used a Wacom CTE 430 tablet (dimensions: 

210 x 208, active area: 127.6 x 92.8mm) for input. 

Design and Procedure 

Nine local students (5 females) with age from 21 to 41 

participated in this experiment. All of them heard about the 

Emotiv headset but never had used it before. They were 

given a consent form and information sheet explaining 

about the purpose of the experiment. Participants were not 

aware that we were simulating ERN detection. They wore 

the EEG headset, stood comfortably but alerted to the task 

in front of the tabletop, and were led to believe that their 

EEG signals were used to assist them in their task. But 

instead of detecting ERN based on the measured EEG 

signals, we created a detection module which is a controlled 

random function. The accuracy of this detection module 

was controlled to simulate the accuracy rates. 

Participants were given 1 block of 50 trials or more to 

practice until they were familiar with the task and ready to 

start. After that, they performed 4 blocks (with minimum 50 

trials) with ERN accuracies of 50%, 65%, 80% and 100%. 

A block was finished when number of trials was more than 

the minimum number of trials and ERN detection accuracy 

reached the required number.  

Result 

Figure 12 illustrates the percentage of successful trials (the 

main ball ended inside the target). We applied one-way 

ANOVA test with Bonferroni post hoc multiple 

comparisons on the data and found that there was 

significant difference between groups (F = 17.517, p < 

0.001). However, there were no significant difference 

between groups of 65%, 80% and 100% (p > 0.5). 

We also analyzed the number of unsuccessful trials when 

there were red and green lights separately. The intention 

was to check if users made mistakes naturally when the 

main ball moved slowly (red light); and if there were more 

unsuccessful trials when the main ball moved with full 

speed (green light). 

Their mean values are shown Table 1. We ran one-way 

ANOVA test with Bonferroni post hoc multiple 

comparisons on those data and found no significant 

difference between groups in case of Red light (p > 0.5). It 

was noteworthy that even there was significant difference 

between groups in case of Green light (F = 11.741, p < 

0.01), there was no significant difference between groups 

(50%, 65%), (65%, 80%), and (80%, 100%) (p > 0.5).  

 

Figure 12.  Accuracies of Superflick with different ERN 

detection accuracies 

 50 65 80 100 

Red  0.12 0.03 0.06 0.03 

Green  0.47 0.35 0.22 0.00 

Table 1.  Mean % of unsuccessful trials with the two 

indication light 

Discussion 

The results obtained from participants show that when 

integrate ERN detection module with 65% accuracy was as 

good as 80% accuracy. This was proved as no significant 

differences were found between two groups in term of 

overall accuracy and when ERN was not detected 

(incorrectly). Our results also show that integrating an ERN 

detection module might not prove beneficial if the detection 

accuracies are lower than 65%.   

The classifier with 65% accuracy may provide higher error 

rate compared to 80% and 100% accuracies but still 

benefits interactive tasks. If a system has very high 

accuracy (less error rate), it can  promote hasty commitment 

to selections [11]. This is because users overly rely on the 

system and know that there is little cost for making 

mistakes. In the real world, the cost of an error may be 

much higher. Therefore, a system with lower classification 

accuracy may require more attention but has lower cost of 

recovery hence still offers benefits to the users.  

These results confirm that ERN classification accuracy with 

Emotiv can benefit interactive tasks as good as other 

expensive devices, yet offer the advantages of portability, 

low-cost and instantaneous classification.  

This experiment also shows an opportunity to assist users in 

pointing and table top applications using ERN. In these 

tasks, objects are usually out of range for users to select 

therefore they need to use several techniques such as drag-

and-drop, radar, etc. ERN integration does not replace these 

techniques but provides better performance and more 

precise selections for users. 

DISCUSSION 

ERN has the potential to enrich interactive applications. 

The results from the studies in this paper can provide 

guidance on how best to begin harnessing ERN for such 

interactive experiences.  

Employ ERN to Assist Interactive Tasks 

The studies in this paper have shown that it is possible to 

detect ERN patterns using an off-the-shelf EEG headset on 

an online single-trial basis. If integrated into interactive 



tasks, an ERN detection module provides another medium 

for HCI designers to access users' intentions, which is 

intuitive and directly from the users' brain. This module can 

be designed as a lightweight background feature.  

An ERN pattern will appear in any multiple-choice RT task, 

of which the button selection task used in this work is just 

one example. The ERN pattern can be detected within 

150ms of the event onset. This means within this time 

window the user becomes aware that they have made a 

mistake; the interactive application can know this and 

respond. In most cases this type of information is not 

available without access to the user’s EEG signals. Even if 

knowledge of user error is available in some other way 

(such as text auto correction, prediction techniques) it may 

not offer as fast response as ERN detection.  

The nature and scope of usage of the ERN signal will 

depend on the usage context, the creativity of the designer 

and on the ability of the user to ignore recommendations 

that are incorrect or inappropriate.  

Dealing with incorrect classification 

Detecting ERN correctly is a challenge. We can be 

reasonably sure that even the best classifier will never 

achieve 100% accuracy in an online single trial system. 

Consequently, an interruption management system is 

needed to be integrated into the system. This can reduce the 

disturbance to users when the system makes suggestions 

based on incorrectly detected ERNs. For example, if a user 

chooses to ignore a suggestion that pops up based on a 

confirmed ERN, the pop up must not prevent the user 

interacting with the user interface. Designers wishing to use 

ERN in their applications must be careful to ensure that 

such ERN-based suggestions do not stop the user from 

working with the system. 

Potential Applications of ERN 

As ERN is elicited in any multiple choice RT time task 

when the user is confused or aware of their accidental 

action this has great potential in many type of interactive 

applications. We suggest some of them as follow: 

Gaming conditions: ERN can be used to provide users with 

a new form of experience in gaming. For example, in time 

critical missions (like shooting a character in World-of-war 

craft) sometimes network delays and other external factors 

may affect the overall outcome of the mission or battle. In 

these cases if an ERN is detected this can be used in 

systems decision making process either by giving the player 

another chance or changing the time-stamp of user triggered 

events to make the outcome seem as the user intended.  

Aiding Object Selection: Selecting a static target among a 

selection of objects is a multiple choice reaction time task. 

The user starts with deciding on the target then makes an 

initial open-loop movement followed by a final correction 

phase where they move the pointer or finger on the target to 

select it. In this correction phase if the user usually receive 

visual feedback on whether or not their selection was 

successful. This feedback combined with the initiation of 

the correction-phase movement can trigger ERNs if the 

movements are fast enough. Thus it should be possible for 

an ERN detection module to detect errors in users' intention 

and attempt to correct it. In many instances the cost of 

recovering from a wrong button press or a pointer selection 

can be quite high – the application might be launched and 

the user would have to close it before re-launching the right 

application. In these circumstances when ERN is detected 

the system can prompt the user if the target was selected 

correctly potentially helping the user.  

ERN detection can be combined with P300 to reduce the 

user’s mental load and frustration (error-recovery is time 

consuming and difficult) that is associated with working 

with P300 data. For example, in a object selection using 

P300 on a multi-touch table [27], ERN can be used as final 

confirmation that the object is the user's intended selected 

object. This will be very useful because it is difficult to 

confirm using only P300 that the selected object on the 

table is the one that the user wanted. Moreover, ERN usage 

can eliminate the trial of hitting the BACK button to de-

select an object in P300 spelling which is time consuming 

and requires high concentration. This can also be applied 

into object selections on a tabletop for people in working 

condition so that the time spent in correcting wrong 

selection will be reduced and efficiency improved.  

Mobile Spatial Navigation: Sometimes, a user still needs 

help in using and navigating using electronic maps on the 

fly (i.e. Google maps). HCI designers may integrate ERN 

into the system so that it can detect the confusion and error 

awareness moments in order to provide appropriate 

suggestion based on the location. One obstacle is EEG is 

known to be sensitive to movements such as walking and 

moving your body. This can make the EEG signal very 

noisy reducing the accuracy of the ERN detector. Before 

being fed into the classifier, EEG signals may need to be 

carefully pre-processed.  

Multiple users' applications: ERN use can be extended to 

multiple users scenarios where a person's ERN is made 

visible to the entire team so team-support is available when 

the user is confused. For example if a gamer is confused in 

navigation or shooting activity, his/her teammates can assist 

him, or in collaborative table top applications, other people 

may give help and suggestion to a person whose avatar is 

being shown as confused or aware that they have made a 

wrong selection encouraging collaborative peer-learning. 

CONCLUSION 

The experiments described in this paper offer some 

valuable guidelines for HCI designers. We show that ERN 

patterns can be detected using an off the shelf EEG headset 

on an online single trial basis. Moreover, we apply this 

model to an interactive task to illustrate that it can work 

with normal interactive applications in a working 

environment with ambient noise. We finally show that 

accuracies in the region of 65 to 80% are sufficient for ERN 



to be effectively integrated into HCI applications. In our 

discussions we suggested novel ways in which HCI 

applications could benefit from ERN. 

ACKNOWLEDGEMENT 

We thank Dr. Nick Yeung (Oxford Neuroscience, 

University of Oxford) for providing access to shared data 

and useful discussions in the initial stages of the project. 

REFERENCES 

1. Campbell, A., Choudhury, T., Hu, S., Lu, H., Mukerjee, 

M.K., Rabbi, M., and Raizada, R.D.S. NeuroPhone: 

brain-mobile phone interface using a wireless EEG 

headset, in ACM SIGCOMM. (2010), 3-8. 

2. Christoforos, A., Dimitris, T., Niall, A., and David, H. 

Temporally adaptive estimation of logistic classifiers on 

data streams. ADAC. 3, 3: (2009), 243-261. 

3. Scheffers, MK, and Coles, MG. Performance 

Monitoring in a Confusing World: Error-Related Brain 

Activity, Judgments of Response Accuracy, and Types 

of Errors. Proc. of JEPHPP. 26, 1: (2000), 141-151. 

4. Dal Seno, B., Matteucci, M., and Mainardi, L. Online 

detection of P300 and error potentials in a BCI speller. 

Computational Intelligence and Neuroscience (2010). 

5. Dornhege, G., R.Millan, J.d., Hinterberger, T., 

J.McFarland, D., and Muller, K.-R. Toward Brain-

Computer Interfacing. MIT Press. (2007), 393-408. 

6. Eriksen, C. and Schultz, D. Information processing in 

visual search: A continuous flow conception and 

experimental results. Attention, Perceptionn & 

Psychophysics. 25, 4: (1979), 249-263. 

7. Farwell, L.A. and Donchin, E. Talking off the top of 

your head: toward a mental prosthesis utilizing event-

related brain potentials. Electroencephalography and 

clinical neurophysiology. 70, 6: (1988), 510-523. 

8. Ferrez, P.W. and Millán, J.D.R. You are wrong!: 

automatic detection of interaction errors from brain 

waves, in Proc. of IJCAI. (2005), 1413-1418. 

9. Ganushchak, L.Y. and Schiller, N.O. Brain 

errormonitoring activity is affected by semantic 

relatedness: An event-related brain potentials study. J. 

Cognitive Neuroscience. 20, 5: (2008), 927-940. 

10. Gehring, W.J., Goss, B., Coles, M.G.H., Meyer, D.E., 

and Donchin, E. A Neural System for Error Detection 

and Compensation. Psychological Science: (1993). 

11. Gutwin, C. and Cockburn, A. Improving list revisitation 

with ListMaps, in AVI, ACM. (2006). 

12. Hirshfield, L.M., Solovey, E.T., Girouard, A., Kebinger, 

J., Jacob, R.J.K., Sassaroli, A., and Fantini, S. Brain 

measurement for usability testing and adaptive 

interfaces: an example of uncovering syntactic workload 

with functional near infrared spectroscopy, in CHI. 

(2009), 2185-2194. 

13. Hjelm, S.I. and Browall, C. Brainball - using brain 

activity for cool competition. NordiCHI: (2000). 

14. Holroyd, C. and Coles, M. The neural basis of human 

error processing: reinforcement learning, dopamine, and 

the error-related negativity. Psych review, 4: (2002). 

15. Honghu Liu, G.L. Testing Statistical Significance of the 

Area under a Receiving Operating Characteristics Curve 

for Repeated Measures Design with Bootstrapping. J. 

Data Science. 3: (2005), 257-278. 

16. Lee, J.C. and Tan, D.S. Using a low-cost 

electroencephalograph for task classification in HCI 

research, in UIST. (2006), 81-90. 

17. Miltner, W.H.R., Braun, C.H., and Coles, M.G.H. 

Event-related brain potentials following incorrect 

feedback in a time-estimation task: Evidence for a 

neural system for error detection. J. Cognitive 

Neuroscience: (1997), 788-798. 

18. Parra, L., Alvino, C., Tang, A., Pearlmutter, B., Yeung, 

N., Osman, A., and Sajda, P. Linear Spatial Integration 

for Single-Trial Detection in Encephalography. 

NeuroImage. 17, 1: (2002), 223-230. 

19. Reetz, A., Gutwin, C., Stach, T., Nacenta, M., and 

Subramanian, S. Superflick: a natural and efficient 

technique for long-distance object placement on digital 

tables, in Proc. of GI. (2006), 163-170. 

20. Shenoy, P. and Tan, D.S. Human-aided computing: 

utilizing implicit human processing to classify images, 

in CHI, ACM. (2008), 845-854. 

21. Solovey, E.T., Girouard, A., Chauncey, K., Hirshfield, 

L.M., Sassaroli, A., Zheng, F., Fantini, S., and Jacob, 

R.J.K. Using fNIRS brain sensing in realistic HCI 

settings: experiments and guidelines, in UIST. (2009). 

22. Sörnmo, L. and Laguna, P. Bioelectrical Signal 

Processing in Cardiac and Neurological Applications. 

Elseiver. (2005). 

23. Van Erkel, A.R. and Pattynama, P.M.T. Receiver 

operating characteristic (ROC) analysis: Basic principles 

and applications in radiology. European J. Radiology. 

27, 2: (1998), 88-94. 

24. Villringer, A. and Chance, B. Non-invasive optical 

spectroscopy and imaging of human brain function. 

Trends in Neurosciences. 20, 10: (1997), 435-442. 

25. Yeung, N., Botvinick, M.M., and Cohen, J.D. The 

Neural Basis of Error Detection: Conflict Monitoring 

and the Error-Related Negativity. Psych review: (2004). 

26. Yeung, N. and Cohen, J.D. The Impact of Cognitive 

Deficits on Conflict Monitoring: Predictable 

Dissociations Between the Error-Related Negativity and 

N2. Psych Science. 17: (2006), 164-171. 

27. Yuksel, B.F., Donnerer, M., Tompkin, J., and Steed, A. 

A novel brain-computer interface using a multi-touch 

surface, in CHI. (2010), 855-858. 


