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Abstract.
To show how causal interactions in neural dynamics are modulated by behavior,

it is valuable to analyze these interactions without perturbing or lesioning the
neural mechanism. This paper proposes a method, based on a graph-theoretic
extension of vector autoregressive modeling and ‘Granger causality’, for characterizing
causal interactions generated within intact neural mechanisms. This method, called
causal connectivity analysis, is illustrated via model neural networks optimized for
controlling target fixation in a simulated head-eye system, in which the structure of the
environment can be experimentally varied. Causal connectivity analysis of this model
yields novel insights into neural mechanisms underlying sensorimotor coordination. In
contrast to networks supporting comparatively simple behavior, networks supporting
rich adaptive behavior show a higher density of causal interactions, as well as a
stronger causal flow from sensory inputs to motor outputs. They also show different
arrangements of ‘causal sources’ and ‘causal sinks’: nodes that differentially affect, or
are affected by, the remainder of the network. Finally, analysis of causal connectivity
can predict the functional consequences of network lesions. These results suggest that
causal connectivity analysis may have useful applications in the analysis of neural
dynamics.
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1. Introduction

Many neurobiological processes involve mutual interactions among behavior, environ-

ment and neural mechanisms [1, 2, 3, 4, 5]. Neural mechanisms generate behavior, and

are at the same time modulated by the correlations imposed by behavior and environ-

ment. To advance our understanding of these interactions, this paper proposes a method

for characterizing the causal connectivity of a neural system, i.e. the directed graph of

dynamical interactions among elements of the neural system in which each edge reflects

a causal influence between two nodes. The method is based on vector autoregressive

modeling and ‘Granger causality’, adapted from time-series analysis [6, 7], together

with techniques from graph theory [8]. Unlike alternative approaches for determining

causality [9, 10, 11], the method does not require perturbation or lesioning of network

elements, and hence is well suited to analyzing data sets acquired during behavior from

intact (simulated or biological) neural systems.

The approach is illustrated by showing how behavior and environment modulate

the causal connectivity of a simulated neural network engaged in sensorimotor

coordination. Evolutionary algorithms are used to generate neural networks that

support target fixation behavior in a simulated head/eye system, in which the

complexity of the sensorimotor environment can be experimentally varied [4]. The

causal connectivities of evolved networks are then compared with their structural and

behavioral properties. Causal connectivity analysis suggests several novel predictions

regarding neural mechanisms of sensorimotor coordination. For example, the analysis

predicts that neural mechanisms supporting head-eye coordination in rich environments

will show a higher density of causal interactions, and a stronger causal flow from

sensory inputs to motor outputs, than mechanisms supporting comparatively simple

coordination.

The concept of Granger causality is based on prediction: if a signal A causes a signal

B, then past values of A should contain information that helps predict B, above and

beyond the information contained in past values of B alone [12, 6]. In practice, Granger

causality is usually determined by linear modeling of time series [7]. In the simplest case

with two variables, if the variance of the prediction error for B is significantly reduced

by including past observations of A in the regression model, then A can be said to cause

B [6].

Granger causality analysis has been used previously to identify causal relations

in neurobiological data. Bernasconi and Konig applied a spectral version of Granger

causality [13] to local field potential data from cat visual cortex, identifying bidirectional

causal influences between supragranular and infragranular layers during a go/no-go

visual discrimination task [14]. Liang et al used a time-varying spectral technique to

differentiate feedforward, feedback, and lateral dynamical influences in monkey ventral

visual cortex during visual pattern discrimination [15]. Kaminski et al noted increasing

anterior to posterior causal influences during the transition from waking to sleep by

analysis of electroencephalographic (EEG) signals [16]. Hesse et al used an adaptive
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estimation of Granger causality to identify causal interactions in human EEG data

recorded during performance of a Stroop task; they found dense webs of posterior to

anterior interactions that appeared ∼400ms following stimulus onset [17]. Recently,

Brovelli et al identified causal influences extending from primary somatosensory cortex

to motor cortex in the beta-frequency range (15-30 Hz) during lever pressing by awake

monkeys [18].

The present research differs from these studies by applying Granger causality

analysis to simulated neural systems that support adaptive behaviors, and by describing

causal connectivity in terms of graph-theoretic properties. Concepts of causal density,

causal disequilibrium, causal flow, and causal sources and causal sinks in networks are

introduced in order to describe and compare causal connectivities. Causal density

reflects the fraction of significant causal interactions present in a set of network

dynamics, causal disequilibrium reflects the deviation of this pattern from reciprocity,

causal flow reflects the balance between outgoing and incoming causal influences for

a given node, and causal sinks and sources identify network nodes that respectively

differentially affect, or are affected by, the remainder of the network. Applying these

concepts to a simulation model allows causal connectivity to be related to structural

connectivity, and permits a detailed analysis of the modulation of causal connectivity

by behavior and environment. As well as yielding insights into neural mechanisms

of sensorimotor coordination, the model illustrates the utility of causal connectivity

analysis, providing a platform for application of the method within the neurobiology of

behavior.

2. Causal connectivity analysis

Granger causality is usually tested in the context of linear autoregressive models

that predict the evolution of a time series or of a set of time series [7]. Univariate

autoregressive models describe a single time series in terms of linear combinations of

past values (lags) of the time-series. Multivariate (vector) autoregressive (VAR) models

include lags of multiple time-series. To illustrate Granger causality, consider two time

series X1(t) and X2(t) of length T . Suppose that the temporal dynamics of X1(t) and

X2(t) can be described by a bivariate autoregressive model:

X1(t) =
p∑

j=1

A11,jX1(t− j) +
p∑

j=1

A12,jX2(t− j) + E1(t)

X2(t) =
p∑

j=1

A21,jX1(t− j) +
p∑

j=1

A22,jX2(t− j) + E2(t)

(1)

where p is the maximum number of lags included in the model (the model order,

p < T ), A contains the estimated coefficients of the model, and E1, E2 are residuals

for each time series. If the variance of the prediction error E1 (or E2) is reduced by

the inclusion of the X2 (or X1) terms in the first (or second) equation, then it is said

that X2 (or X1) Granger-causes X1 (or X2). In other words, X2 Granger-causes X1
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if all the coefficients in A12 are jointly significantly different from zero. This can be

tested by performing an F-test of the null hypothesis that A12 = 0, given assumptions

of covariance stationarity on X1 and X2 (see Appendix A). The magnitude of a given

Granger causality interaction can be estimated by the logarithm of the corresponding

F-statistic.

This concept can be readily extended to the multivariate case by estimating an

N-variable VAR model. In this case, X2 Granger-causes X1 if knowing X2 reduces

X1’s prediction error when the activities of all other variables X3 . . . XN are also taken

into account. Multivariate analyses can provide robustness to false positives in cases

of common input. In a system in which X1 and X2 are both influenced by X3 but

are otherwise independent, a bivariate model of X1 and X2 may wrongly suggest the

existence of a causal relationship between X1 and X2. A multivariate model including

all three variables would not, since knowing X1(2) would not help predict X2(1) in the

context of knowing X3. For this reason this paper adopts a fully multivariate approach.

Significant Granger causality interactions between variables can be represented

as edges in a graph, allowing the application of graph-theoretic techniques. Since

Granger causality is in general not symmetric, these edges will be directed. Graphical

representation can be used to summarize causal connectivity in several novel ways:

• Causal density. The causal density (cd) of a network’s dynamics reflects the

fraction of interactions among nodes that are causally significant. A set of

independent nodes will have low cd, as will a network in which all nodes have

identical dynamics. Causal density is defined as cd = gc/(2N(N − 1)), where gc is

the total number of significant causal links observed, and N is the network size. A

related quantity, the unit causal density cdu(i), is defined as the total number of

significant causal links involving node i. For unweighted graphs (graphs in which

all edges are equivalent), cdu(i) is equivalent to the degree of node i, i.e. the total

number of afferent (out-degree) and efferent (in-degree) connections.

• Causal flow. The causal flow (cf) of a node i in a Granger-causality graph

is defined as the difference between its out-degree and in-degree.† The causal

flow profile of the graph is the vector F = [cf(1), cf(2), . . . , cf(n)] for nodes

i = 1 . . . n. This profile identifies nodes that have distinctive causal effects on

network dynamics: A node with highly positive cf exerts a strong causal influence

over the network (a causal source); a node with negative cf may be said to be

a causal sink of the network. Note that the present definition uses the difference

between out-degree and in-degree, rather than the ratio (see [19]), in order to obtain

a measure unaffected by how many balanced efferent/afferent connections a node

may have.

† ‘Causal flow’ is distinct from a previous graph-theoretic definition of ‘flow’ in graph theory, which
refers to the problem of assigning non-negative values to directed edges such that total inflow is equal
to total outflow for all nodes except two [8].
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• Causal reciprocity. The causal reciprocity (crecip) of a Granger-causality graph

is defined as the fraction of edges for which a directly reciprocal edge exists. This

measure provides an estimate of the degree of functional reciprocity sustained by a

network. It is analogous to the quantity frecip calculated for anatomical networks

[20].

• Causal disequilibrium. A more informative but more complex measure of

functional reciprocity is given by causal disequilibrium (cde). This quantity reflects

the deviation of directed dynamical interactions from reciprocity, measured over all

network bipartitions. It is defined as

cde = (
1

Np
)

Np∑

i=1

(|gcAiBi
− gcBiAi

|)/(NAi
NBi

)

where Np is the total number of bipartitions of the graph, gcAiBi
is the number of

links from nodes in partition Ai to nodes in its complement Bi (and vice-versa for

gcBiAi
), and NAi

(NBi
) is the number of nodes in partition Ai (Bi). Calculation

of cde allows identification of network partitions which maximize or minimize

cross-partition causal interactions, which may correspond to informative functional

decompositions. Causal disequilibrium is related to causal flow: networks with

high causal disequilibrium will tend to have causal flow profiles with high variance

(see Sections 5.5 and 5.6). It is also related to the property of node symmetry as

calculated for structural graphs [19].

‘Weighted’ versions of cd, cdu, cf , and cde can be calculated by scaling the

contribution of each connection by its magnitude, which is given by the logarithm of the

corresponding F-statistic. The resulting values are labelled cdw, cduw, cfw, and cdew,

respectively. There is no weighted version of crecip. MATLAB (Natick, MA) routines

for calculating and graphically representing these measures are provided on the author’s

website www.nsi.edu/users/seth.

3. Simulation model of target fixation

The modulation of causal connectivity by behavior and environment is illustrated here

by analysis of a simulation model of target fixation. This model has been previously

described and analyzed using an information-theoretic approach [4, 5], the results of

which will be compared to the present analysis in Section 5. Full details of the model

are given in [4]; here only a minimal set of features are described.

The model consists of a simulated head/eye system in which a neural network

controls the movements of a head (H) and an eye (E) in an x, y plane (figure 1). Good

performance in the model corresponds to fixation of a target (T) with H and E aligned.

Networks consist of N = 32 neurons and K = 256 weighted connections (inhibitory

and excitatory), with a per-neuron in-degree (indeg) of 8. Network dynamics are

implemented as a continuous system in which neuron output is a sigmoidal function
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Figure 1. Simulation model of target fixation. A neural network (top left, N = 32,
K = 256) controls ‘head’ (H) and ‘eye’ (E) movements to fixate a target (T). Only
5 out of 22 interneurons (INs, black) are shown, and only a small number of possible
connections are illustrated. Visual inputs (v-inputs, blue) respond to displacement of
gaze direction from the target. ‘Proprioceptive’ inputs reflect the offset between H and
E (e-inputs, cyan), and the displacement of H from a central axis (h-inputs, green).
Motor outputs control H (H-outputs, yellow), as well as movements of E relative to H
(E-outputs, red).

of the sum of its inputs. In a given network, six neurons are sensory inputs and four

neurons are motor outputs (see figure 1 for details). The remaining 22 neurons are

‘interneurons’ (INs). Note that input neurons are also modulated by the remainder of

the network (indeg = 8 for all neurons).

Evolutionary algorithms were used to generate networks able to support target

fixation in a ‘simple’ context φS, in which the target is stationary. A second set of

networks were evolved in a ‘complex’ context φC , in which the target drifts and jumps,

and in which movements of H and E are constrained by more complex parameters

including, for example, time-lags and differing momenta. These parameters constitute

the ‘phenotype’ of the model. During evolution, connection and weight distributions of

networks were allowed to mutate but N , K, and indeg were maintained.

Ten networks were evolved in each context. Those evolved in φS are referred to as

S-networks, and those evolved in φC as C-networks. Each evolved network was analyzed

in both contexts, as well as in a random noise context (φR). Ten randomly generated

networks were also analyzed in each context (R-networks: N = 32, K = 256, indeg = 8).

The present analysis therefore consists of nine different combinations of network type

and context, with ten sets of neural dynamics for each combination. These combinations

are labelled by the shorthand: CC for a C-network in φC , CS for a C-network in φS, SC

for an S-network in φC , and so on.

Behavioral results from the model, described in [4], show that C-networks are
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able to fixate targets in both contexts, whereas S-networks show poor fixation in φC .

Moreover, C-networks are able to compensate for unexpected perturbations to the head

position, whereas S-networks are not. These results suggest that network optimization

in a rich sensorimotor environment can facilitate the emergence of robust and adaptive

behavior. In the following analysis, these behavioral observations are related to a causal

connectivity analysis of the corresponding network dynamics.

4. Causal connectivity analysis

4.1. VAR model estimation

Separate (multivariate) VAR models were estimated for each of the 90 sets of neural

dynamics. To keep the number of parameters to be estimated within a reasonable range,

from each set a subset was excised corresponding to the 6 input and 4 output neurons.

Each time-series was pre-treated by first-order differencing (see Appendix A) and by

removing the first 25 values. The resulting matrices (10x575) are referred to as ‘activity

profiles’. It should be emphasized that these profiles reflect rates of change of neural

activity rather than absolute values.

To select the appropriate model order (i.e. the number of lagged observations to

include), the Bayesian Information Criterion (BIC) was used [21]. The model order

pmin resulting in the lowest BIC represents the best compromise between accuracy

of fit and parameter parsimony. For an observation of length T and model order p,

BICp = log(det(Ω̂)) + log(T )nest/T , where Ω̂ is an estimate of the covariance matrix of

the residuals of the corresponding VAR (see equation 1), and nest is the number of freely

estimated parameters (n2 x p for an n-dimensional VAR). For each activity profile, BICp

for p ∈ [2, 10] was calculated by estimating a 10-dimensional VAR model for each model

order, using the method of ordinary least squares. The resulting values of pmin differed

within and between conditions, ranging from 2 to 4. To maintain consistency across

conditions, p = 4 was chosen for all subsequent analyses. To confirm that the temporal

relationships among variables were captured by each p = 4 model, it was verified that

the residuals were serially uncorrelated (p < 0.01 in all cases, Ljung-Box ‘Q’ statistic

[22]). It was also verified that each model captured most of the variance in the data

(R2
adj in all cases lay in the range [0.5,0.8] [23]).

4.2. Causal connectivity

Given a p = 4 VAR model for each activity profile, significant Granger causality

interactions between input neurons and output neurons were calculated using an F-

test corrected for multiple comparisons (p < 0.01). Causal interactions between input

neurons were not considered, nor were interactions between output neurons. Figure 2

shows representative casual connectivity graphs from each of the nine conditions. Each

arrow indicates a significant Granger causality interaction and the width of the arrow

is scaled by the magnitude of the interaction, as determined by the logarithm of the
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Figure 2. Causal connectivity graphs for nine representative activity profiles. CC:
C-network in context φC , CS: C-network in φS , CR: C-network in φR, SC: S-network
in φC , SS: S-network in φS , SR: S-network in φR, RC: R-network in φC , RS: R-network
in φS , and RR: R-network in φR. Each panel shows six input neurons (black lettering,
v: v-inputs, e: e-inputs, h: h-inputs) and four output neurons (grey lettering, H: H-
outputs, E: E-outputs). The labelling of the top-left panel applies to all panels. Red
arrows show input to output causal connections, green arrows show output to input
causal connections, and blue arrows show reciprocal causal connections. Causal links
are included if significant at the p < 0.01 level (Bonferroni-corrected F-test). The
width of each arrow and size of the arrowhead reflect the magnitude of the causal
influence, as determined by the logarithm of the corresponding F-statistic.

corresponding F-statistic. It bears repeating that a significant causal interaction from

A to B shows a statistical relation, i.e. that the activity of B can be better predicted

by including past observations of A in a multivariate linear model of the dynamics of

all (10) neurons in the network.

4.2.1. C-networks. Figure 2 reveals several features of dynamical organization. For

example, causal graphs for C-networks tested in φC (CC) have strong causal connectivity

from v-inputs to motor outputs, suggesting that their dynamics are driven largely by

visual signals. There is also strong reciprocal causal connectivity between the motor

outputs and (proprioceptive) e-inputs, suggesting that the corresponding dynamics are

modulated by the displacement between head position and eye position, and little if

any among motor outputs and (proprioceptive) h-inputs, suggesting that these inputs

are not functionally significant in this case. This profile is altered when the same
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Figure 3. Connectivity profiles for a representative C-network, S-network, and R-
network. Each panel shows six input neurons and four output neurons (labelled as in
figure 2). Red arrows show input to output connections, green arrows show output
to input connections, and blue arrows show reciprocal connections. Line widths and
arrowhead sizes are scaled by the corresponding connection strengths.

network is tested in contexts φS and φR (CS and CR respectively): Causal projections

from visual inputs are weaker, and the fraction of unidirectional output to input

connections increases. These observations reflect a network that is organized to be driven

preferentially by visual input in rich sensorimotor contexts, with additional modulation

from proprioceptive sensors, particularly e-inputs.

One may compare causal graphs with the underlying network structure, as

well as with dynamical covariances among network elements. Figure 3 shows the

(direct) structural connectivity among input neurons and output neurons for the

networks whose causal connectivity is depicted in figure 2. Not surprisingly, there

is some overlap between structural and causal representations. For example, for

the C-network, the strong causal connectivity from v-inputs to motor outputs is

reflected in the structure. But there are also differences: Structurally, the C-network

shows only one reciprocal connection, whereas the corresponding causal graph (CC)

shows strong reciprocal connectivity between motor outputs and e-inputs. More

generally, causal connectivity graphs show the influence of interactions among network

structure, phenotype, and environment (hence the differences among panels CC, CS,

and CR), whereas representations of network structure are necessarily invariant to

these contextual influences. Note that structural graphs omit indirect structural

connections via INs. One reason for this is that in all networks, all neurons are

structurally connected to all other neurons via many differently-weighted paths of diverse

lengths. Evaluating only direct connections between the observed neurons provides

a parsimonious representation that is consistent with the causality analysis (and the

following covariance analysis): Each considers the same restricted set of variables.
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Figure 4. Covariance patterns by condition (labelled as in figure 2). Two neurons are
connected if their correlation is significant at the p < 0.01 level (Bonferroni-corrected
t-test). Only covariances between input and output neurons are shown. Each panel
shows six input neurons and four output neurons (labelled as in figure 2). The width
of each line reflects the magnitude of the covariance. Light grey lines indicate positive
covariance, dark grey lines indicate negative covariance.

Figure 4 shows covariances among input neurons and output neurons for the same

activity profiles as in figure 2. Two neurons are connected if their correlation is

significant at the p < 0.01 level (t-test corrected for multiple comparisons) and the

width of each link indicates the strength of covariance (thicker lines correspond to

higher covariance values). Again, these graphs provide an impoverished representation

of network dynamics as compared to causal connectivity. Although covariance graphs

vary with context (compare CC with CS and CR), since covariances are by definition

symmetric they do not give any indication of directionality. Also, covariance patterns

clearly differ from the corresponding causal connectivities. For example, covariances in

condition CC are sparse, give less emphasis to v-inputs, and do not distinguish between

proprioceptive e-inputs and h-inputs. By contrast, the covariance pattern in condition

CS is dense and contains little obvious organization.

4.2.2. S-networks and R-networks. Networks adapted to different contexts show

different patterns of causal connectivity. In contrast to the C-network, S-network motor

outputs are driven strongly by h-inputs as well as by v-inputs in φC (figure 2). This

suggests that the S-network is less specifically sensitive to visual signals than the C-
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network in this context. Also, the C-network has more reciprocal causal connections

between e-inputs and motor outputs than the S-network (or R-network), suggesting that

proprioceptive visual signals play a greater functional role in the C-network. Despite

these differences, both networks are affected by changes in context in a similar way,

showing a decrease in input→output causal connectivity as the testing environment

is switched from rich (φC) to simple (φS) to random (φR) (figure 2, middle panels).

Finally, R-networks show sparse and disorganized causal connectivity irrespective of the

environment of testing (figure 2, right panels).

These patterns of causal connectivity can be compared with the corresponding

structural and covariance patterns (figures 3 and 4). S-network causal projections from

motor outputs to e-inputs are not reflected in the S-network structure. The strong

causal projections from v-inputs are also largely absent in the corresponding structure

graph. Covariance patterns for the S-network are highly variable among conditions and

- as for the C-network - differ from the corresponding causal patterns. For example,

covariances in condition SC lack connections from v-inputs. R-networks, as expected,

show little organization in either structure or covariance in all conditions.

Taken together, comparisons among causal, structural, and covariance patterns

suggest that causal connectivity provides a comparatively rich representation of network

dynamics. Unlike covariance patterns, causal connectivity graphs are directed, and

unlike structural graphs, they are sensitive to context. Moreover, causal patterns

appear to provide an intuitive interpretation of the relation between network dynamics

and behavior, for example by highlighting the importance of visual signals in rich

sensorimotor environments.

4.3. Group analysis of causal connectivity

To test the consistency of the above observations, ‘composite causal connectivity’ graphs

were derived for each set of 10 activity profiles from each condition. Each panel in

figure 5 shows the causal interactions that are reliably present in each set of profiles.

Black indicates a strong presence of a given connection across all activity profiles for the

condition, white indicates that a connection is never present. For example, the top-left

panel shows that causal connections from v-inputs to motor outputs are strong across all

activity profiles for condition CC, whereas connections from h-inputs to motor outputs

are less prevalent.

These composite patterns warrant several observations consistent with figure 2. The

causal connectivity of a network depends on the environment in which it operates. C-

networks in φC tend to have rich causal interactions from v-inputs and e-inputs to motor

outputs, as well as a high proportion of causal connections from motor outputs back to e-

inputs. By contrast, connections from h-inputs to motor outputs are rare. This pattern

changes with progressive simplification of the environment (CS and CR). In condition

CS, H-outputs are less responsive to v-inputs, and h-inputs are less disconnected from

motor outputs. In condition CR, there remains only a general tendency for input neurons
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Figure 5. Composite causal connectivity by condition (conditions are labelled as in
figure 2). Each panel shows the causal interactions that are reliably present in each set
of 10 activity profiles from each condition. The composite causal connectivity between
a pair of neurons is the sum of the magnitudes of causally significant interactions over
all activity profiles, divided by the largest value of this sum across all connections and
all conditions. Horizontal axes show source neurons and the vertical axes show target
neurons. The labelling of the top-left panel applies to all panels. Black indicates
a strong presence of a given connection across all profiles, white indicates that an
interaction is never present. Six input neurons are shown (black lettering, v: v-inputs,
e: e-inputs, h: h-inputs), and four output neurons (grey lettering, H: H-outputs, E:
E-outputs).

to drive output neurons. The same general point holds for S-networks and R-networks:

Environmental simplification leads to a reduction in the range of causal interactions

reliably sustained by a network.

The environment to which a network has adapted influences the richness of causal

connectivity. For a given testing context, C-networks tend to have a higher density of

input→output causal interactions than either S-networks or R-networks. S-networks,

however, show strong causal connections from H-outputs to v-inputs (except in φR),

implying that visual signals are predictable from preceding head movements. This

suggests that for S-networks (unlike C-networks) the generation of behavior does not

involve complex coordination of head and eye movements. As expected, R-networks in

φR show no reliably present causal connections. However, in conditions RC and RS there

are strong causal connections between v-inputs and motor outputs, which demonstrates

that the sensorimotor correlations imposed by an environmental and phenotypic context
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Figure 6. Effect of context on causal connectivity. Shown are composite causal
connectivity differences between conditions CC and CS, scaled by magnitude and
labelled as in figure 5. Warm colors (cool colors) show causal interactions that are
reliably stronger (weaker) when a network is switched from context φS to φC . The
color scale is normalized to the largest difference in composite causal connectivity.

can be sufficient to generate reliable causal interactions even in randomly connected

networks.

The effect of context on network dynamics is illustrated further in figure 6, which

shows differences between composite causal connectivity patterns for conditions CC

and CS. Warm colors and cool colors respectively indicate the causal interactions that

are reliably strengthened or weakened, when a C-network is switched from φS to φC .

Consistent with figure 5, switching the network to a richer sensorimotor context leads

to greater causal connectivity from sensory inputs to motor outputs. Connections from

motor output to e-inputs are also generally stronger in the rich environments, with

the exception of two connections from H-outputs to e-inputs that may reflect a greater

dissociation of head and eye movements in φC . Finally, connections from motor outputs

to v-inputs are consistently weaker in the richer context, supporting the suggestion that

visual signals are less predictable from prior head movements in rich environments.

4.4. Causal flow

Causal flow profiles are consistent with the foregoing analyses. Figure 7 shows that

C-networks in φC have a prevalence of causal connections extending from v-inputs

(these neurons are causal sources). Motor output neurons have predominantly incoming

causal connections (causal sinks). Environmental simplification (CS and CR) lessens

the prominence of this pattern. S-networks and R-networks in φC show the same general

pattern of sources and sinks, but v-inputs are less prominent in these cases. In contrast,

flow profiles for graphs based on covariances or structural connectivity, are generally flat

(not shown).

4.5. Causal density

Figure 8(a) shows that weighted causal density cdw falls significantly as the environment

is simplified, and that the highest overall values are for S- and C-networks in φC .
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Figure 7. Causal flow profiles for each condition (conditions are labelled as in figure 2).
Each panel shows the mean and standard deviation causal flow cf(i) for each neuron
(the difference between the out-degree and the in-degree), averaged across 10 activity
profiles for each condition. Dark grey bars correspond to inputs (black lettering: v,
h, e), light grey to outputs (grey lettering: H, E). The labelling of the top-left panel
applies to all panels.

Random R-networks show low cdw regardless of the testing context. A qualitatively

similar pattern was observed for unweighted causal density cd. Therefore, for networks

adapted to a structured environment (S- and C-networks), behavior within a rich

environment evokes high causal density in the corresponding network dynamics.

4.6. Causal disequilibrium

Figure 8(b) shows how weighted causal disequilibrium cdew varies across conditions.

The results are broadly similar to cdw: Rich environments evoke high cdew as compared

to simple or random environments, for both C-networks and S-networks (CC and SC

respectively). Interestingly, unlike cdw, cdew does not distinguish between φS and φR for

either C-networks or S-networks. This suggests that while imposing simple sensorimotor

correlations can increase the density of causal interactions (as compared to random

activation, see figure 8a), this increase is not accompanied by a corresponding increase

in the deviation from overall reciprocity of these interactions. For such an increase

reliably to take place, behavior in a rich sensorimotor environment (φC) is necessary.
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Figure 8. (a). Mean and standard deviation weighted causal density cdw for each set
of 10 activity profiles from each condition (conditions are labelled as in figure 2). (b).
Weighted causal disequilibrium cdew. (c) Causal reciprocity crecip. Asterisks shows
significant differences by two-tailed t-test (p < 0.01).

4.7. Causal reciprocity

Figure 8(c) shows that causal reciprocity crecip follows a pattern that differs from both

cdw and cdew. Highest values are found for non-random networks tested in φS, and

lowest values are found for random networks in any context. This suggests that crecip

responds to uniformity and regularity in network dynamics.

4.8. Predicting the influence of network lesions

A potential application of causal connectivity analysis is prediction of the effects of

network lesions on behavior. To test this possibility, a C-network (shown in figure 3)

was retested in φC after removing all connections to and from each of the six input

neurons in turn. Each lesioned network was retested 50 times.

Figure 9(a) shows the mean residual fitness for each lesioned network, as a

proportion of the mean fitness value obtained by the non-lesioned network. Lesions

to v-inputs had severe effects on fitness, lesions to e-inputs had moderate effects, and

lesions to h-inputs had very mild effects. These results are consistent with the causal

connectivity of the network (figure 2, top-left panel): v-inputs have strong causal

connections to the motor outputs, e-inputs have reciprocal causal connections with

the outputs, and h-inputs are mostly disconnected from the outputs. By contrast, the

corresponding structural representation is only partly consistent with the lesion data. As

figure 3 shows, there are strong projections from v-inputs to output neurons; however, h-

inputs also have widespread (albeit weaker) structural connectivity with output neurons,

suggesting that lesions to h-inputs would have substantial effects on fitness, which is not

the case. Finally, e-inputs have sparse and weak structural connectivity with outputs,

which is at odds with the significant effects on fitness of lesions to these inputs. There

is no obvious similarity between the lesion data and the corresponding covariance graph
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Figure 9. (a) Mean post-lesion fitness of a representative C-network in φC following
sensory input lesions, shown as a proportion of the fitness of a non-lesioned network
(v: v-inputs, e: e-inputs, h: h-inputs). Asterisks shows significant differences by two-
tailed t-test (p < 0.01). (b-d) Residual fitness following lesions to INs of C-networks,
as a proportion of the fitness of the intact network, plotted against (b) mean cduw of
the IN, (c) mean cfw of the IN, and (d) mean absolute covariance of the IN with the
remainder of the network. Intact networks and lesioned networks were each tested 12
times in φC . All 22 INs were lesioned in turn for all 10 C-networks. Each panel shows
Pearson’s correlation coefficient (r) as well as the corresponding p-value.

(figure 4, top-left panel).

This analysis was extended by calculating the causal connectivity among all 32

neurons in a C-network during behavior in φC .§ Each of the 22 ‘intermediate’ neurons

(INs) were then lesioned, and the fitness consequences assessed. Each lesioned network

was tested 50 times, allowing identification of the four INs that had the most severe

fitness effects when lesioned, and the four that had the mildest. Figure 10 shows,

for each of these neurons, the causal connections involving the IN and the sensory and

motor neurons. For severe lesions (top row), the corresponding INs mediate input-output

causal pathways; that is, they are causally affected by sensory input, and they causally

affect motor output. For mild lesions, the corresponding INs are causally isolated (they

are caused, but they do not cause). Neither structural representations nor covariance

representations showed equivalent correspondences. INs associated with mild fitness

effects are not structurally isolated: all four project to input neurons, and #7 and #22

project also to output neurons. One IN associated with severe fitness effects (#10) had

no significant covariances with either input or output neurons, and, conversely, one IN

§ This required estimating a 32-dimensional p = 4 VAR. The mean R2
adj was 0.9, and the residuals

were uncorrelated (p < 0.01, Ljung-Box ‘Q’ statistic).
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Figure 10. Causal connectivity of selected ‘intermediate’ neurons (INs) with sensory
and motor neurons. Connections among sensory inputs (black lettering) and motor
outputs (grey lettering) are omitted for clarity. Red (green) arrows indicate causal
connections from (to) the IN, blue arrows indicate reciprocal causal connections.
Arrow width and arrowhead size are scaled by the magnitude of causal influence (the
logarithm of the corresponding F-statistic). Each graph is labelled by the index of the
corresponding IN (for example, IN #5) as well as by the fractional fitness decrement
caused by lesioning the IN (for example, 0.55).

associated with mild fitness effects (#15) covaried strongly with both input and output

neurons.

This analysis was generalized across all INs in all ten C-networks (see figure 9b-

d), showing that post-lesion fitness correlates with both cduw and cfw of the lesioned

IN. By contrast, there is no correlation between post-lesion fitness and mean absolute

covariance of the lesioned IN with the remainder of the network. These results confirm

that the causal connectivity of a neuron is a useful predictor of the dynamical and

behavioral consequences of network damage.

5. Discussion

This paper has described a method for characterizing directed dynamical interactions

within intact neural systems during behavior. Causal connectivity analysis is based

on Granger causality [6], which formalizes the ability of a linear autoregressive model

to elucidate significant causal relations within a set of variables. Given such a model,

graph-theoretic concepts can be applied to characterize the resulting patterns of causal

connectivity. Specifically, one may measure the causal density, causal reciprocity, causal

disequilibrium and causal flow profile of a network, and identify causal sinks and causal

sources.

Throughout this paper the term ‘causality’ has been used following Wiener [12] and

Granger [6]. It is important to stress that this concept of causality is statistical rather
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than physical. If a system is only partially observed, there are several situations in which

Granger causality may not correspond to physical causal chains. For example, A may

enhance the predictability of B if both A and B are driven by a common (unobserved)

input C, or if A physically causes an (unobserved) intermediate process D which itself

physically causes B. ‖
This sensitivity to unobserved variables is true in general for dynamical analyses,

and can in fact be useful: many network systems cannot be observed in toto, especially

when the network does not form an isolated system; biological networks, for example,

are embodied in phenotypes and embedded in environments [1, 2]. Causal connectivity

analysis, in virtue of its sensitivity to indirect interactions, remains able to describe

causal influences among observable elements of a system, even if the activity of these

elements is physically caused in part by factors outside the scope of observation.

An alternative approach to determining causal interactions in a network is to

measure the effects of selective perturbations. For example, Tononi and Sporns stimulate

selected subsets of a network with Gaussian noise and interpret the resulting mutual

information between the subset and the rest of the network as a measure of their causal

connectivity [10]. Similarly, Keinan et al assess the functional contribution of individual

network elements by measuring network performance following lesions to subsets of

elements [11]. While these approaches are in principle robust to artifacts induced by

common input, in practice their use is restricted to situations in which networks can be

repeatedly and reversibly perturbed, which for many biological systems is currently not

possible. Nor are these approaches suitable for analyzing the influence of behavior and

environment on network dynamics, since such analyses require data derived from intact

neural networks in different contexts. Another approach which does not require network

perturbation is ‘structural equation modeling’ (SEM) [24, 25]. However, whereas causal

connectivity analysis infers causal interactions directly from data, SEM tests a priori

hypotheses about causal relationships. It may be useful to compare these approaches

for situations in which structural connectivity is known.

There are many opportunities to extend the graph-theoretic components of causal

connectivity analysis. Kötter and Stephan [19] have recently proposed a series of

‘network participation indices’ for analyzing neuroanatomical connectivity: Some of

these may have useful interpretations for causal graphs. It may be useful to look for

‘small-world’ properties in causal connectivity graphs. Small-world networks combine

high local clustering with short characteristic path lengths [26], and are usually identified

by analysis of network topology. The question remains open: What network topologies

would support small-world causal connectivity, and what functional properties would

such causal connectivity provide?

‖ As was remarked in the Introduction, if common inputs or intermediate variables (e.g. C and D
in the above example) are part of the observed system, a multivariate Granger causality analysis will
reveal the causal interactions mediated by these variables, instead of the indirect causal interactions
that they support.
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5.1. Linearity and stationarity

Causal connectivity analysis involves linear modeling of stationary time-series. The

present application investigated the validity of assumptions of stationarity and linearity

and found them satisfactory. In general, linear models are simple to estimate, and

for signals generated by a Gaussian process are superior to any other estimator [14].

Fortunately, large-scale neurodynamics such as interactions among distinct brain areas

appear to be well described by linear models [20, 25, 27]. In contrast, interactions

among individual spiking neurons are generally nonlinear [28] and future work may

usefully address the application of suitable nonlinear modeling techniques [29, 30] to

assessing causal interactions in such systems.

Non-stationarities in time-series data can be addressed in several ways, for example

by differencing (see Appendix A), or by the use of adaptive VAR models that have

time-varying coefficients (in these models, a time-series is broken into short segments

which may approximate stationarity). An advantage of adaptive models is that they

can identify changes over time in causal influences [17], however they generally require

a greater number of parameters to be estimated with less data [14], and as such may

provide a weaker basis for statistical inference of causal interactions.

5.2. Environmental and behavioral modulation of network dynamics

This paper illustrated causal connectivity analysis using a simulation model of target

fixation [4]. The method provided several insights into network dynamics and their

modulation by behavior. In the model, networks evolved and tested in rich environments

(C-networks in φC , figure 2) were driven largely by visual signals (v-inputs), with

proprioceptive modulation (e-inputs). In these networks, as expected, the visual inputs

are causal sources and the motor outputs are causal sinks. Networks adapted to

comparatively simple environments (S-networks) were less specifically sensitive to visual

signals, and less responsive to modulation by e-inputs (figure 2). Unlike C-networks,

S-networks showed strong causal projections from head motor outputs (H-outputs) to

v-inputs, suggesting that for these networks the generation of behavior did not involve

a complex coordination of head and eye movements. In general, these features were not

recapitulated in either structural or covariance representations of the same networks

(figures 3 and 4).

For all networks, including randomly connected networks, behavior in a

comparatively rich sensorimotor environment tended to evoke input-to-output causal

interactions in network dynamics. This trend was noted in representative causal graphs

(figure 2), summaries of all networks (figures 5 and 6), causal flow profiles (figure 7),

and mean causal disequilibrium (figure 8).

A useful summary of global causal connectivity is given by causal density, which

reflects the fraction of interactions among network elements that are causally significant.

In general, dense causal interactivity in a network signifies that nodes are both globally

coordinated in their activity (in order to be useful for predicting each other’s activity)
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and at the same time dynamically distinct (so that nodes contribute in different ways

to these predictions). High causal density may therefore reflect an intuitive property

of complex systems in general, i.e. that they are intermediate between completely

ordered systems and completely random systems [31, 5]. In our model, adaptation to a

structured sensorimotor environment evoked dense causal interactions when compared

to random networks, and behavior within such a context evoked dense causal interactions

when compared to behavior in a simple environment (figure 8). These observations are

consistent with the hypothesis that adaptation to complex environments yields complex

systems [3, 4].

Causal connectivity analysis was able to predict the functional consequences of

network lesions (figures 9 and 10). Lesions to input neurons with strong causal

projections to outputs yielded correspondingly large fitness deficits. Lesions to

interneurons (INs) that mediated input-to-output causal pathways yielded large fitness

decreases, whereas INs associated with mild post-lesion fitness decreases tended to be

causally isolated. Finally, post-lesion fitness correlated with both cduw and cfw of the

lesioned IN, but not with the covariance of the IN with the remainder of the network.

It is an exciting possibility that similar analyses will allow assessment of the context-

specific functional robustness of biological as well as simulated neural networks.

Although the present model is not intended as a realistic model of the neurobiology

of eye movements (see [32, 33]), the results nevertheless suggest several hypotheses.

They predict that head-eye coordination in rich sensorimotor environments will be

accompanied by increased causal density and increased input→output causal flow in the

underlying neural dynamics. They suggest that signals reflecting head-eye displacement

will affect performance more than signals reflecting head position in a global reference

frame. Lastly, they predict that causal connectivity will be differentially affected by

adaptation and by behavior. For example, adaptation to a structured environment

(whether simple or rich) will yield neural mechanisms capable of displaying high causal

density, but behavior within a rich environment will be necessary for this density to be

expressed.

A previous study [4] explored how behavior and environment modulated the ‘neural

complexity’ of the same simulation model described in this paper. Neural complexity

is an information-theoretic measure of global network dynamics which reflects the

extent to which a system balances dynamical integration and dynamical segregation

[31]. It was found that neurally complex dynamics accompanied adaptive behavior in

rich sensorimotor environments. Other related dynamical measures, such as entropy

(the level of statistical independence among network elements) and integration (the

converse), did not show such correlations with adaptive behavior (for details of these

measures see [20, 5]). The present results are consistent with these findings inasmuch

as causal density may also reflect system complexity. Nevertheless, causal density and

neural complexity are distinct concepts and measure system dynamics in very different

ways.

Furthermore, a fundamental limitation of the ‘neural complexity’ study was that
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it was not able to provide insight into the causal transactions in networks that

supported adaptive behavior: neural complexity, being a global measure, yields only

a scalar quantity for each analyzed network. Also, neural complexity is based on

the symmetric quantity of mutual information and as such cannot take account of

or describe directional interactions in network dynamics. By contrast, the present

analysis not only characterizes directed dynamical interactions, but is able to link global

descriptions of these interactions (causal density, causal disequilibrium) to the specific

causal transactions in networks that underlie their adaptive interactions with behavior

and environment.

The present approach may generalize to many cases of neurobiological significance.

Environment and behavior can modulate neural dynamics over a number of different

timescales. For example, during behavior, active vision involves neural mechanisms

which control gaze direction; gaze direction modulates visual input, and this in turn

drives subsequent neural dynamics [34]. During the lifetime of an individual, differences

in perceptual history can affect the organization of the nervous system [1]; for instance,

more neurons in monkey inferotemporal cortex respond to familiar than to unfamiliar

stimuli [35]. Although relevant empirical data are hard to collect, it has often been

argued that exposure to rich environmental niches over the course of evolution promotes

the evolution of complex neural mechanisms [36, 3]. While previous computational and

neurorobotic models have addressed each of these phenomena [37, 38, 39, 40, 41], they

have mostly lacked a quantitative analysis of the influences of behavior and environment

on the directed dynamics of the corresponding neural networks. As suggested above,

causal connectivity analysis is well suited for this task by its ability to elucidate causal

interactions from data generated by intact neural networks during behavior.

This paper has examined the causal interactions generated by networks acting as

sensorimotor controllers. It is likely that other networks which generate dynamics in the

service of other functions will show different and distinctive causal connectivity patterns.

The internet [42], protein interaction networks [43], and co-authorship networks of

scientists [44] all present complex topologies that support diverse dynamical interactions.

Extending causal connectivity analysis to these cases should advance our understanding

of network dynamics in many different ways. For example, causal sources and causal

sinks might suggest potential targets for pharmacological intervention in intracellular

metabolic pathways or in protein interaction networks, and causal density patterns may

help distinguish between normal and pathological states of these systems.
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Appendix A. Covariance stationarity

VAR modeling and Granger causality analysis assume that time-series are covariance-
stationary, i.e. that the mean and variance of the process are constant over time [7]. In the
context of an autoregressive model x(t) = a1x(t− 1) + . . . + apx(t− p) covariance stationarity
is assessed by testing for ‘unit roots’ as solutions of the equation:

1− a1z − a2z
2 − . . .− apz

p = 0 (A.1)

The existence of one or more unit roots, indicated by one or more solutions to this equation
lying on the unit circle, implies that the assumption of covariance-stationarity is violated.
If the series has a unit root, covariance-stationarity can be induced by differencing, i.e. by
transforming the time-series as follows:

∆x(t) = x(t)− x(t− 1) (A.2)

All time-series analysed in this paper were pre-treated by first-order differencing and
subsequently tested for unit roots: none were found (Dickey-Fuller test, p < 0.01).
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[43] S.H. Yook, Z.N. Oltvai, and A.-L. Barabàsi. Functional and topological characterization of protein
interaction networks. Proteomics, 4(4):928–42, 2004.

[44] M.E.J. Newman. Who is the best connected scientist? A study of scientific coauthorship networks.
Physical Review E, 64:016131, 2001. cond-mat/0011144.


